Conversion Factors and Formulas

ABBREVIATIONS

English

$\mathrm{A}=$ area
$\mathrm{ac} \mathrm{ft} .=$ acre-foot or acre-feet
$\mathrm{b}=$ base (of right triangle)
${ }^{\circ} \mathbf{C}=$ degrees Celsius
cfs or $\mathrm{ft}^{3} / \mathrm{sec}=$ cubic feet per second
cfm or $\mathrm{ft}^{3} / \mathrm{min}=$ cubic feet per minute
cfd or $\mathrm{ft}^{3} / \mathbf{d a y}=$ cubic feet per day
d $=$ diameter (circle)
${ }^{\circ} \mathbf{F}=$ degrees Fahrenheit
fps or ft ./sec $=$ feet per second
$\mathrm{ft} .=$ feet
$\mathbf{f t}^{2}$ or $\mathbf{s q} . \mathrm{ft} .=$ square feet
ft^{3} or $\mathbf{c u}$. ft. $=$ cubic feet
gpd $=$ gallons per day
gpg $=$ grains per gallon
gpm $=$ gallons per minute
gps = gallons per second
h = height
hrs/day = hours per day
in $=$ inches
$\mathrm{in}^{2}=$ square inches
in $^{3}=$ cubic inches
lbs. $=$ pounds
$\mathrm{mi}=$ miles
$\mathbf{M G}=$ million gallons
mgd or MGD $=$ million gallons per day
ppm = parts per million
ppt $=$ parts per trillion
$\mathrm{psi}=$ pounds per square inch
$\mathbf{Q}=$ flow
$\mathbf{r}=$ radius (circle)
W = watts
A = amps
V = volts

Metric

$\mathrm{cm}=$ centimeters
$\mathrm{g}=$ gram
$\mathbf{H a}=$ Hectare
$\mathbf{k g}=$ kilogram
$\mathrm{km}=$ kilometer
$\mathbf{k W}=$ kilowatt
\mathbf{L} or $\mathbf{1}=$ liters
$\mathbf{m}=$ meter
$\mathbf{m}^{\mathbf{3}}=$ cubic meter
$\mathbf{m g}=$ milligram
$\mathbf{m g} / \mathbf{L}$ or $\mathbf{m g} / \mathbf{l}=$ milligrams per liter or parts
per million
$\mathrm{mL}=$ milliliter
$\mathrm{mm}=$ millimeter
Metric Prefixes
mega (M): x 1,000,000
kilo (k): x 1,000
hecto (h): x 100
deka (da): x 10
deci (d): $x 0.10$
centi (c): x 0.01
milli (m): x 0.001
micro (μ): $\times 0.000001$
micro to milli: x 0.001
meter: linear measurement
liter: volume measurement
gram: weight measurement

VOLUME

English

1 acre-ft. $=325,828.8$ gllons
1 acre-ft. $=43,560 \mathrm{ft}^{3}$
$1 \mathrm{cfs}=0.646 \mathrm{MGD}$
$1 \mathrm{ft}^{3}=7.48$ gallons
1 gallon $=231 \mathrm{in}^{3}$
1 gallon $=0.1337 \mathrm{ft}^{3}$
1 gallon $=3.785$ liter
1 gallon $=0.000001 \mathrm{MG}$
$1 \mathrm{MGD}=1.55 \mathrm{cfs}$
$1 \mathrm{MGD}=694 \mathrm{gpm}$

Metric

1 liter $=1,000 \mathrm{~mL}$
1 liter $=0.2642$ gallons
$1 \mathrm{~m}^{3}=264.2$ gallons
$1 \mathrm{~m}^{3}=35.315 \mathrm{ft}^{3}$

AREA
1 acre $(\mathrm{ac})=43,560 \mathrm{ft}^{2}$
1 acre $=0.405$ Hectare (Ha)
$1 \mathrm{ft}^{2}=144 \mathrm{in}^{2}$
$1 \mathrm{in}^{2}=6.45 \mathrm{~cm}^{2}$
$1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}$

Flow Conversions

To use this diagram: First, find the box that coincides with the beginning units (i.e. gpm). Then, find the box that coincides with the desired ending units (i.e. cfs). The numbers between the starting point and ending point are the conversion factors. When moving from a smaller box to a larger box, multiply by the factor between them. When moving from a larger box to a smaller box, divide by the factor between them.

FLOW

$1 \mathrm{ft}^{3} / \mathrm{sec}=0.6463 \mathrm{MG}$
$1 \mathrm{ft}^{3} / \mathrm{sec}=449 \mathrm{gpm}$
$\mathrm{gpm}=0.00144 \mathrm{MGD}$
$1 \mathrm{MGD}=694.4 \mathrm{gpm}$
$1 \mathrm{MGD}=1.547 \mathrm{cfs}$
MGD $=3.07$ acre-ft $/$ day

WEIGHT \& MASS

English

$1 \mathrm{ft}^{3}$ water $=62.4 \mathrm{lbs}$.
1 gallon water $=8.34 \mathrm{lbs}$
$1 \mathrm{gpg}=17.118 \mathrm{mg} / \mathrm{L}$
$1 \mathrm{lb} .=453.6 \mathrm{~g}$

Metric

$1 \mathrm{~g}=1,000 \mathrm{~m}$
$1 \mathrm{~kg}=1,000 \mathrm{~g}$
$1 \mathrm{mg} / \mathrm{L}=0.0584 \mathrm{gpg}$
$1 \mathrm{~kg}=2.2 \mathrm{lbs}$
$1 \%=10,000 \mathrm{mg} / \mathrm{L}$

Area of a Cone

Where: $\quad \ell=$ slant height or hypotenuese
$\mathrm{h}=$ height
$\mathrm{r}=$ radius

$$
\pi \mathbf{r}(\boldsymbol{\ell}+\mathbf{r}) \text { or } \boldsymbol{\pi} \mathbf{r} \ell_{+\pi} \mathbf{r}^{2}
$$

If \mathbf{h} and \mathbf{r} are given then ℓ will have to be solved for.

$$
\ell^{2}=h^{2}+\mathbf{r}^{2}
$$

For the operator's convenience, both equation formulas and pie wheel formulas are included in this document. When using the pie wheel formula to solve a problem, multiply together the pie wedges below the horizontal line to solve for the quantity above the horizontal line. To solve for one of the pie wedges below the horizontal line, cover the pie wedge for which you are solving and divide the remaining pie wedge(s) below the horizontal line into the quantity above the horizontal line.

Electromotive Force (EMF) $=\mathrm{I} \times \mathrm{R}$
WHERE: EMF=electromotive force(volts)
$\mathrm{I}=$ current(amps)

$\mathrm{F}=(\mathrm{P}) \mathrm{x}(\mathrm{A})$
$\mathrm{P}=$ pressure(psi)
$\mathrm{A}=\operatorname{area}\left(\mathrm{in}^{2}\right)$

$$
\begin{aligned}
& \text { whp }=\frac{\mathrm{F} \times \mathrm{H}}{3,960} \quad \begin{array}{l}
\text { whp }=\text { water horsepower } \\
\mathrm{F}
\end{array}=\text { flow }(\mathrm{gpm}) \\
& \mathrm{H}=\text { head }(\mathrm{ft})
\end{aligned}
$$

Where: $\pi=3.14$

$$
A=\pi r^{2}
$$

Triangle (area) $=[(\mathrm{b}) \times(\mathrm{h})] / 2$
$b=$ base of triangle $h=$ height of triangle

$1=$ length of rectangle
$\mathrm{w}=$ width of rectangle

Cylinder $=(0.785) \times\left(\mathrm{D}^{2}\right) \times(\mathrm{h})$

$$
\mathrm{Q}=(\mathrm{A}) \mathrm{X}(\mathrm{~V})
$$

$$
S=4 \pi r^{2}
$$

cone $=(1 / 3) \times(0.785) \times\left(D^{2}\right) \times(h)$

Rectangular Tank $=(\mathrm{l}) \times(\mathrm{w}) \times(\mathrm{h})$
$\mathrm{d}=\operatorname{dose}(\mathrm{mg} / \mathrm{L})$
$\mathrm{Q}=$ flow (MGD)
Feed Rate (lbs./day)= Chemical purity of
100% For chemical purity of less than 100% see formulas on page 6.

Circumference of Circle

Circumference $=(\pi) \times(\mathrm{D})$

$$
\text { Circumference }=(2) \times(\pi) \times(\mathrm{r})
$$

Flows

$$
\begin{array}{ll}
\text { Where: } & \pi=3.1416 \\
& D=\text { diameter of circle } \\
\text { Where: } & \pi=3.1416 \\
& \mathrm{r}=\text { radius of circle }
\end{array}
$$

Where: $\quad \mathrm{Q}=$ flow in channel $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$ $\mathrm{w}=$ width (ft.) $\mathrm{d}=$ depth (ft.)

$$
\mathrm{V}=\text { velocity }(\mathrm{ft} . / \mathrm{sec})
$$

Where:

Where:
$\mathrm{Q}=$ flow in full pipe $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$
$\mathrm{D}=$ diameter (ft.) $\mathrm{V}=$ velocity (ft./sec)
$\mathrm{Q}=$ flow in partially full pipe $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$
$\mathrm{h}=$ height (ft .)
$\mathrm{D}=$ diameter (ft.)

$$
\mathrm{V}=\text { velocity }(\mathrm{ft} . / \mathrm{sec})
$$

Where:

$$
\begin{aligned}
& \mathrm{V}=\text { velocity }(\mathrm{ft} . / \mathrm{sec}) \\
& \mathrm{Q}=\text { flow }\left(\mathrm{ft}^{3} / \mathrm{sec}\right) \\
& \mathrm{D}=\text { diameter }(\mathrm{ft} .)
\end{aligned}
$$

Where:
$\mathrm{V}=$ velocity (ft./sec)
$\mathrm{d}=$ distance (ft.)
$\mathrm{T}=$ time (sec)

Where:
$\mathrm{Q}=$ avg. daily flow (MGD)
$\sum_{\mathrm{Q} \text { daily }}=$ sum all daily flows (MGD)
$\mathrm{n}_{\text {daily }}=$ number of daily flow
Where: $\mathrm{Q}=$ daily flow (gal/capita/day)
water used or produced = gal/day population $=$ total $\#$ people served $(\mathrm{gpd} / \mathrm{ft})$

Where:
overflow rate = weir overflow rate
$\mathrm{Q}=$ flow (gpd)
$\mathrm{L}=$ weir length (ft.)
Where:
$\mathrm{A}=$ area
$\mathrm{V}=$ velocity

Dosage Formulas

Dosage $=\frac{\text { Feed rate }}{(\mathrm{Q}) \times(8.34 \mathrm{lbs} . / \mathrm{gal})}$.

Dosage $=$ (Feed rate) \times (Purity) (Q) $\times(8.34 \mathrm{lbs} . / \mathrm{gal})$

Dosage $=($ Feed rate $) \times(1,000 \mathrm{mg} / \mathrm{g})$ (Q) $\times(3.785 \mathrm{~L} /$ gal $)$

Dose $=$ Demand + Residual
Chemical Feed/Feed Rate Formulas (lbs.)

Feed rate $=(\mathrm{d}) \times(\mathrm{Q}) \times(8.34 \mathrm{lbs} . /$ gal $)$

Feed rate $=\frac{(\mathrm{d}) \times(\mathrm{Q}) \times 8.34 \mathrm{lbs} . / \text { gal }}{\text { Chemical Purity }}$ Chemical Purity

Where:

Where:

Where:
feed rate $=1 \mathrm{lbs} . /$ day
$\mathrm{d}=\operatorname{dose}(\mathrm{mg} / \mathrm{L})$
$\mathrm{Q}=$ flow (MGD)
Chemical purity $=\%$, expressed as decimal
feed rate $=$ lbs. $/$ day
C $=$ concentration $(\mathrm{mg} / \mathrm{mL})$
$\mathrm{V}=$ volume pumped (mL)
$\mathrm{T}=$ time pumped (min.)

Where:
chemical feed stroke, \% expressed as $\mathrm{Q}_{\mathrm{d}}=$ desired flow a decimal $\mathrm{Q}_{\mathrm{m}}=$ maximum flow

Feed pump rate $=(\underline{Q}) \times(\mathrm{d}) \times(3.785 \mathrm{~L} / \mathrm{gal}) \times(1,000,000 \mathrm{gal} / \mathrm{MG})$
(L) $\times(24 \mathrm{hr} /$ day $) \times(60 \mathrm{~min} / \mathrm{hr})$

Where:

$$
\text { feed pump rate }=\mathrm{mL} / \mathrm{min}
$$

$$
\mathrm{Q}=\text { flow }(\mathrm{MDG})
$$

$$
\mathrm{d}=\operatorname{dose}(\mathrm{mg} / \mathrm{L})
$$

$\mathrm{L}=\operatorname{liquid}(\mathrm{mg} / \mathrm{mL})$

Where:

Where:

Where:

Where:

Where:

Where:

Where:
bhp $=$ brake horsepower
$\mathrm{F}=$ flow (gpm)
$\mathrm{H}=$ head (ft.)
$\mathrm{PE}=$ pump efficiency ($\%$, as decimal)

$$
\mathrm{bhp}=\mathrm{whp} / \mathrm{PE}
$$

$$
\operatorname{mhp}=\frac{\mathrm{F} \times \mathrm{H}}{3,960 \times \mathrm{PE} \times \mathrm{ME}}
$$

$$
\mathrm{mhp}=\mathrm{bhp} / \mathrm{ME}
$$

$$
\mathrm{ME}=(\mathrm{bhp} / \mathrm{mhp}) \times 100
$$

$$
\mathrm{PE}=(\mathrm{whp} / \mathrm{bhp}) \times 100
$$

Efficiency $=\frac{\text { hp output. }}{\text { hp supplied }}$

$$
\text { x } 100
$$

Wire to water efficiency $=$ \qquad Power input or mhp

Wire to water efficiency $=(\operatorname{PE} \times M E) \times 100$

$$
\text { Static Head }=\text { Suction lift }+ \text { Discharge Head }
$$

Static Head $=$ Discharge Head - Suction Head
kW usage $=(\mathrm{hp} / \mathrm{ME}) \times(.746 \mathrm{~kW})$

Where:

Where

Where:

> bhp = brake horsepower
> whp = water horsepower
> PE = pump efficiency $(\%$, as decimal $)$
$\mathrm{F}=$ flow (gpm)
$\mathrm{H}=$ head (ft.)
$\mathrm{PE}=$ pump efficiency ($\%$, as decimal)
$\mathrm{ME}=$ motor efficiency $(\%$, as decimal)
$\mathrm{mbp}=$ motor horsepower
mhp $=$ motor horsepower
Bhp = brake horsepower
$\mathrm{ME}=$ motor efficiency ($\%$, as decimal)
$M E=$ motor efficiency ($\%$, as decimal $)$
bhp $=$ brake horsepower
$\mathrm{mhp}=$ motor horsepower
$\mathrm{PE}=$ pump efficiency (\%, as decimal)
whp = water horsepower
bhp $=$ brake horsepower
efficiency is \% (as decimal)
overall efficiency is \% (as decimal)
whp = water horsepower
$\mathrm{mhp}=$ motor horsepower
wire to water efficiency is \% (as decimal)
whp = water horsepower
mhp $=$ motor horsepower power input is hp
wire to water efficiency is \% (as decimal)
$\mathrm{PE}=$ pump efficiency (\%) (as decimal)
$\mathrm{ME}=$ motor efficiency (\%) (as decimal)

Static Head in ft.
Suction Lift in ft .
Discharge Head in ft.
Static Head in ft.
Discharge Head in ft.
Suction Head in ft .
$\mathrm{ME}=$ motor efficiency $\%$, (as decimal)
$\mathrm{hp}=$ horsepower

Friction Loss $=(0.1) \times($ Static Head $)$
$* *$ use this formula in absence of other data

Total Dynamic Head $=$ Static Head + Friction Loss

Cost $=($ Motor hp$) \mathbf{x}(0.746 \mathrm{~kW} / \mathrm{hp}) \times(\operatorname{Cost} \$ / \mathrm{kW}-\mathrm{hr})$

POWER

$1 \mathrm{hp}=.746 \mathrm{~kW} ; 1 \mathrm{hp}=746 \mathrm{~W} ; 1 \mathrm{~kW}=1.34 \mathrm{hp}$

Wastewater Treatment Ponds

$\mathrm{PL}=($ Population $) /(\mathrm{A})$
$\mathrm{V}=(\mathrm{A}) \times(\mathrm{d})$
$\mathrm{V}(\mathrm{gal})=[\mathrm{V}(\mathrm{ac}-\mathrm{ft})] \times.\left(43,560 \mathrm{ft}^{2} / \mathrm{ac}\right) \times\left(7.48 \mathrm{gal} / \mathrm{ft}^{2}\right)$
Where:

Where:

$$
\mathrm{A}=[(\mathrm{L}) \times(\mathrm{W})] /\left(43,560 \mathrm{ft}^{2} / \mathrm{ac}\right)
$$

$\mathrm{DT}=(\mathrm{V}) /(\mathrm{Q}) \quad$ Where:

Where:
$\mathrm{OLR}=(\mathrm{BOD}) /(\mathrm{A})$
Where:
(
保

Where: \quad Total Dynamic Head is ft . Static Head is ft . Friction Loss is ft .

Where: \quad Cost is $\$ / \mathrm{hr}$.
Friction Loss is ft .
Static Head is ft .

PL = population loading (persons/acre) Population = population served(persons) $\mathrm{A}=$ pond area (acres)
$\mathrm{V}=$ pond volume (ac-ft.)
$\mathrm{A}=$ pond area (acres)
$\mathrm{d}=$ pond depth (ft.)
$\mathrm{V}=$ pond volume

A = pond area (acre)
$\mathrm{L}=$ length (ft.)
$\mathrm{W}=$ length (ft .)

DT = detention time (days)
$\mathrm{V}=$ volume (gal)
$\mathrm{Q}=$ flow (gal/day)

OLR $=$ organic loading rate
(lbs./day/acre)
BOD $=$ influent BOD (lbs./day)
$\mathrm{A}=$ pond areas (acres)

Where:

$$
\mathrm{OLR}=[(\mathrm{BOD}) \times(\mathrm{Q}) \times(8.34 \mathrm{lbs} . / \mathrm{gal})] /(\mathrm{A})
$$

$\operatorname{HLR}=[(\mathrm{Q}) /(\mathrm{A})] \times 12 \mathrm{in} / \mathrm{ft}$.
Where:

$$
\begin{aligned}
& \text { OLR = organic loading rate (lbs./day/acre) } \\
& \text { BOD = influent BOD (mg/L) } \\
& \mathrm{Q}=\text { flow (MGD) } \\
& \mathrm{A}=\text { pond areas (acres) }
\end{aligned}
$$

HLR = hydraulic loading rate (in/day)
$\mathrm{Q}=$ flow (ac-ft/day)
$\mathrm{A}=$ pond area (acres)

Loading Formulas (general)

Loading $=($ Concentration $) \times(Q) \times(8.34 \mathrm{lbs} / \mathrm{gal}) \quad$ Where: \quad Loading is TSS or BOD $=1 \mathrm{bs} . /$ day

Hydraulic loading rate $=\frac{\text { Flow }}{\mathrm{A}}$
Where:
Hydraulic Loading $=\mathrm{gpd} / \mathrm{ft}^{2}$
Flow = gpd
$\mathrm{A}=\operatorname{area}\left(\mathrm{ft}^{2}\right)$

Where:
Surface loading rate or Surface overflow rate $=\underline{\text { Flow }}$
,

Surface Loading/Surface Overflow rate

Concentration of TSS or BOD $=\mathrm{mg} / \mathrm{L}$ $\mathrm{Q}=$ flow in gpd/ft ${ }^{2}$
Flow $=$ gpd
$\mathrm{A}=\operatorname{area}\left(\mathrm{ft}^{2}\right)$

Where:
${ }^{\circ} \mathrm{C}=$ degrees Celsius
${ }^{\circ} \mathrm{F}=$ degrees Fahrenheit

Formulas

Average $($ arithmetic mean $)=($ sum of all terms $) /($ number of terms $)$
Average (geometric mean) $=\quad n \sqrt{\left(\mathrm{X}_{1}\right)\left(\mathrm{X}_{2}\right)\left(\mathrm{X}_{3}\right)\left(\mathrm{X}_{4}\right) \ldots\left(\mathrm{X}_{\mathrm{n}}\right)}$ The n th root of the product of n numbers

Efficiency, $\%=[(\mathrm{In}-$ Out $) /(\mathrm{In})] \times 100$

WET WELL

Cycle time $(\min)=\frac{\text { SV }}{\text { PC -Inflow }}$.

Where:

R

Where: Velocity is ft ./sec
$\mathrm{F}=$ flow $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$
$\mathrm{A}=\operatorname{area}\left(\mathrm{ft}^{2}\right)$
Where: Velocity is ft ./sec
$\mathrm{D}=$ distance (ft.) $\mathrm{T}=$ time (sec)
$\mathrm{DT}=\frac{(\mathrm{V}) \times(1,440 \mathrm{~min} / \text { day }) \times(60 \mathrm{sec} / \mathrm{min})}{\mathrm{Q}}$
$\mathrm{DT}=\frac{(\mathrm{V}) \times(24 \mathrm{hr} . / \text { day })}{\mathrm{Q}}$
$\mathrm{DT}=\frac{(\mathrm{V}) \times(1,440 \mathrm{~min} / \text { day })}{\mathrm{Q}}$
$\mathrm{DT}=(\mathrm{V}) /(\mathrm{Q})$
$\mathrm{DT}=(\mathrm{V}) /(\mathrm{Q})$

WELL FORMULAS

Well Yield $=\mathrm{V} / \mathrm{T}$

Drawdown $=$ PWL - SWL

Specific Capacity $=$ Well Yield/Drawdown

Where: $\quad \mathrm{DT}=$ detention time (sec)
$\mathrm{V}=$ volume (gal)
$\mathrm{Q}=$ flow rate(gal/day)

Where:

Where:

Where:

Where:

Where:

Specific capacity $=g p m / f t$.
Well Yield in gpm
Drawdown in ft .

PRESSURE

1 ft water $=0.433 \mathrm{psi}$
$1 \mathrm{psi}=2.31 \mathrm{ft}$ of water

ACTIVATED SLUDGE

$\underline{\mathrm{SVI}=(\mathrm{SSV}) \times(1,000 \mathrm{mg} / \mathrm{L})}$
MLSS

Where: SVI = sludge volume index (mL / g)
SSV $=$ settled sludge volume (mL / L)
MLSS $=$ mixed liquor suspended solids $(\mathrm{mg} / \mathrm{L})$

WATER/WASTEWATER LEVELS 3 \& 4

$$
\begin{aligned}
& \mathrm{BOD}_{5}=\left(\mathrm{DO}_{\underline{I}}-\mathrm{DO}_{\mathrm{E}}\right) \times 300 \\
& V_{\text {sample }} \\
& \text { Where: } \mathrm{BOD}_{5}=\mathrm{mg} / \mathrm{L} \\
& \mathrm{DO}_{\mathrm{I}}=\text { initial } \mathrm{DO}(\mathrm{mg} / \mathrm{L}) \\
& \mathrm{DO}_{\mathrm{F}}=\text { final } \mathrm{DO}(\mathrm{mg} / \mathrm{L}) \\
& \mathrm{V}_{\text {sample }}=\text { sample volume (} \mathrm{mL} \text {) } \\
& \text { BOD bottle }=300 \mathrm{~mL} \\
& \text { BOD5=lbs./day } \\
& \mathrm{D}_{1}=\text { DO of sample after prep (} \mathrm{mg} / \mathrm{L} \text {) } \\
& \mathrm{D}_{2}=\mathrm{DO} \text { of sample after 5-day incubation } \\
& \text { at } 20^{\circ} \mathrm{C}(\mathrm{mg} / \mathrm{L}) \\
& S=\text { oxygen uptake of seed } \\
& \text { (} \mathrm{S}=0 \text { if sample not seeded) } \\
& \mathrm{V}_{\mathrm{S}}=\text { volume of seed in test bottle (mL) } \\
& \mathrm{P}=\text { decimal volumetric fraction of } \\
& \text { sample used. (} 1 / \mathrm{P}=\text { dilution factor }) \\
& \mathrm{F} / \mathrm{M} \text { Ratio }=(\mathrm{BOD} \text { or } \mathrm{COD}, \mathrm{mg} / \mathrm{L})(\text { Flow, } \mathrm{MGD})(8.34 \mathrm{lbs} / \mathrm{gal}) \\
& \text { (MLVSS, } \mathrm{mg} / \mathrm{L} \text {)(Aerator Volume, MG)(} 8.34 \mathrm{lbs} / \mathrm{gal}) \\
& \text { Where: } \mathrm{F} / \mathrm{M} \text { ratio }=\text { food to microorganism ratio } \\
& \mathrm{BOD}=\text { biological oxygen demand (lbs./day) } \\
& \text { COD = chemical oxygen demand (lbs./day) } \\
& \text { MLSS }=\text { mixed liquor suspended solids(lbs.) } \\
& \mathrm{F} / \mathrm{M} \text { ratio }=\frac{(\mathrm{BOD} \text { or } \mathrm{COD})}{\mathrm{MLVSS}} \\
& \text { Where: MGD (flow)= Million Gallons/Day } \\
& \text { MG (volume) }=\text { Million Gallons }
\end{aligned}
$$

$\mathrm{COD}=($ Amt. of FAS in Blank $) \mathrm{x}$ (Molarity of FAS Titrant) $\times 8000$
Amt. of Sample

COD loading $=(\mathrm{COD}) \times(\mathrm{Q}) \times(8.34 \mathrm{lbs} . /$ gal $)$
Where: COD loading = lbs./day
$\mathrm{COD}=$ chemical oxygen demand $(\mathrm{mg} / \mathrm{L})$
$\mathrm{Q}=$ flow (MGD)

MLSS (lbs. $)=(\mathrm{MLSS}, \mathrm{mg} / \mathrm{L}) \times(\mathrm{V}) \times(8.34 \mathrm{lbs} . / \mathrm{gal}) \quad$ Where: $\mathrm{MLSS}=$ mixed liquor suspended solids

$$
\mathrm{V}=\text { aerator volume }(\mathrm{MG})
$$

$\operatorname{MLVSS}($ desired $)=($ BOD or COD $)$.
F/M Ratio (desired)

SOLIDS

$\mathrm{SS}=(\mathrm{A}-\mathrm{B}) \times(1,000,000)$
$\mathrm{V}_{\text {sample }}$
SS $\frac{(\mathrm{A}-\mathrm{B}) \times(1,000,000)}{V_{\text {sample }}}$

Where: MLVSS = mixed liquor volatile suspended solids (lbs.)
$\mathrm{BOD}=$ biological oxygen demand lbs./day
COD = chemical oxygen demand (lbs./day)

Where: $\quad \mathrm{SS}=$ suspended solids (mg/L)
$\mathrm{A}=$ final weight of pan, filter $\&$ residue (g)
$B=$ weight of prepared filter \& pan (g)
$\mathrm{V}_{\text {sample }}=$ sample volume (mL)

Waste Activated Sludge (WAS)

$$
\text { WAS }=\left[\frac{(\mathrm{MLSS}) \times\left(\mathrm{V}_{\text {aerator }}\right) \times(8.34 \mathrm{lbs} . / \mathrm{gal})}{\text { MCRT }}\right]-\left[(\mathrm{SE} \mathrm{SS}) \times\left(\mathrm{Q}_{\text {Plant }}\right) \times(8.34 \mathrm{lbs} . / \mathrm{gal})\right]
$$

Where: WAS = lbs./day
MLSS $=$ mixed liquor suspended solids $(\mathrm{mg} / \mathrm{L})$
$\mathrm{V}_{\text {aerator }}=$ aerator volume (MG)

SE SS = secondary effluent SS (mg/L)
$\mathrm{Q}_{\text {Plant }}=$ plant flow (MGD)
MCRT $=$ days

Mean Cell Residence Time

$$
\text { MCRT }=\frac{\text { TSSAeration }+ \text { TSS }_{\text {Clarifier }} .}{\text { TSS Wasted }+ \text { TSS }_{\text {Effluent }}}
$$

Where: MCRT $=$ days \quad TSS $_{\text {Aeration }}=$ aeration tank TSS (lbs.) \quad TSS $_{\text {Wassted }=\text { TSS wasted (lbs./day) }}$
$\mathrm{TSS}_{\text {Clarifier }}=$ clarifier TSS (lbs.) $\quad \mathrm{TSS}_{\text {Effluent }}=$ effluent TSS (lbs./day
$\operatorname{MCRT}=\frac{(\text { MLSS }) \times\left[\left(\mathrm{V}_{\text {aerator }}\right)+\left(\mathrm{V}_{\text {clarifier }}\right] \times(8.34 \mathrm{lbs} . / \text { gal })\right.}{[(\text { WAS SS }) \times(\mathrm{Qwass}) \times(8.34 \mathrm{lbs} . / \text { gal })]+\left[(\mathrm{SE} \mathrm{SS}) \times\left(\mathrm{Q}_{\text {Plant }}\right) \times(8.34 \mathrm{lbs} . / \mathrm{g}\right.}$.
Where:

$$
\begin{array}{ll}
\text { MCRT = days } & \text { Vclarifire }=\text { final clarifier volume }(\mathrm{MG}) \\
\text { QPlant }=\text { plant flow }(\mathrm{MGD}) & \text { WAS SS = waste activated sludge SS) }(\mathrm{mg} / \mathrm{L}) \\
\text { Vaerator }=\text { aerator volume }(\text { MG }) & \text { QwAS }=\text { WAS flow }(\text { MGD }) \\
\text { SE SS = secondary effluent SS }(\mathrm{mg} / \mathrm{L}) & \text { MLSS = mixed liquor suspended solids }(\mathrm{mg} / \mathrm{L})
\end{array}
$$

$$
\operatorname{MCRT}=\frac{(\text { MLSS }) \times(\mathrm{V}) \times(8.34 \mathrm{lbs} . / \mathrm{gal})}{[(\mathrm{WAS} \mathrm{SS}) \times(\mathrm{Qwas}) \times(8.34 \mathrm{lbs} . / \mathrm{gal})]+\left[(\mathrm{SE} \mathrm{SS}) \times\left(\mathrm{Q}_{\text {Plant }}\right) \times(8.34 \mathrm{lbs} . / \mathrm{gal})\right]}
$$

Where: MCRT = days WAS SS = waste activated sludge SS (mg / L)
MLSS $=$ mixed liquor suspended solids $(\mathrm{mg} / \mathrm{L}) \quad$ Qwas $=$ WAS flow (MGD)
SE SS $=$ secondary effluent SS (mg/L \quad Q plant $=$ plant flow (MGD
$\mathrm{V}=$ aerator volume (MG)

CONCENTRATION/DILUTION/SOLUTIONS FORMULAS

$(\mathrm{C} 1 \mathrm{XV}$ V $)=(\mathrm{C} 2 \mathrm{X} \mathrm{V} 2)$

Where: $\quad \mathrm{C}=$ concentration
$\mathrm{V}=$ volume/flow

Where:
$\mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V}_{3}$
$\mathrm{N}=$ normality
$\mathrm{V}=$ volume or flow

FLUORIDATION

Feed Rate, lbs. $/$ day $=\quad($ Dose, $\mathrm{mg} / \mathrm{L})($ Flow, MGD $)(8.34 \mathrm{lbs} / \mathrm{gal})$
AFI \% (in decimal form) x Purity \% (in decimal form) Where: AFI=Available Fluoride Ion
Saturator Feed Rate, grams $/ \mathrm{min}=(\mathrm{Dose}, \mathrm{mg} / \mathrm{L})($ Flow, gal/min $) /(18,000)$

Calculated Dosage, $\mathrm{mg} / \mathrm{L}=$ (chemical pounds) $\mathrm{x}(\mathrm{AFI} \%$ in decimal form) x (Purity $\%$ in decimal form)
MGD x 8.34

FILTRATION

Backwash water volume, gal= (Backwash Rate, gal/min/sq. ft) (Backwash Time, min) (Filter Area, sq. ft)
Filter Production Rate, gal/min= (Filtration Rate, gal/min/sq. ft) (Filter Area, sq. ft)
Filter Production Rate, gal/day= (Filtration Production Rate, gal/min.) (1,440 min./day)

CHLORINATION/HTH

$$
\text { HTH, lb. }=\quad \frac{\text { Chlorine, lb. }}{\text { Available Chlorine, } \%, \text { expressed as decimal }}
$$

HTH, lbs. $=($ Desired Available Chlorine, $\%$, expressed as decimal) (Desired Volume, gal)(8.34lbs/gal)
. HTH Available Chlorine, $\%$ expressed as decimal
Chlorine, lb. $=(\mathrm{HTH}, \mathrm{lb}$.$) (Available Chlorine, \%$, expressed as decimal)
Chlorine, lb. = (Available Chlorine, \%, expressed as decimal) (Bleach Volume, gal) (8.34lbs/gal)
Chlorine Dosage, mg/L = (HTH Feed Rate, lb./day) (HTH Available Chlorine, $\%$ expressed as decimal)
(Flow, MGD) (8.34 lbs./gal)
Chlorine Feed Rate, lbs. $/$ day $=($ Dosage, $\mathrm{mg} / \mathrm{L})($ Flow, MGD) $(8.34 \mathrm{lbs} . /$ gal $)$
Chemical Purity, \%, expressed as decimal

