KIRTLAND AIR FORCE BASE ALBUQUERQUE, NEW MEXICO

INVESTIGATION REPORT FOR DATA GAP MONITORING WELL INSTALLATION KAFB-106248 TO KAFB-106252 AND KAFB-106S10 BULK FUELS FACILITY SOLID WASTE MANAGEMENT UNITS ST-106/SS-111

October 2021

377 MSG/CEI 2050 Wyoming Boulevard SE Kirtland Air Force Base, New Mexico 87117-5270

KIRTLAND AIR FORCE BASE ALBUQUERQUE, NEW MEXICO

Investigation Report for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 and KAFB-106S10 Bulk Fuels Facility Solid Waste Management Units ST-106/SS-111 Kirtland Air Force Base, New Mexico

October 2021

Prepared for

Kirtland Air Force Base 2050 Wyoming Boulevard SE Kirtland Air Force Base, New Mexico 87117-5270

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 320 Gold Avenue SW, Suite 1300 Albuquerque, New Mexico 87102 Contract No. W9128F-13-D-0006/Delivery Order DM02

	REI	PORT DOCUM	IENTATION PAG	GE	Form Approved OMB No. 0704-0188
searching existing regarding this burd Defense, Washing 1204, Arlington, VA for failing to comply	data sources, gath len estimate or an ion Headquarters 22202-4302. Res with a collection of	ering and maintaining by other aspect of this Services, Directorate pondents should be as	the data needed, and con s collection of information for Information Operation ware that notwithstanding not display a currently val	npleting and reviewin , including suggestic s and Reports (070 any other provision c	se, including the time for reviewing instructions, g the collection of information. Send comments ons for reducing the burden, to Department of 4-0188), 1215 Jefferson Davis Highway, Suite f law, no person shall be subject to any penalty er.
1. REPORT DA	TE (DD-MM-	2. REPORT TYPE			3. DATES COVERED (From - To)
YYYY)]	Revision 0			08-11-2020 - 20-04-2021
12-10-2021 4. TITLE AND S				5a CON	TRACT NUMBER
Investigation Re	eport for Data to KAFB-106	Gap Monitoring 252 and KAFB-1		W9128I	F-13-D-0006/Delivery Order DM02
		its ST-106/SS-11	1	5c. PRO	GRAM ELEMENT NUMBER
Solid Waste Management Units ST-106/SS-111 Kirtland Air Force Base, New Mexico 6. AUTHOR(S)				5d. PRO	JECT NUMBER
EA Engineering	g, Science, and	l Technology, Inc	., PBC	5e. TASI	(NUMBER
7.050500000	0.0000111747			Not app	
		ION NAME(S) AND			ORMING ORGANIZATION DRT NUMBER
EA Engineering, Science, and Technology, Inc., PBC 320 Gold Avenue SW, Suite 1300 Albuquerque, New Mexico 87102			Not ass		
U.S. Army Cor	os of Engineer	B AGENCY NAME (s–Albuquerque D	S) AND ADDRESS(ES District) 10. SPO	NSOR/MONITOR'S ACRONYM(S)
4101 Jefferson Plaza N.E. Albuquerque, New Mexico 87109-3435				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUT	ON/AVAILABIL	ITY STATEMENT		I	
13. SUPPLEME	NTARY NOTES	i			
14. ABSTRACT					
provided by Ki	rtland Air Ford	e Base (AFB). It	pertains to the Kirtla	nd AFB Bulk Fu	AFB-106252, and KAFB-106S10 is lels Facility site at Solid Waste port was prepared in accordance with
					ery Act permit issued to Kirtland
AFB by the Ne	w Mexico En	vironment Depart	ment (U.S. Environi	nental Protectio	n Agency Identification Number NM egulations. The objective of the
					address existing data gaps and to
					eath the source area. Details on the
			those wells into the my Corps of Engine		are provided in this report. The report
	cility, Solid W				romide, EDB, interim measures,
RCRA, ground	dwater sampli	ng, groundwater r	nonitoring well insta	illation, vapor m	onitoring well installation
16. SECURITY	CLASSIFICATION b. ABSTRACT	-	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	^{19a.} NAME OF RESPONSIBLE PERSON
a. REPORT UNCLASSIFIED			ABSTRACT	1637	Ryan Wortman
					19b. TELEPHONE NUMBER (Include area code) (505) 853-3484

40 CFR 270.11 DOCUMENT CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

VATTIONI.JASO	
N.F.1170028640	VATTIONI.JASON.F.1170028640 Date: 2021.10.06 22:24:34 -06'00'

10/6/21

JASON F. VATTIONI, Colonel, U.S. Air Force Commander, 377th Air Base Wing Date

This document has been approved for public release.

GRUSNICK.CARL, Digitally signed by GRUSNICK.CARL.PAUL.1093053 PAUL.1093053210 210 Date: 2021.09.23 12:22:28 -06'00'

9/23/21

Date

KIRTLAND AIR FORCE BASE 377th Air Base Wing Public Affairs

PREFACE

This Investigation Report for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 and KAFB-106S10 has been prepared by EA Engineering, Science, and Technology, Inc., PBC (EA) for Kirtland Air Force Base (AFB) under the U.S. Army Corps of Engineers Contract Number W9128F-13-D-0006, Delivery Order DM02. It pertains to the Kirtland AFB Bulk Fuels Facility site at Solid Waste Management Units ST-106/SS-111, located in Albuquerque, New Mexico. This Investigation Report was prepared in accordance with the Resource Conservation and Recovery Act permit issued to Kirtland AFB and applicable federal, state, and local laws and regulations.

This report contains data collected by EA itself as well as from other entities/sources that are not under EA's direct control (collectively "non-EA data"). All non-EA data reported herein are displayed in the form they were received from their source entity, and EA assumes no liability for the accuracy of any non-EA data in this report.

The objective of this report is to describe the activities associated with the installation of groundwater monitoring wells and a soil vapor monitoring well. The additional monitoring wells were installed to address data gaps and to further the understanding of the contaminant migration pathway beneath the source area.

TABLE OF CONTENTS

EXECU	UTIVE S	SUMMA	ES-T	1	
1.	INTRO	DUCTI	ON1-7	1	
	1.1	Docum	ent Purpose and Scope1-2	2	
2.	BACK	GROUN	ID INFORMATION	1	
	2.1	Bulk F	uels Facility Operational History2-	1	
	2.2	Previou	as Investigations and Interim Measures2-2	1	
	2.3	Site Hy	vdrogeology	3	
3.	REGUI	REGULATORY CRITERIA			
	3.1	Regulatory Standards and Project Screening Levels			
	3.2	Regula	tory Correspondence and Permit Requirements	2	
	3.3	Analyt	cal Reporting Limits	3	
4.	SCOPE	E OF AC	TIVITIES	1	
	4.1	Source	Area Data Gap Wells (KAFB-106V3 and KAFB-106S10)4-	1	
		4.1.1	Groundwater Monitoring Data Gap Wells (KAFB-106248 to KAFB-106251).4-3	3	
		4.1.2	Extraction Assessment Well (KAFB-106252)4-2	3	
		4.1.3	Investigation-Derived Waste	4	
		4.1.4	Deviations to the Work Plan	4	
		4.1.5	Well Nomenclature	5	
5.	FIELD	INVES	TIGATION RESULTS	1	
	5.1	Surface	e Conditions	1	
	5.2	Explor	atory Drilling Investigation	1	
		5.2.1	Field Screening and Soil Sampling	1	
		5.2.2	Borehole Logging	2	
		5.2.3	Core Photography	3	
	5.3	Geophy	vsical Logging	3	
	5.4	Subsur	face Conditions	4	
	5.5	Monito	ring Well Construction and Boring Abandonment5-4	4	
		5.5.1	Soil Vapor Monitoring Well KAFB-106V3	5	
		5.5.2	Source Area Data Gap Well KAFB-106S105-	5	
		5.5.3	Groundwater Monitoring Data Gap Wells KAFB-106248 to KAFB-1062515-0	6	
		5.5.4	Extraction Assessment Well KAFB-106252	7	
		5.5.5	Original KAFB-106251 Borehole Abandonment5-7	7	

		5.5.6	Monitoring Well Survey	. 5-8
	5.6	Monito	ring Well Development	. 5-8
	5.7	Ground	water Conditions	. 5-9
	5.8	Soil Va	por Conditions	. 5-9
6.	SITE C	ONTAN	/INATION	.6-1
	6.1	Source	Area Soil Sampling	.6-1
	6.2	Source	Area Soil Sampling Laboratory Analytical Results	.6-1
		6.2.1	Source Area Vadose Zone Summary	.6-1
		6.2.2	Source Area Saturated Zone Summary	. 6-2
		6.2.3	Source Area Soil Laboratory Analytical Data Review and Usability	. 6-3
	6.3	Source	Area Soil Vapor Chemical Analytical Results	.6-3
		6.3.1	Soil Vapor Laboratory Analytical Results	.6-3
		6.3.2	Soil Vapor Laboratory Analytical Data Review and Usability	.6-4
	6.4	Ground	water Sampling	.6-4
		6.4.1	Groundwater Laboratory Analytical Results	.6-4
		6.4.2	Groundwater Analytical Data Quality and Data Usability	.6-5
7.	SUMM	ARY A	ND CONCLUSIONS	.7-1
8.	RECON	MMENI	DATIONS	. 8-1
9.	REFER	ENCES		.9-1

FIGURES

Figure 1-1	Site Map
Figure 1-2	Monitoring Wells Installed during this Investigation
Figure 2-1	Current and Former Site Infrastructure
Figure 5-1	Comparison of Lithology and Geophysical Logs KAFB-106S10 and KAFB-106V3
Figure 5-2	Geologic Cross Section A-A'
Figure 5-3	Geologic Cross Section B-B'
Figure 5-4	Geologic Cross Section C-C'
Figure 6-1	1,2-Dibromoethane, Benzene, Toluene, Ethylbenzene, and Total Xylenes, Concentrations in Soil
Figure 6-2	Total Petroleum Hydrocarbon Concentrations in Soil
Figure 6-3	1,2-Dibromoethane Concentrations in Groundwater
Figure 6-4	Total Petroleum Hydrocarbons, Benzene, Toluene, Ethylbenzene, and Total Xylenes Concentrations in Groundwater

TABLES

Table 5-1	Coring Intervals and Soil Sample Locations
Table 5-2	Photoionization Detector and Core Temperature Field Screening Data
Table 5-3	Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Soil
Table 5-4	Well Construction Details for Soil Vapor Monitoring Well KAFB-106V3
Table 5-5	Well Construction Details for Groundwater Monitoring Wells
Table 5-6	Water Tracking Table
Table 5-7	Initial Water Levels Versus Current Water Levels
Table 6-1	Soil Vapor Analytical Results
Table 6-2	Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Groundwater

APPENDICES

- A Regulatory Correspondence and Cross-Walk Table
 - A-1 Regulatory Correspondence
 - A-2 Cross-Walk Table between the RCRA Permit Requirements and the Investigation Report
 - A-3 Source Area Characterization Report Response to Comments Cross-Walk Table
- B Field Methods
- C Daily Quality Control Reports
- D Lithologic Logs
- E Core Temperature Logs
- F Core Photography
- G Investigation-Derived Waste
- H Photoionization Detector Calibration Logs
- I Geophysical Information
 - I-1 Calibration Report
 - I-2 Geophysical Logs
 - I-3 Logging Report
- J Well Surveys
- K Well Development Documentation
- L Groundwater Purge and Sample Collection Logs
- M Soil Vapor Calibration and Purge Logs
- N Laboratory and Quality Evaluation Reports
 - N-1 Data Quality Evaluation Report
 - N-2 Level 2 Soil Analytical Reports and Excel Data File
 - N-3 Level 2 Soil Vapor Analytical Report and Excel Data File
 - N-4 Level 2 Groundwater Analytical Reports and Excel Data File

ACRONYMS AND ABBREVIATIONS

$\mu g/L$	microgram(s) per liter
$\mu g/m^3$	microgram(s) per cubic meter
%	percent
AFB	Air Force Base
ARCH	air rotary casing hammer
BFF	Bulk Fuels Facility
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and total xylenes
CFR	Code of Federal Regulations
DL	detection limit
DoD	Department of Defense
DRO	diesel range organics
EDB	1,2-dibromoethene or ethylene dibromide
EPA	U.S. Environmental Protection Agency
FFOR	Former Fuel Offloading Rack
ft	feet
GRO	gasoline range organics
GWM	groundwater monitoring
ID	inside diameter
IDW	investigation-derived waste
in.	inch(es)
J	estimated detect
KAFB	Kirtland Air Force Base
LNAPL	light non-aqueous phase liquid
LOD	limit of detection
LOQ	limit of quantitation
MCL	maximum contaminant level
mg/kg	milligram(s) per kilogram
mg/L	milligram(s) per liter
NMAC	New Mexico Administrative Code
NMED	New Mexico Environment Department
NMOSE	New Mexico Office of the State Engineer

ORO	oil range organics
PID	photoionization detector
ppmv	part(s) per million by volume
PVC	polyvinyl chloride
Q2	second quarter
Q4	fourth quarter
QSM	Quality Systems Manual
RCRA RCRA permit	Resource Conservation and Recovery Act Hazardous Waste Treatment Facility Operating Permit EPA Identification Number NM 9570024423
RFI	RCRA Facility Investigation
Ridgecrest	Ridgecrest Drive S.E.
S.E.	Southeast
SSL	soil screening level
SVE	soil vapor extraction
SVM	soil vapor monitoring
SVMP	soil vapor monitoring point
SWMU	Solid Waste Management Unit
ТРН	total petroleum hydrocarbon
U	non-detect
UJ	estimated non-detect
USACE	U.S. Army Corps of Engineers
UV	ultraviolet
VISL	vapor intrusion screening level
VOC	volatile organic compound
Work Plan	Work Plan for Data Gap Monitoring Well Installation
WQCC	Water Quality Control Commission

EXECUTIVE SUMMARY

This Investigation Report for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 and KAFB-106S10 has been prepared to describe the activities associated with the installation of five groundwater monitoring (GWM) wells and a soil vapor monitoring (SVM) well at Solid Waste Management Units ST-106/SS-111, Kirtland Air Force Base (AFB), New Mexico. The Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 (Kirtland AFB, 2019a), was approved with conditions by the New Mexico Environment Department (NMED) in a letter dated July 14, 2020 (NMED, 2020a). Per the approval conditions, a revised Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 and KAFB-106S10 (Kirtland AFB, 2020a) was submitted to NMED in September 2020. The activities presented in this report were performed in accordance with the revised approved Work Plan.

This report documents activities performed to provide additional data for the characterization and identification of contaminant migration pathways beneath the source area and address data gaps in the GWM network. This report was written to meet the requirements of Part 6.2.4.3 of the Kirtland AFB Resource Conservation and Recovery Act Permit U.S. Environmental Protection Agency Identification Number NM 9570024423 (NMED, 2010).

Activities performed during this investigation included soil coring and sampling, well installation and development, groundwater gauging and sampling, and soil vapor sampling for the newly installed wells. The work completed is presented under each of the tasks listed below:

- Two source area data gap wells were installed (KAFB-106S10 and KAFB-106V3). These wells were installed for two purposes: establish if the upper and lower clay layers were present between 250 and 300 feet (ft) below ground surface (bgs) in this area and further assess the lithology and contaminant concentrations in the source area. The source area data gap wells were cored and sampled from a depth of 230 ft bgs to total depth. Coring was performed to attempt to identify if a vertical offset was present that could create a preferential pathway to vertical migration of contaminants and to facilitate the collection of soil samples. One soil coring location was completed as a GWM well and a second soil coring location was completed as an SVM well based on the Work Plan Approval Letter (NMED, 2020a). The GWM location was completed with two nested wells to account for the rising water table. The inside diameter of the GWM wells is large enough to allow these wells to be actively pumped. The SVM well was completed with three well screens to monitor soil gas at 272, 15, and 7 ft bgs.
- The following four data gap GWM wells were installed: one north of Bullhead Park (KAFB-106248) and three located south and east of the source area (KAFB-106249 through KAFB-106251). These GWM wells were installed to address a data gap caused by the rising water table to monitor volatile organic compounds in the shallow groundwater.
- One extraction assessment well (KAFB-106252) was installed near extraction well KAFB-106234. This well was installed to assess the performance of the extraction well, monitor a gravel layer that is present at depth, and assess capture of 1,2-dibromoethane (ethylene dibromide or EDB) concentrations in the vicinity of the extraction well.

The lithology in each of the boreholes was logged by an experienced geologist. In general, soils observed within the data gap GWM and extraction assessment wells were consistent with previous investigations. The soils observed in KAFB-106V3 and KAFB-106S10 were also generally consistent with previously recorded site lithology observed in the source area. The lower clay unit was observed from 270 to

281 ft bgs in KAFB-106V3 and KAFB-106S10. Based on cross sections included in this report, the thickness of this clay unit varies at each borehole but was consistently present over the Bulk Fuels Facility (BFF) and north of the BFF. This clay unit ultimately pinched out completely to the north (e.g., absent near the Base boundary and north of the Base boundary).

Field screening data obtained from soil samples collected from the source area data gap wells were also generally consistent with data collected from previous boreholes. Elevated photoionization detector (PID) readings (greater than 100 parts per million by volume [ppmv]) were observed to be present above and within the clay unit found at 270–281 ft bgs in KAFB-106V3 and KAFB-106S10. In addition, high PID readings (greater than 1,000 ppmv) were associated with local historic water levels at KAFB-106S10. Field screening data collected from the data gap and extraction assessment wells did not indicate the presence of significant hydrocarbon concentrations in samples collected from wells KAFB-106248 through KAFB-106252.

The highest benzene concentration (1.6 milligrams per kilogram [mg/kg]) and total benzene, toluene, ethylbenzene, and total xylenes (9.12 mg/kg) in soil samples was found at a depth of 480 ft bgs in KAFB-106S10. The highest total petroleum hydrocarbon (135 mg/kg) concentration in soil samples was observed at a depth of 470 ft bgs in KAFB-106S10.

Soil vapor concentrations of EDB and benzene exceeded the residential vapor intrusion screening levels (VISLs) in each of the well screens in KAFB-106V3. Concentrations of EDB were 6.8, 12, and 17 micrograms per cubic meter ($\mu g/m^3$) in well screens at 7, 15, and 272 ft bgs, respectively (NMED residential VISL for EDB is 1.56 $\mu g/m^3$). Concentrations of benzene were 260, 160, and 200 $\mu g/m^3$ in well screens at 7, 15, and 272 ft bgs, respectively (NMED residential VISL for benzene is 120 $\mu g/m^3$). No other soil vapor concentrations exceeded the residential VISL.

This SVM location is located on-Base within the BFF; therefore, the soil vapor concentrations exceeding the residential VISL were also compared to the industrial VISLs. Benzene concentrations were below the industrial VISL of 588 μ g/m³ and the EDB concertation at 7 ft bgs was below the industrial VISL of 7.65 μ g/m³. VISLs are intended to be screened against soil vapor samples collected from below building foundations (sub slab samples). Screening VISLs to the concentrations measured in the shallow (7 and 15 ft bgs) soil vapor monitoring points (SVMPs) is more applicable to the intended use of VISLs than screening levels for the deeper SVMP located at 272 ft bgs. It is likely that the elevated concentrations observed in the shallow SVMPs are due to subsurface vapor disturbance caused by the air rotary drilling used to install the SVM well. These points will continue to be sampled during the regular semi-annual monitoring events.

Groundwater concentrations observed from samples collected in KAFB-106S10 were consistent with nearby source area wells. Benzene concentrations in KAFB-106250 slightly exceeded the project screening level (5 micrograms per liter) at 8.1 micrograms per liter. Concentrations of volatile organic compounds from other wells installed during this investigation were below their respective project screening levels.

The data collected during this investigation have provided additional lithologic information in the source area and filled data gaps associated with rising groundwater levels. In addition, the source area lithology, soil, soil vapor, and groundwater concentration data collected from this investigation are consistent with data collected from previous investigations. Based on this, it appears that additional soil coring or geophysical data collected in the source area would not provide any new information.

The source area lithology, soil vapor, and groundwater data collected from this investigation are consistent with data collected from previous investigations. Based on this, the investigation phase of this project is coming to an end. The nature and extent of contamination have been defined to the extent necessary to perform the Corrective Measures Evaluation. It is recommended that no additional investigations be performed in the source area and to begin drafting the Phase II Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Phase II Report. The Phase II RFI Report will summarize the ending of the investigation phase and demonstrate that the nature and extent of contamination are defined to the extent necessary to inform the Corrective Measures Evaluation. However, if there are additional data gaps identified from routine monitoring data evaluation or from changing site conditions, those additional data gaps will be addressed as part of the corrective action process.

1. INTRODUCTION

This Investigation Report for Data Gap Monitoring Well Installation has been prepared to describe the activities associated with the installation of groundwater monitoring (GWM) wells and a soil vapor monitoring (SVM) well at Bulk Fuels Facility (BFF) Release Site Solid Waste Management Units (SWMUs) ST-106/SS-111. SWMUs ST-106/SS-111 are located at Kirtland Air Force Base (AFB) in Bernalillo County, New Mexico (Figure 1-1). Kirtland AFB is located southeast of, and adjacent to, the City of Albuquerque and the Albuquerque International Sunport (airport). The approximate area of the base is 52,287 acres. The BFF (Site) is in the northwestern portion of Kirtland AFB (Figure 1-1).

Environmental restoration efforts at the BFF are being performed pursuant to the corrective action provisions in Part 6 of the Resource Conservation and Recovery Act (RCRA) Permit Number NM9570024423 (RCRA Permit). The New Mexico Environment Department (NMED) is the lead regulatory agency (NMED, 2010).

This report documents activities performed to provide additional data for the characterization and identification of contaminant migration pathways beneath the source area and to address data gaps in the GWM network. The Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 (Kirtland AFB, 2019a [Work Plan]) was approved with conditions by NMED in a letter dated July 14, 2020 (NMED, 2020a). Per the approval conditions, a revised Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 and KAFB-106S10 was submitted to NMED in September 2020 (Kirtland AFB, 2020a). The activities presented in this report were performed in accordance with the revised approved Work Plan. A discussion of work plan revisions and approvals can be found in Section 3.2.

Activities performed during this investigation included soil coring and sampling, well installation and development, groundwater gauging and sampling, and soil vapor sampling for the newly installed wells. The work completed is presented under each of the tasks listed below:

- Two source area data gap wells were installed (KAFB-106S10 and KAFB-106V3). These wells were installed for two purposes: establish if the upper and lower clay layers were present between 250 and 300 feet (ft) below ground surface (bgs) in this area and further assess the lithology and contaminant concentrations in the source area. The source area data gap wells were cored and sampled from a depth of 230 ft bgs to total depth. Coring was performed to attempt to identify if a vertical offset was present that could create a preferential pathway to vertical migration of contaminants and to facilitate the collection of soil samples. One soil coring location was completed as a GWM well and a second soil coring location was completed as an SVM well based on the Work Plan Approval Letter (NMED, 2020a). The GWM location was completed with two nested wells to account for the rising water table. The inside diameter (ID) of the GWM wells is large enough to allow these wells to be actively pumped. The SVM well was completed with three well screens to monitor soil gas at 272, 15, and 7 ft bgs.
- The following four data gap GWM wells were installed (Figure 1-2): one north of Bullhead Park (KAFB-106248) and three located south and east of the source area (KAFB-106249 through KAFB-106251). These GWM wells were installed to monitor volatile organic compounds (VOCs) in groundwater at the water table.
- One extraction assessment well (KAFB-106252) was installed near extraction well KAFB-106234 (Figure 1-2). This well was installed to assess the performance of the extraction well,

monitor a gravel layer that is present at depth, and assess capture of 1,2-dibromoethane (ethylene dibromide or EDB) concentrations in the vicinity of the extraction well.

1.1 Document Purpose and Scope

This report was prepared to meet the requirements of Part 6.2.4.3 of the RCRA Permit, "Investigation Reports" for SWMUs ST-106/SS-111 located at Kirtland AFB. This report follows the format and other requirements as set forth in the NMED letter dated September 2, 2020 (NMED, 2020b). Activities outlined in this report include drilling, sampling, and installing six new GWM wells and one SVM well in the source area and managing investigation-derived waste (IDW). The investigation was performed to further characterize the subsurface in the source area and to install data gap GWM wells.

2. BACKGROUND INFORMATION

2.1 Bulk Fuels Facility Operational History

The BFF at Kirtland AFB became operational in 1953, and has been used over time for the storage of aviation gasoline, jet propellant-4, jet propellant-8, and smaller amounts of diesel fuel and unleaded gasoline. Jet fuel was offloaded from railcars or tanker trucks to the Former Fuel Offloading Rack (FFOR), pumped through underground pipelines to the pump house, and then to large fuel storage tanks at the BFF. Releases were discovered in November 1999 when fuel staining was observed on the ground surface at the FFOR. Based on the chemical composition of the fuels stored and used at the BFF, the releases are estimated to have begun prior to 1975, when the BFF transitioned from aviation gasoline to jet propellant-4. Of the fuels stored and used at the BFF, only aviation gasoline contained EDB as an additive. When the fuel release was discovered in November 1999, the FFOR was closed, and a temporary fuel offloading area was constructed and used during the construction of aboveground infrastructure. Replacement of the infrastructure was finished in March 2011 and includes aboveground storage tanks and pipeline with leak detection and containment measures (Kirtland AFB, 2018). The current and former infrastructure for the BFF is shown on Figure 2-1.

2.2 Previous Investigations and Interim Measures

Vadose zone activities and interim measures began with an excavation in November 1999 to remove contaminated surface soil and a soil investigation at the FFOR area in early 2000 to investigate the nature and extent of shallow and deep soil contamination. Vadose zone investigation activities included additional source area investigations, installing, and sampling SVM and soil vapor extraction (SVE) locations and implementing SVE systems as an interim measure.

GWM activities have been ongoing at the site since 2000. In this document, fuel contamination that is not dissolved in groundwater is referred to as light non-aqueous phase liquid (LNAPL). In February 2007, an approximately 1.4-ft-thick layer of LNAPL was discovered on the water table at GWM well KAFB-106005 located to the northeast of the source area. Following this discovery, additional interim measures were implemented concurrent to the continued investigation of the nature and extent of contamination. These interim measures included expanding the SVE system, additional soil investigations, and other LNAPL and groundwater interim measures. Kirtland AFB learned through these characterization actions that the released fuel had reached the groundwater beneath or very near the source area and that the dissolved-phase fuel contamination had migrated north and northeast of Kirtland AFB. A skimmer system was installed in well KAFB-106005 and was operational from June 2007 through August 2008. During the skimmer operations, approximately 280 gallons of LNAPL was accumulated in the storage vessels at the site and periodically transported and disposed of offsite. To achieve more efficient LNAPL removal, the skimmer system was replaced by modified bioslurping systems with internal combustion engine vacuum extraction units to further the removal of LNAPL from the water table (Kirtland AFB, 2018).

Bioslurping employs vacuum removal systems, differing from SVE in that a small diameter drop pipe is installed to just above the water table to volatilize LNAPL directly from the water table (Kirtland AFB, 2018). Kirtland AFB implemented individual bioslurping systems at KAFB-106005 (August 2008) and at KAFB-106006 and KAFB-106008 (March 2009). The three bioslurping systems were operational at these locations until the third quarter 2011. Approximately 225,000 equivalent gallons of LNAPL was removed by these systems during their operation from vacuum extraction and biodegradation combined. These units were subsequently moved to other wells to perform SVE activities. SVE activities were halted in 2016 due to declining emissions and the equipment was decommissioned.

As of the second quarter (Q2) 2021, the GWM network consisted of 173 wells. Select wells were identified for more frequent monitoring of risk-driving constituents (Kirtland AFB, 2019b). GWM data are evaluated in quarterly periodic monitoring reports, which describe current site conditions and assess the performance of interim measures.

Interim measures have been implemented in accordance with Part 6.2.2.2.12 of the RCRA Permit for both groundwater and soil, including a groundwater treatment system, which was constructed in 2015. The goal of this interim measure was to protect drinking water supply wells and collapse the distal, dissolved-phase EDB plume north of Ridgecrest Drive Southeast (S.E.) (Ridgecrest) in the Interim Measure Operational Area. The source area plume is located south of Ridgecrest. (Figure 1-2). EDB is the only constituent regularly detected above its maximum contaminant level (MCL) north of Ridgecrest. South of Ridgecrest, fuel constituents in addition to EDB are detected in exceedance of their respective MCLs.

A Data Gap Investigation was performed in 2018 that included the installation of six GWM wells. These wells were located to fill data gaps in the GWM network due to the submergence of existing well screens caused by the rising water table. Each nested well (KAFB-106241 through KAFB-106245) was constructed with one well screened across the water table and one contingency well to function in the future with the rising groundwater elevations. A completion report for the installation of these wells was submitted to NMED in September 2020 (Kirtland AFB, 2020b).

The Work Plan for Vadose Zone Coring, Vapor Monitoring, and Water Supply Sampling was submitted to NMED in December 2017 to address the data gaps of the horizontal and vertical extent of LNAPL caused by the fluctuating water table (Section 1.0 of Kirtland AFB, 2017). The Source Zone Characterization Report Revision 1 was submitted to NMED in April 2021 (Kirtland AFB, 2021). A total of 11 continuous core locations (including one background location) were advanced to characterize hydrocarbon concentrations within the vadose and saturated zones. These coring locations were all advanced south of Ridgecrest in the source area where LNAPL had historically been measured associated with SWMUs ST-106/SS-111 (Figure 1-2).

Following soil sampling, nine boreholes were converted to two-well nested GWM wells, and two locations were constructed as six-screen SVM well locations (Figure 1-2). The identifiers for these wells are KAFB-106S1 through KAFB-106S5, KAFB-106S7 through KAFB-106S9, and KAFB-106247. The Source Zone Characterization Report Revision 1 (Kirtland AFB, 2021), currently in review by NMED, describes the complete suite of analyses performed to characterize LNAPL in the soil cores collected from these boreholes.

The data from the Source Zone Characterization Report Revision 1 (Kirtland AFB, 2021) indicates that the fuel migrated vertically through mostly permeable non-cohesive soil by gravity drainage from the release point to a clay layer encountered around 260–270 ft bgs. Upon encountering the clay layer, the fuel saturated the soil above the clay, resulting in increased hydraulic head that eventually overcame the capillary pressure of pore water in the clay porosity. Once this pressure was overcome, LNAPL migrated into and through the clay layer (ITRC-3, 2018). Not only did the hydraulic head that built up drive the LNAPL into and through the clay, it spread LNAPL laterally on the clay layer as a saturated fluid. Laterally, LNAPL may have pooled with sufficient hydraulic head to penetrate the clay elsewhere. Once the LNAPL entered the clay, structural changes to the clay facilitated greater permeability and ability to transmit the LNAPL through the clay to the underlying permeable soil. This mechanism is contrary to the concept that the clay formed an impermeable layer to the LNAPL, LNAPL migrated vertically through the clay, and laterally through the clay by capillarity. A "hole" or other discontinuity in the clay layer is not required to explain the deeper migration of LNAPL to the water table.

Vertical downward migration appears to have continued until the LNAPL intercepted the groundwater table. Dissolved-phase EDB and benzene plumes then developed and migrated northward according to the local historical groundwater gradient. The LNAPL migrated as far north as USS Bullhead Memorial Park. As the groundwater decreased in elevation, transport would have followed the LNAPL gradient created by the continued drainage and favored the groundwater gradient.

2.3 Site Hydrogeology

In general, the site is underlain by approximately 200 ft of relatively fine-grained alluvial fan deposits, with some alternating and laterally discontinuous coarse-grained zones. Underlying these easterly derived alluvial fan deposits are relatively coarse-grained Ancestral Rio Grande deposits, with few laterally discontinuous fine-grained zones (Kirtland AFB, 2018).

Coarse-grained, Ancestral Rio Grande deposits with northeast-southwest oriented channel axis are interbedded with fine-grained silt and clay units. These deposits have been structurally tilted to the east due to generally down-to-the east faulting along the Sandia Mountains. Braided deposits at the site are more restrictive in the transverse axis of the deposition channel (east-west), and less restrictive in the longitudinal axis (north-south). However, this geologic control is secondary to hydrologic controls on groundwater flow direction.

Two fine-grained clay-rich layers called A1 and A2 are present with the axial Ancestral Rio Grande fluvial deposits throughout the Albuquerque area (Kirtland AFB, 2018). The A1 and A2 clay-rich layers are present at the site as laterally continuous fine-grained zones. The thicknesses of A1 and A2 range from approximately 50 to 200 ft and are observed across the site, extending north of the Ridgecrest well field. These A1 and A2 layers create confining conditions within the aquifer and, beneath these clays, groundwater occurs under confined conditions. Though these confining beds play a key role in the transport of dissolved-phased contaminants, flow direction of the dissolved-phase groundwater plumes is largely influenced by the hydraulic gradient introduced by operation of the production wells.

3. REGULATORY CRITERIA

This investigation of the Kirtland AFB BFF release was implemented pursuant to the corrective action provisions in Kirtland AFB's RCRA Permit (NMED, 2010). This permit is enforced by NMED's Hazardous Waste Bureau, which is authorized to administer the RCRA Permit by the U.S. Environmental Protection Agency (EPA). This investigation was conducted in accordance with the approved documents discussed in Section 1. Relevant regulatory correspondence for this Investigation Report is provided in Appendix A-1. A crosswalk table between the RCRA Permit reporting requirements and this Investigation Report is provided as Appendix A-2.

3.1 **Regulatory Standards and Project Screening Levels**

The following applicable regulatory standards and project screening levels are applied to assess the data collected during this investigation conducted at SWMUs ST-106/SS-111:

Table 6-2 of the NMED Risk Assessment Guidance for Site Investigations and Remediation, Volume 1 Screening Guidance for Human Health Risk Assessments (NMED, 2019a) provides residential screening levels for soil total petroleum hydrocarbons (TPH) gasoline range organics (GRO) (100 milligrams per kilogram [mg/kg]), TPH-diesel range organics (DRO) (1,000 mg/kg), and TPH motor oil (1,000 mg/kg). Table A-1 of the guidance provides residential soil screening levels for benzene (17.8 mg/kg), toluene (5,230 mg/kg), ethylbenzene (75.1 mg/kg), total xylenes (871 mg/kg), and EDB (0.672 mg/kg). The approved Work Plan (Kirtland AFB, 2020a) required that soil samples be collected for TPH and compared to NMED soil screening levels (SSLs). VOCs were not required to be analyzed for soil samples by the approved Work Plan (Kirtland AFB, 2020a), but were analyzed to provide data consistent with the Source Zone Characterization Report Revision 1 (Kirtland AFB, 2021) (see Section 4.1.4 Deviations to the Work Plan below).

A comparison to NMED SSLs of the above listed constituents is included within this report for consistency with the requirements of the approved Work Plan (Kirtland AFB, 2020a). However, the SSLs presented are not applicable because site conditions depart substantially from the conceptual model used to derive the soil leaching to groundwater SSLs. The depth of the soil samples collected in this investigation makes the soil leachate pathway the appropriate SSL; however, limitations in Section 4.5 of NMED's Risk Assessment Guidance for Site Investigations and Remediation (NMED, 2019a) are not all satisfied, including: (1) the significant vadose zone thickness provides potential significant attenuation for leaching, and (2) LNAPL is present. Development of site-specific SSLs for the protection of groundwater may be developed in accordance with Section 4.7 (NMED, 2019a) during the Corrective Measure Evaluation. Due to this, the SSLs are being presented for comparison purposes only. In addition, only SSLs for contaminants of potential concern (benzene, toluene, ethylbenzene, and total xylenes [BTEX] and EDB) and TPH as required by the approved Work Plan (Kirtland AFB, 2020a) are provided.

As stated in NMED Comment #4 Quarterly Monitoring Report for April-June 2019, dated July • 2020 (NMED, 2020c), the Permittee must provide a comparison of detected concentrations to a regulatory standard for the purpose of assessing the presence and location of contaminants of potential concern. NMED's Risk Assessment Guidance for Site Investigations and Remediation (NMED, 2019a) vapor intrusion screening levels (VISLs) must be used as a first-tier screening assessment. NMED VISLs were calculated using EPA default attenuation factors, which are based on conservative assumptions and empirical data. VISLs are intended to be used to screen against soil vapor samples collected from below building foundations (sub-slab samples). Due to this, the VISLs have been provided for soil vapor samples collected from KAFB-106V3 at depths of 7 and 15 ft bgs. NMED VISLs are not appropriate screening levels for deeper soil vapor monitoring points (SVMPs) and are provided in this report for comparison purposes only. Kirtland AFB is currently in coordination with the U.S. Army Corps of Engineers (USACE)– Albuquerque District to determine the most appropriate screening criteria for evaluating soil vapor at depth at the Kirtland BFF. Pending resolution, data will be screened in the agreed-upon manner in future reports.

- For groundwater samples collected quarterly from GWM wells, concentrations are screened against the cleanup levels for contaminants in groundwater as provided in Part 6.2.3.1 of the RCRA Permit (NMED, 2010):
 - The lowest of the:
 - New Mexico Water Quality Control Commission (WQCC) standard for Groundwater of 10,000 milligrams per liter [mg/L]) Total Dissolved Solids Concentration or Less (New Mexico Administrative Code [NMAC], Title 20, Chapter 6, Part 2, Section 3103 (20.6.2.3103 NMAC). For metals, the New Mexico WQCC standard applies to dissolved metals.
 - The most up-to-date EPA primary drinking water regulations (40 Code of Federal Regulations [CFR] Part 141, 1975) and secondary drinking water regulations (40 CFR Part 143, 1979) adopted by EPA under the Safe Drinking Water Act (42 U.S. Code §300f et seq., 1974).
 - If no Federal MCL or New Mexico WQCC standard exists for an analyte, the project screening level used is the EPA Residential Tap Water Regional Screening Level (EPA, 2020).

3.2 Regulatory Correspondence and Permit Requirements

A meeting was held between the U.S. Air Force and NMED on September 26, 2019, to discuss the potential to use some of the proposed wells for multiple purposes to address other data gaps and further characterize the source area migration pathway through the vadose zone east of the FFOR. Based on this meeting, NMED issued a requirement to submit a well installation work plan in a letter dated November 4, 2019 (NMED, 2019b). A work plan for data gap monitoring well installation was submitted to NMED in December 2019 (Kirtland AFB, 2019a).

The U.S. Air Force and NMED met on May 28, 2020, to discuss relocating wells closer to the source area and NMED described the changes in the scope of work via email on June 1, 2020 (NMED, 2020d). The work plan was approved with modifications on July 14, 2020 (NMED, 2020a). A revised work plan, based on the approval with modifications letter, was submitted to NMED on September 2, 2020 (Kirtland AFB, 2020a).

NMED provided several comments to the draft Source Zone Characterization Report (Kirtland AFB, 2021) requesting revised geologic cross sections and additional discussion regarding the presence of the clay layers located within the subsurface of the site. The response to these comments was deferred to this report so that the data obtained could provide a more comprehensive response. A crosswalk table for these comments and the location of these data can be found in Appendix A-2.

3.3 Analytical Reporting Limits

To satisfy Department of Defense (DoD) contractual project requirements, groundwater and soil vapor sample analyses were performed in accordance with DoD Quality Systems Manual (QSM) Version 5.3 (DoD and Department of Energy, 2019) per contract requirements and as applicable to the analytical method. DoD QSM reporting limit requirements include (1) detection limit (DL), (2) limit of detection (LOD), and (3) limit of quantitation (LOQ). The DoD DL is commonly associated with the EPA method DL and is the lowest concentration at which an analyte can be detected per the analytical method. The DoD LOD is commonly associated with the EPA sample-specific reporting limit, the limit at which the detected analyte is reported with 99 percent (%) confidence. The DoD LOQ is associated with the EPA practical quantitation limit, the limit at which an analyte can be reported with 100% confidence and according to the method precision and accuracy. Per DoD QSM reporting requirements, sample results below the LOQ and above the DL are reported with a "J" qualifier, signifying estimated data; however, the "J" qualifier may be used for analytical results above the LOQ that are estimated for other reasons. Non-detect sample results are reported with a "U" qualifier at the LOD.

4. SCOPE OF ACTIVITIES

This section discusses the work tasks associated with drilling, soil sampling, GWM well installation, SVM well installation, baseline water quality sampling, and baseline soil vapor sampling for newly installed wells KAFB-106248 to KAFB-106252, KAFB-106S10, and KAFB-106V3. This section also describes the IDW and deviations from the Work Plan. The locations of the wells installed during this investigation are shown on Figure 1-2. A description of the field methods used during this investigation is provided in Appendix B.

Drilling, sampling, and well construction were performed from November 8, 2020, to March 22, 2021. Well development was performed from December 24, 2020, to March 26, 2021. Well sampling was performed from December 30, 2020, to April 5, 2021. The initial soil vapor samples from KAFB-106V3 were collected on April 20, 2021. Wells installed as part of this investigation included source area data gap wells (KAFB-106S10 and KAFB-106V3), GWM data gap wells (KAFB-106248 to KAFB-106251), and an extraction assessment well (KAFB-106252). Source area data gap wells were installed for two purposes. The first was to establish if the upper and lower clay layers were present between 250 and 300 ft bgs. Directly below the FFOR, the clay occurs as a single layer at approximately 275–300 ft bgs (lower clay). East-southeast of the FFOR, the clay occurs as a single layer at a depth of approximately 250 ft bgs (upper clay). The source area data gap wells were cored from a depth of 230 ft bgs to total depth to identify if a vertical offset was present that could create a preferential pathway to vertical migration of contaminants. The second purpose of the source area data gap wells was to further assess the lithology and contaminant concentrations in the source area.

GWM data gap wells were installed to provide EDB concentration data at the water table as groundwater elevations continue to rise. The extraction assessment well was installed to assess the performance of extraction well KAFB-106234 for semiannual plume capture evaluation of the EDB plume north of Ridgecrest as well as to inform the Corrective Measures Evaluation.

Soil and groundwater samples that were collected for this investigation were analyzed for TPH using EPA Method SW8015D. Soil samples were analyzed by Eurofins TestAmerica and groundwater samples were analyzed by Eurofins Lancaster Laboratories Environmental. TPH was reported as GRO with a carbon range of C6-C10, and DRO with a carbon range of C10-C28 for both soil and water sample analyses. In addition to reporting GRO and DRO, TPH-motor oil with a carbon range of C20-C38 was reported for soil samples, and oil range organics (ORO) with a carbon range of C28-C40 for groundwater samples (see Section 4.1.4 Deviations from Work Plan) were also reported. Laboratories report the extended hydrocarbon range past DRO using various carbon ranges and with laboratory-specific parameter designations to signify the oil range.

TPH-motor oil and ORO are both terms used to report the extended range of hydrocarbons beyond the DRO carbon range although the TPH-motor oil range overlaps slightly with the TPH-DRO carbon range. The data reported from both the TPH-motor oil and TPH-ORO can be considered comparable for reporting the TPH oil range extending past DRO range. However, for this report, the term "TPH-Motor Oil" refers to the extended TPH range in soil and the term "ORO" refers to the extended TPH range in groundwater. These terms are consistent with the terms used by the respective laboratories.

4.1 Source Area Data Gap Wells (KAFB-106V3 and KAFB-106S10)

Source area data gap wells KAFB-106V3 and KAFB-106S10 were installed in accordance with the approved Work Plan (Kirtland AFB, 2020a) and subsequent direction from NMED (Figure 1-2). Daily Quality Control Reports were completed and are provided in Appendix C. The Work Plan called for one borehole to be advanced to 300 ft bgs to determine the depth of the clay layer located between 250 and 300 ft bgs. A NMED representative was present at the Site when sonic coring occurred at these depths to review the soil cores. Based on the depth of the upper and lower clay layers, a second borehole (KAFB-106S10) was advanced as requested by NMED. The following scope of activities was completed for the source area data gap wells:

- The boreholes were advanced to a depth of approximately 230 ft bgs using the air rotary casing hammer (ARCH) drilling method. Once a depth of 230 ft was reached, the remainder of the borehole was cored using the sonic drilling method to the total depth of the borehole.
- The first borehole (originally called KAFB-106S10 and later renamed KAFB-106V3) was advanced to 300 ft bgs to determine the depth of the clay layer located between 250 and 300 ft bgs and the lithologic log for the borehole was provided to NMED for their review. Based on finding the lower clay layer at 270.5–280 ft bgs, a second borehole was required by NMED to be drilled and the first borehole was completed as a nested SVM well with three individual SVMPs to monitor depths from 267 to 272 ft bgs, from 13 to 15 ft bgs, and from 5 to 7 ft bgs. The deepest SVMP (267–272 ft bgs) was installed across the clay layer to allow for periodically checking for the presence of fluids across the top of the clay. Approximately 6 inches (in.) of water was observed in the sump following the installation of this SVMP that was gauged on November 20, 2020 (Appendix C). This SVMP will be periodically gauged in the future and the data reported in the periodic monitoring reports.
- The location of the second borehole (Figure 1-2) was provided by NMED on a figure in an email dated November 16, 2020 (NMED, 2020e). The second borehole was originally identified as KAFB-106S10A during the fieldwork and later renamed KAFB-106S10. During drilling of the second borehole (KAFB-106S10), the lower clay layer was encountered at depths of 274–280 ft bgs. This borehole was cored and advanced to a depth of 10 ft below a heated headspace field screening reading that was less than 10 parts per million by volume (ppmv [total depth of 517 ft bgs]) as per the approved Work Plan (Kirtland AFB, 2020a). The borehole was converted to a nested GWM well including a lower water table well and a higher contingency well.
- Lithologic logging was performed in accordance with ASTM International D5434-12. A lithologic log for each borehole is provided in Appendix D. Lithology was logged from drill cuttings at a minimum of every 5 ft in borehole intervals advanced with ARCH drilling and continuously from core samples in borehole intervals advanced with sonic coring.
- The temperature of the core was monitored and recorded (see Appendix E for core temperature logs) and the core was photographed (see Appendix F for core photographs).
- Field screening (Appendix B-1.5) for the presence of hydrocarbons in soil cuttings and cores was performed at a minimum of every 10 ft during drilling using the heated headspace method (see Section 6.2 below).
- Soil samples were collected from the core every 10 ft and analyzed for TPH-GRO, TPH-DRO, and TPH-motor oil range by EPA Method 8015D and for VOCs by EPA Method 8260B/C.
- Upon completion of the wells, they were geophysically logged using Dual Induction, Gamma Ray, and Neutron downhole logging tools.

- Baseline soil gas samples were collected from the SVM well and analyzed for VOCs by Method TO-15.
- Baseline groundwater samples were collected from KAFB-106S10 and analyzed for VOCs by EPA Method 8260B/C, EDB by EPA Method 8011, TPH by EPA Method 8015D, metals by EPA Method 6010C and 6020A, anions by EPA Method 300.0 and 353.2, and alkalinity by EPA Method 2320B. Seven additional baseline events will be performed in the future as part of the quarterly Periodic Monitoring events. Data from these events will be included in the corresponding Periodic Monitoring Report.

4.1.1 Groundwater Monitoring Data Gap Wells (KAFB-106248 to KAFB-106251)

GWM data gap well locations are displayed on Figure 1-2. KAFB-106248 was installed to the north of U.S.S. Bullhead Memorial Park. This location was selected to provide contaminant data at the water table to the east of the EDB plume. KAFB-106249 was installed in the parking lot of the Air National Guard adjacent to existing well KAFB-106046. This well was installed to provide water table EDB and benzene data to the east of the source area. KAFB-106250 was also installed on Air National Guard property to provide water table EDB and benzene data to the southeast of the source area. GWM well KAFB-106251 was installed south of the former fuel tanks in the BFF to provide water table data for the southern EDB and benzene plume extents. The following scope of activities was completed for the GWM data gap wells:

- The GWM data gap boreholes were advanced using the ARCH drilling method.
- Lithologic logging was performed in accordance with ASTM International D5434-12 (Appendix D). Lithology was logged from cyclone cuttings at a minimum of every 5 ft.
- Field screening for the presence of hydrocarbons in soil cuttings and cores was performed at a minimum of every 10 ft during drilling using the heated headspace method (see Section 6.2 below).
- The GWM data gap wells were constructed as a nested monitoring well including a lower water table well and a higher contingency well. The diameter of the wells was selected to be large enough to allow these wells to be sampled using a downhole pump.
- Baseline groundwater samples were collected and analyzed for VOCs by EPA Method 8260B/C, EDB by EPA Method 8011, TPH by EPA Method 8015D, metals by EPA Methods 6010C and 6020A, anions by EPA Methods 300.0 and 353.2, and alkalinity by EPA Method 2320B. Seven additional baseline events will be performed in the future as part of the quarterly Periodic Monitoring events. Data from these events will be included in the corresponding Periodic Monitoring Report.

4.1.2 Extraction Assessment Well (KAFB-106252)

KAFB-106252 was installed to serve as an additional data point to assess the performance of extraction well KAFB-106234 (Figure 1-2). Specifically, this location was selected to refine the assessment of residual mass of EDB around extraction well KAFB-106234 as well as better define the cone of depression. These data will be used for semiannual plume capture evaluation of the EDB plume north of

Ridgecrest and the corrective measures evaluation. The following scope of activities was completed for the extraction assessment well:

- The extraction assessment boreholes were advanced using the ARCH drilling method.
- Lithologic logging was performed in accordance with ASTM International D5434-12 (Appendix D). Lithology was logged from cyclone cuttings at a minimum of every 5 ft.
- Field screening for the presence of hydrocarbons in soil cuttings and cores was performed at a minimum of every 10 ft during drilling using the heated headspace method (see Section 6.2 below).
- The extraction assessment well was constructed as a nested monitoring well including a lower water table well and a higher contingency well, and an additional piezometer to assess the effect of a gravel layer that is believed to be influencing the groundwater elevation at GWM well KAFB-106225.
- A baseline groundwater sample was collected and analyzed for VOCs by EPA Method 8260B/C, EDB by EPA Method 8011, TPH by EPA Method 8015D, metals by EPA Methods 6010C and 6020A, anions by EPA Methods 300.0 and 353.2, and alkalinity by EPA Method 2320B.

4.1.3 Investigation-Derived Waste

Waste generated from drilling, development, and sampling activities included non-hazardous liquids, hazardous waste, special waste solids, and non-hazardous solids. Information regarding IDW accumulation, utilization of the Kirtland AFB groundwater treatment system, and other IDW processes are described in Appendix G.

4.1.4 Deviations to the Work Plan

Subsurface conditions encountered while drilling the initial borehole for well KAFB-106251 caused the drill casing to be stuck in the subsurface, which could then not be retrieved. The boring in this location was plugged in accordance with New Mexico Office of the State Engineer's (NMOSE's) requirements and a new borehole was drilled for the installation of KAFB-106251. Further discussion of this plugging and abandonment is provided in Section 5.5.5.

Although not required by the work plan, the soil samples collected from KAFB-106S10 and KAFB-106V3 were also analyzed for VOCs by EPA Method 8260B/C.

Soil coring was to be completed within set temperature parameters (less than or equal to 20 degrees Celsius). However, due to the inherent nature of the sonic drilling method to create heat while coring, some of the samples exceeded this temperature parameter. Remedial efforts included cooling the core barrel with dry ice, limiting the coring run length, changing the vibration and rotation speed of the coring, and adding minimal amounts of water as required by the Work Plan Approval Letter (NMED, 2020a).

While not specifically required by the approved Work Plan (Kirtland AFB, 2020a), groundwater samples were analyzed for ORO TPH in wells located only in the vicinity of the benzene plume, (GWM wells KAFB-106249 through KAFB-106251 and KAFB-106S10 [Section 6.6]).

It is not anticipated that any of these deviations have affected the quality of the data collected for this investigation. Soil sample handling procedures (see Section 5.2.1.2, below) included collecting the soil samples in laboratory-provided containers immediately after the core sleeve was opened to minimize the loss of VOCs and storing the samples on ice and shipping the samples to the analytical laboratory on ice. These sample handling procedures were performed to minimize the impact of heat on samples that were collected with temperatures exceeding 20 degrees Celsius.

4.1.5 Well Nomenclature

Note that when discussing monitoring well borings or locations, the well number is used (e.g., KAFB-106248). However, when discussing a specific well screen within that well, the depth below ground surface to the top of the well screen is added after the well number (e.g., well screen KAFB-106248-453). The hyphenated number represents the top of the well screen in GWM wells and the bottom of the well screen in SVM wells.

5. FIELD INVESTIGATION RESULTS

Tasks performed for this investigation included drilling, soil sampling, geophysical logging, installing six GWM wells, installing one new SVM well, collecting groundwater and soil vapor samples, and management of IDW. The following summarizes the field investigation results.

5.1 Surface Conditions

The topography within the BFF and GWM network is predominantly flat. Surfaces consist of gravel, soil, and paved roads. There are currently two aboveground storage tanks and various buildings for operation of the BFF. Off-Base wells are located on the Raymond G. Murphy Veterans Affairs Medical Center property, within U.S.S. Bullhead Park, and within City of Albuquerque streets in residential areas.

5.2 Exploratory Drilling Investigation

Source area data gap wells (KAFB-106S10 and KAFB-106V3) were advanced to the top of the approved coring interval (230 ft bgs) with the ARCH drilling method using 9-5/8-in. casing. The sonic drilling method was then employed using 6-in. diameter sonic casing and a 4-in. diameter core barrel. Coring was performed to the total depth of each borehole. Following coring of KAFB-106V3, the 9-5/8-in. casing was advanced to total depth to facilitate well construction. Following coring of KAFB-106S10, the 9-5/8-in. diameter casing was removed from the borehole and 13-3/8-in. casing was advanced to a depth of approximately 200 ft bgs using the ARCH drilling method. Following the placement of the 13-3/8-in. diameter casing, 11-3/4 -in. casing was advanced to the total depth of the borehole (517 ft bgs) to facilitate construction of the nested well.

The GWM data gap wells (KAFB-106248 to KAFB-106251) and extraction assessment well (KAFB-106252) were installed using the ARCH drilling method. Boreholes for each well were advanced using 13-3/8-in. casing diameter to approximately 200 ft bgs, depending on site conditions; thereafter, 11-³/₄ -in. casing diameter was advanced to the total depth of each borehole. The sample depths for each boring are provided on Table 5-1.

5.2.1 Field Screening and Soil Sampling

5.2.1.1 Field Screening Procedure and Results

During ARCH drilling, field screening soil samples were taken every 10 ft from soil cuttings collected from the cyclone separator and bagged. For soil intervals that were continuously cored (during sonic drilling), field screening soil samples were collected and recorded at least every 5 ft from the start of coring to total depth. A photoionization detector (PID) was used for field screening of hydrocarbons (headspace measurements) in soil cuttings and cores during drilling. The PID was calibrated and tested each day that it was used (calibration logs are provided in Appendix H). A discussion of the field screening process is presented in Field Methods (Appendix B).

Field screening results obtained from the data gap and extraction assessment wells (KAFB-106248 to KAFB-106252) did not indicate the presence of petroleum hydrocarbon concentrations in the subsurface soils of these wells (Table 5-2). Elevated petroleum hydrocarbon concentrations (greater than 100 ppmv) were observed in headspace measurements from the source area data gap wells (KAFB-106V3 and KAFB-106S10) (Table 5-2). In KAFB-106V3, elevated PID readings were observed from 255 to 280 ft bgs (except for the 275-ft interval) with the highest PID reading (1,444 ppmv) obtained at a depth

of 260 ft bgs. These elevated PID readings corresponded to clayey, poorly, and well graded sands overlying a clay unit and within the lower clay unit located at a depth of 271–281 ft bgs (Appendix D). PID readings decreased to below 100 ppmv below the clay unit (281 ft bgs).

In KAFB-106S10, there appears to be two depth intervals (415–420 ft bgs and 470–490 ft bgs) that have high PID readings (greater than 1,000 ppmv). The highest PID readings measured in KAFB-106S10 were measured at depths of 415 and 480 ft bgs (5,903 and 5,900 ppmv, respectively). The lithology at these depths was predominantly sandy soils with a 1-ft-thick clay unit at a depth of approximately 417 ft bgs. The PID readings measured from 415 to 420 ft bgs appear to coincide with the historic high groundwater elevation that occurred in 1970 (Table 5-2). The high PID readings (greater than 1,000 ppmv) observed from 465 to 490 ft bgs appear to be associated with the lowest historic water level that occurred in 2009 (Table 5-2).

Elevated PID readings (greater than 100 ppmv) were also observed in soil collected from the borehole from KAFB-106S10 at various depth intervals; most notably from depths of 250–275 ft bgs, located directly above the clay unit observed from 274 to approximately 281 ft bgs (Appendix D). Other elevated PID readings were observed at depths of 355, 365–375, 400, 425–460, and 500 ft bgs.

5.2.1.2 Soil Sampling

Core from sonic drilling was extruded into plastic core sleeves in generally 2- to 2.5-ft-long increments. The temperature of each core was measured with a National Institutes of Standards and Technology Traceable[®] digital thermometer. Temperature data were recorded on the core sleeves and field forms. Specifics regarding core handling are discussed in Appendix B Field Methods. Core temperature data are provided on Table 5-3, on boring logs in Appendix D, and in Appendix E. Following temperature collection, core sleeves were labeled with the well number, depth interval, collection date, temperature, and core orientation.

Due to the ability of LNAPL to fluoresce in the presence of ultraviolet (UV) light, a UV flashlight was used to screen for its presence. Following collection, soil cores were placed within a darkened workspace and screened for the presence of areas that may fluoresce. During screening, a UV light (Spectronics Optimax 365 UVA Inspection Flashlight) was shown on the core sample. The presence of LNAPL was not observed in any of the soil cores.

Soil samples were collected at a minimum of every 10 ft of the soil interval that was sampled using sonic coring in accordance with the approved Work Plan (Kirtland AFB, 2020a). Soil samples were collected in laboratory-provided containers immediately after the core sleeve was opened to minimize the loss of VOCs. Soil samples were stored on ice and shipped to the analytical laboratory on ice under chain-of-custody documentation. A total of 42 soil samples were collected from KAFB-106V3 and KAFB-106S10 and submitted for laboratory analysis of VOCs by EPA Method 8260B/C and TPH-GRO/DRO/motor oil range by EPA Method 8015D. EDB was analyzed as part of the EPA Method 8260B/C VOC analysis but was not analyzed by EPA Method 8011. As a result, the DLs provided by EPA Method 8260B/C are higher than those that would have been provided by EPA Method 8011. A discussion of the soil sample analytical results is presented in Section 6.3 below.

5.2.2 Borehole Logging

Soil or core samples collected from each drilling method were logged in accordance with the Unified Soil Classification System by an experienced field geologist (ASTM International D5434-12 [ASTM International, 2012]) and as discussed in Appendix B Field Methods. Information described in each

lithologic log included the Unified Soil Classification System classification; color as compared against the Munsell Soil Color Chart; sand, silt, or clay content; stiffness and plasticity of encountered clays; moisture content; percent gravel; minerology; and odor (if noted by the experienced field geologist). Additional information detailed in each lithologic log included heated headspace results, core run length, and locations where the core was identified as disturbed. A discussion of the observed soil lithology is presented in Section 5.4 below. Lithologic borehole logs are provided in Appendix D.

5.2.3 Core Photography

Individual cores were placed in a standard core box to allow for efficient cataloging, storage, and assistance with core photography. Photographing of the core was performed using an onsite, high resolution digital camera (Nikon Coolpix B500). Each photograph was logged on a field form, noting the borehole number, depth, date, and time. Core photographs are provided in Appendix F.

5.3 Geophysical Logging

Geophysical logging was performed at wells KAFB-106S10 and KAFB-106V3 within the 3-in. ID casing of KAFB-106V3 and the deepest 4-in. ID casing of KAFB-106S10. The wells were geophysically logged using Dual Induction, Gamma Ray, and Neutron downhole logging tools. Logging was performed to the total depth of each well. Each run was performed twice to assess reproducibility. A copy of the quality assurance/quality control and calibration procedures are provided in Appendix I-1. An electronic copy of raw and processed data is provided in Appendix I-2. A Geophysical Logging Report provided by the geophysical logging company is presented in Appendix I-3. The geophysical logs for each well are displayed with the lithologic log for comparison purposes on Figure 5-1.

The Gamma Ray and Neutron logs work well to provide information regarding changes in the well and annular materials locations within the subsurface. However, these tools generally do not provide good lithologic information when run within a cased borehole. The Induction tool was used to provide information regarding soil types and lithologic contacts. In general, the lithologic logs indicated the following information:

- The Gamma Ray and Neutron logs appear to confirm the placement of the annular materials.
- The Induction log generally correlates with the lithologic logs.
- The Induction log for KAFB-106V3 correlates with the depth of the top of the clay layer located at 270 ft bgs. However, the bottom of the polyvinyl chloride (PVC) casing was not deep enough to assess the location of the bottom of this clay layer.
- The Induction log for KAFB-106S10 correlates with the depth of the top and bottom of the clay layer observed at 270-280 ft bgs.

Geophysical logs measure both physical and chemical properties and can be influenced by the composition or volume of the casing, screen, and annular fill materials. The casing and screen can also attenuate certain log responses and, therefore, may not match directly with the logged lithology. In addition, differences in depths may occur in soil intervals drilled by air rotary method due to lag or differential time in cutting coming up the borehole.

5.4 Subsurface Conditions

Lithologic information obtained from ARCH and sonic drilling was used to create boring logs. The sonic coring data obtained in the source area data gap wells were used to provide higher lithologic resolution by continuously coring (sonic coring) as opposed to collecting soil samples every 5 ft from disturbed cuttings (ARCH drilling).

Boring logs obtained from this investigation and the Source Zone Characterization Report (Kirtland AFB, 2021) were used to construct cross sections of the subsurface lithology in the area south of Ridgecrest Boulevard (Figures 5-2, 5-3, and 5-4). The borings used to create the cross sections were selected to maintain consistency between sampling methods and the geologists who performed the lithologic logging. Cross sections using these data as well as data from previous investigations will be created to describe the nature and extent of subsurface contaminants (including LNAPL) in the Phase II RCRA Facility Investigation (RFI) Report.

Based on the boring logs (Appendix D) and cross sections (Figures 5-2, 5-3, and 5-4), the lithology in KAFB-106S10 and KAFB-106V3 was dominated by lower permeability units (silt and clay) interbedded with lesser amounts of higher permeability units (sand) from ground surface to 160 ft bgs. Below 160 ft bgs, fine to coarse gravelly sand dominated to a depth of approximately 270 ft bgs in KAFB-106S10. Interbedded silts, clays, and sands were observed in KAFB-106S10 to a depth of approximately 274 ft bgs. The soils observed in KAFB-106V3 and KAFB-106S10 were generally consistent with previously recorded site lithology.

An upper clay unit was observed at a depth of 255–256 ft bgs in KAFB-106V3 and at a depth of 250 -254 ft bgs in KAFB-106S10. The lower clay was observed in both wells at depths of 270.5 and 274 ft bgs in KAFB-106V3 and KAFB-106S10, respectively. The bottom of the lower clay unit was observed at approximately 280.5 ft bgs in both borings. This clay was classified in the field as very stiff to hard and contained no silt fraction. Below 300 ft bgs, a fine to coarse gravelly sand dominated with minor interbedding (<10 ft) of lower permeability material to the total depth of drilling (517 ft bgs at KAFB-106S10). Due to the presence of this clay in KAFB-106V3, NMED required the sampling and installation of KAFB-106S10.

The general lithology in the source area consists of silt and clay units with interbedded sandy units present to a depth of approximately 160 ft bgs. Below 160 ft bgs, fine to coarse gravelly sand is generally present to a depth of approximately 250 ft bgs. The stratigraphy from 250 to 270 ft bgs consists of interbedded silt, clay, and sands. Based on the cross sections (Figures 5-2, 5-3, and 5-4), the thickness of this clay unit varies at each borehole. This clay unit ultimately pinched out completely to the north (e.g., absent at KAFB-106S4 and KAFB-106S5). The lithology below the clay layer generally consists of interbedded sands, clayey sands, and silty sands.

The lithology observed in the data gap and extraction performance wells was generally consistent with monitoring wells located near these wells (Appendix D).

5.5 Monitoring Well Construction and Boring Abandonment

Following advancement of the borehole to total depth, proposed well completion diagrams were submitted to NMED for approval and nested monitoring wells were installed in the boreholes. The GWM wells included one well with a screen interval that intersected the current water table and a contingency well located above the water table. Both wells were co-located within the same borehole. The contingency well was installed to function in the future with anticipated rising groundwater elevations.

The GWM wells were designed and constructed to allow these wells to be actively pumped. The following describes how wells were constructed and how boreholes were abandoned.

5.5.1 Soil Vapor Monitoring Well KAFB-106V3

Once the lower clay layer was encountered, the borehole for KAFB-106V3 was terminated at 300 ft bgs as requested by NMED. The borehole was completed as a nested SVM well with three individual SVMPs with screen intervals at 267-272, 13-15, and 5-7 ft bgs. The deeper well screen (267 ft bgs) was constructed to intersect the upper portion of the clay found at 270 ft bgs.

The bottom portion of the borehole was backfilled with natural slough from 285 to 300 ft bgs, 10/20 silica sand from 281.1 to 285 ft bgs, and bentonite chips from 272 to 281.1 ft bgs (Appendix D). The lower SVMP (KAFB-106V3-272) was constructed with a 5-ft long, 3-in. ID Schedule 80 PVC 0.010 slot well screen. This well screen was installed from 267 to 272 ft bgs with a 2-ft long 3-in ID Schedule 80 PVC well sump below the well screen from 272 to 274 ft bgs. The sand pack for the screen consisted of 10/20 silica sand from 262.7 to 273 ft bgs.

A lower seal of hydrated bentonite chips was placed within the borehole annulus from 235.2 to 262.7 ft bgs. A seal of high-solids bentonite grout was placed from 27.8 to 235.2 ft bgs. Additional hydrated bentonite chips were placed from 17 to 27.8 ft bgs.

Two additional soil vapor points were installed within the upper 15 ft of the ground surface to monitor for the presence of shallow soil vapors. Both shallow SVMPs were constructed with a 2-ft long, 0.75-in. ID Schedule 80 PVC 0.010 slot screens with no sump. KAFB-106V3-15 (the "-15" indicates the depth of the bottom of the screen) was screened from 13 to 15 ft bgs, and KAFB-106V3-7 was screened from 5 to 7 ft bgs. Sand packs for each screen consisted of 10/20 silica sand placed from 12 to 17 and from 4 to 9.1 ft bgs, respectively. A hydrated bentonite chip seal was placed between the two screens from 9.1 to 12 ft bgs. A surface seal was installed that consisted of hydrated bentonite chips placed from 2 to 4 ft bgs and neat cement placed from 2 ft bgs to ground surface.

KAFB-106V3 was completed with an aboveground surface completion consisting of a 12-in. diameter steel surface casing placed to approximately 3 ft above ground surface to protect the inner well casings. The aboveground well completion was placed within a 4-ft by 4-ft by 4-in. thick concrete pad with four protective steel bollards installed at the corners of the pad. Well construction details for KAFB-106V3 are presented in Table 5-4 and a well construction diagram is presented in Appendix D.

5.5.2 Source Area Data Gap Well KAFB-106S10

Source area data gap well KAFB-106S10 was completed as a nested monitoring well including a lower water table well and a higher contingency well. The total depth of the borehole was 517 ft bgs.

The bottom portion of the borehole was backfilled with natural slough and 10/20 silica sand from 485 to 517 ft bgs (Appendix D). Both the lower (water table) and contingency wells were constructed using 4.0-in. ID Schedule 80 PVC casing. The water table well was installed with a 40-ft long, 4.0-in. ID Schedule 80 PVC 0.010 machine slot well screen. The screen was placed with approximately 15 ft of screen below the groundwater table. The contingency wells were installed with a 25-ft long, 4.0-in. ID Schedule 80 PVC 0.010 machine slot well screen. Both wells were installed with a 2-ft long sump below the screen.

Following placement of the well casings, a 10/20 silica sand filter pack was placed in the borehole annulus from 485 ft bgs to approximately 2 ft above the deep well screen (440.8 ft bgs). A 5-ft thick hydrated bentonite chip seal was placed above the sand pack from 440.8 to 436.2 ft bgs. A 10/20 silica sand filter pack was placed within the borehole annulus from the top of the hydrated bentonite chip seal (436.2 ft bgs) to approximately 2 ft above the contingency well screen (405.5 ft bgs). Approximately 30 ft of bentonite chips was placed within the borehole annulus above the upper silica sand filter pack from 405.5 to 373.6 ft bgs. The bentonite chip seal was hydrated in lifts using a potable water source.

A high-solids bentonite grout was placed in the annulus that extended from the upper bentonite chip seal to approximately 20 ft bgs. A neat cement surface seal was installed above the grout seal and extended vertically up the borehole annulus to ground surface.

KAFB-106S10 was completed with an aboveground surface completion consisting of a 12-in. diameter steel surface casing placed to approximately 3 ft above ground surface to protect the inner well casings. The aboveground well completion was placed within a 4-ft by 4-ft by 4-in. thick concrete pad with four protective steel bollards installed at the corners of the pad. Well construction details for KAFB-106S10 are presented in Table 5-5 and a well construction diagram is presented in Appendix D.

5.5.3 Groundwater Monitoring Data Gap Wells KAFB-106248 to KAFB-106251

The GWM data gap wells were constructed as nested monitoring wells consisting of a lower water table well and a higher contingency well. Both nested monitoring wells were constructed using 4.0 ID Schedule 80 PVC casing. The water table wells were installed with a 40-ft long, 4.0-in. ID Schedule 80 PVC 0.010 machine slot well screen. The screen was placed with approximately 15 ft of screen below the groundwater table. The contingency wells were completed with a 25-ft long, 4.0-in. ID PVC 0.010 machine slot well screen. The wells were installed with a 2-ft long sump below the screen. Well construction details for GWM wells are presented in Table 5-5 and Appendix D.

Following placement of the well casings, a 10/20 silica sand filter pack was placed in the borehole annulus from the bottom of the borehole to approximately 2 ft above the deep well screen. A 5-ft thick hydrated bentonite chip seal was placed above the sand pack. Additional 10/20 silica sand was placed within the borehole annulus from the bottom of the contingency well to approximately 2 ft above the well screen. Approximately 30 ft of bentonite chips was placed within the borehole annulus above the upper silica sand filter pack. The bentonite chip seal was hydrated in lifts using a potable water source.

A high-solids bentonite grout was placed in the annulus that extended from the upper bentonite chip seal to approximately 18–28 ft bgs. A neat cement surface seal was installed over the grout seal and extended vertically up the well annulus to approximately 1 ft bgs. Appendix D provides the well construction diagrams for each well for the specific depths of the annular material placement.

Wells KAFB-106249 and KAFB-106250 were each completed with a flush-mounted surface completion with an 18-in. diameter well vault surrounded by a 3-ft by 3-ft by 4-in. thick concrete pad at the ground surface. Well pads were sloped to direct rainwater away from the well. Wells KAFB-106248 and KAFB-106251 were completed with aboveground surface completions, each consisting of a 12-in. diameter steel surface casing placed to approximately 3 ft above ground surface to protect the inner well casings. Each aboveground well completion was placed within a 4-ft by 4-in. thick concrete pad with four protective steel bollards installed at the corners of the pad.

5.5.4 Extraction Assessment Well KAFB-106252

The extraction assessment well KAFB-106252 was completed as a nested monitoring well including a lower water table well and a higher contingency well, and an additional piezometer was placed below the water table well in the deep gravels to monitor head data in that interval. The total depth of the borehole was 538 ft bgs.

The bottom portion of the borehole was backfilled with 10/20 silica sand from 538 to 525 ft bgs (Appendix D). The piezometer was installed with a 2-in. ID Schedule 80 PVC 0.010-in. machine-slot well screen from 515 to 525 ft bgs. The remainder of the piezometer was constructed with 2-in. ID Schedule 80 PVC blank casing. A 10/20 silica sand filter pack was placed in the borehole annulus from 525 ft bgs of the borehole to 509.9 ft bgs. A hydrated bentonite pellet seal was placed above the filter pack from 504.8 to 509.9 ft bgs.

Both the lower and contingency well screens were constructed using 4.0-in. ID Schedule 80 PVC blank casing. The water table well was installed with a 40-ft long, 4.0-in. ID Schedule 80 PVC 0.010 machine slot well screen. The screen was placed with approximately 15 ft of screen below the groundwater table. The contingency well was completed with a 25-ft long, 4.0-in. ID PVC 0.010 machine slot well screen. Both wells were installed with a 2-ft long sump below the screen.

Following placement of the well casings, a 10/20 silica sand filter pack was placed in the borehole annulus from the top of the lower bentonite seal to approximately 2 ft above the water table screen. A 5-ft thick hydrated bentonite chip seal was placed above the sand pack of the water table screen. Additional 10/20 silica sand was placed within the borehole annulus from the top of the hydrated bentonite chip seal to approximately 2 ft above the contingency well screen. Approximately 30 ft of bentonite chips was placed within the borehole annulus above the upper silica sand filter pack. The bentonite chip seal was hydrated in lifts using a potable water source.

A high-solids bentonite grout was placed in the annulus that extended from the upper bentonite chip seal to approximately 34 ft bgs. Hydrated bentonite chips were placed from approximately 28 to 34 ft bgs. A neat cement surface seal was installed above the grout seal and extended vertically up the borehole annulus to ground surface.

The well was completed with a flush-mounted surface completion with an 18-in. diameter well vault surrounded by a 3-ft by 3-ft by 4-in. thick concrete pad at the ground surface. The well pad was sloped to direct rainwater away from the well. Well construction details for KAFB-106252 are presented in Table 5-5.

5.5.5 Original KAFB-106251 Borehole Abandonment

The original borehole for well KAFB-106251 was advanced in a similar manner to the previous boreholes. The borehole was drilled with ARCH and a 13-3/8-in. diameter casing string was advanced to a depth of 200 ft bgs. Following placement of the 13-3/8-in. diameter casing string, an 11-³/₄ -in. diameter casing string was telescoped to depth and advanced.

During advancement of the 11-³/₄-in. diameter casing string, the driller experienced significant tightening of the borehole at depths between approximately 380 and 395 ft bgs. At a depth of 395 ft bgs, the decision was made to switch from a tri-cone bit to an under-reamer bit to slightly increase the diameter of the borehole and reduce friction on the drive casing. Drilling proceeded to a depth of 435 ft bgs with the under-reamer bit. However, while using the under-reamer bit, the borehole was still tight against the drill casing. Casing jacks were employed to pull the inner casing back above the tight zone. After removing 90 ft of casing, a break occurred downhole. An attempt to free the stuck casing using the under-reamer bit resulted in the bit itself becoming lodged inside the casing. Attempts to remove the lodged casing, bottom hole assembly, and lower portion of the drill string were unsuccessful.

The decision was made to abandon the borehole and stuck tools. As groundwater had not yet been reached, no plugging plan was required by NMOSE (NMOSE, 2020a). Tools abandoned in the borehole included: 75 ft of 11-³/₄-in. diameter drive casing, 120 ft of 4-in. diameter drill rods, one 10 ft-long drill collar, one 1.5 ft-long bit sub, one 5.65-in. diameter stabilizer, one 4.15 ft-long hammer body and one 1.75 ft-long under-reamer bit.

Upon removal of all free tools, the bottom of the borehole was tagged at a depth of 102 ft. Sixty bags of bentonite chips were added to the borehole, and the bottom of the borehole was tagged at a depth of 96 ft. After consultation with NMOSE (NMOSE, 2020a), 575 gallons of bentonite grout was emplaced via tremie in three increments to a depth of 20 ft bgs. An additional seven bags of bentonite chips were added to the borehole was tagged at a depth of 15 ft bgs. Approximately 120 gallons of Portland cement was added to the borehole to a depth of 2 ft bgs and allowed to cure overnight. The following morning, the borehole was topped off to surface with concrete and drilling commenced on the adjacent location.

The final location for KAFB-106251 was moved approximately 20 ft to the northwest of the abandoned borehole and is shown on Figure 1-2. Drilling proceeded at the new location under the existing WR-07 permit for RG-1579 POD 387 approved by NMOSE on October 14, 2020 (NMOSE 2020b).

5.5.6 Monitoring Well Survey

In accordance with the Work Plan (Kirtland AFB, 2020a), a registered New Mexico professional land surveyor surveyed the horizontal and vertical coordinates of the top of each monitoring well casing and the ground surface elevation. Horizontal coordinates were measured relative to the New Mexico State Plane Coordinate System, Central Zone, North American Datum of 1983. Horizontal positions were measured to the nearest 0.1 ft, and vertical elevations were measured to the nearest 0.01 ft. Monitoring well survey data are provided in Appendix J.

5.6 Monitoring Well Development

After well construction was completed, the GWM wells were developed in accordance with the Work Plan (Kirtland AFB, 2020a). Well development records and development completion dates are provided in Appendix K. Well development was initiated no sooner than 48 hours from setting well seals. Well development was performed as follows:

• Initial development consisted of swabbing and bailing until little, or no sediment entered the well. The well screen was swabbed using a swabbing tool to remove fines from the filter pack and adjacent formation. A bailer fitted with a toggle valve was lowered into the well and used to gently surge the screen interval to remove any sand, silt, and debris accumulated in the well bore. When the bailer was brought to the surface, an Imhoff cone was used to collect water from the first bailer run to evaluate the amount of silt and sediment in the water. This process was repeated after each cycle of surging development. Wells were bailed until the discharge water contained less than 2 milliliters of sediment per 1 liter of water, as measured using an Imhoff cone.

- The site geologist monitored field parameters including pH, temperature, turbidity, and specific conductance and recorded the results and other pertinent information on the Well Development Record Form (Appendix K).
- Following swabbing and bailing, the wells were pumped to reduce turbidity to less than 10 nephelometric turbidity units. Additional water was pumped from each well to remove the same amount of water that was introduced during drilling. A summary of the water introduced and removed is provided on Table 5-6.
- At the completion of well development, a sample of the water was collected and photographed to document the water quality. Photographs of the final water development water are provided in Appendix K.

Development water was contained in 55-gallon steel drums with water-tight lids and transferred to the EA IDW yard located on Kirtland AFB for waste management (Appendix G).

5.7 Groundwater Conditions

The depth to water at the time of drilling for the six monitoring wells installed during this investigation ranged from 440.62 ft bgs (KAFB-106248) to 474.95 ft bgs (KAFB-106249). Water was added to KAFB-106248 during drilling to control flowing sands that raised the water elevation in this well. Due to this, the depth to water in KAFB-106019, located to the west of KAFB-106248, was used for the design of the well. Following well development, the depth to water ranged from 452 ft bgs (KAFB-106252) to 480.46 ft bgs (KAFB-106248). The initial depths to water and the depths to water measured during May 2021 are provided on Table 5-7. These monitoring wells are screened in the regional water table. The gradient and groundwater flow direction are discussed in Section 2.3 Site Hydrogeology.

Initial groundwater samples were collected using the low-flow sampling method in accordance with the approved Work Plan (Kirtland AFB, 2020a) and the field methods discussed in Appendix B. Wells KAFB-106248, KAFB-106252, and KAFB-106S10 were collected using a portable downhole pumping system. Wells KAFB-106249 to KAFB-106251 were sampled using dedicated pneumatic bladder pump systems. Groundwater purge and sample collection logs are provided in Appendix L. Groundwater samples were shipped under chain-of-custody documentation via overnight delivery to Eurofins TestAmerica in Lancaster, Pennsylvania. The samples were analyzed for TPH-DRO and TPH-GRO by EPA Method 8015M, EDB by EPA Method 8011, VOCs by EPA Method 8260C, dissolved and total metals by EPA Methods 6010C/6020A, anions by Method E300a, nitrate/nitrite nitrogen by Method E353.2, and alkalinity by Method SM2320B.

5.8 **Soil Vapor Conditions**

SVM was performed in accordance with Part 6.5.16 of the RCRA Permit. Three SVMP field samples and one field duplicate were collected using certified clean pre-evacuated Summa® canisters fitted with a specialized pneumatic connector to allow only the vapor from the SVMP to enter the canister. After collecting each SVMP sample, the canister was placed in protective packaging and shipped to ALS Environmental in Simi Valley, California under chain-of-custody documentation. The samples were analyzed for VOCs by EPA Method TO-15. The sample collection methodology is described in

Appendix B. Purge data were recorded on purge logs that are presented in Appendix M. Horiba calibration and sample system leak tests were performed and documented on calibration logs and are also provided in Appendix M. Significant differences between the pre-purge and post-purge static pressure readings were not observed at any of the KAFB-106V3 sample ports. This indicates stable sampling conditions.

6. SITE CONTAMINATION

Contaminant data obtained during this investigation from field screening included PID and UV screening data. Soil, soil vapor, and groundwater laboratory analytical data were also obtained during this investigation. The following summarizes the field screening and laboratory analytical results.

6.1 Source Area Soil Sampling

A discussion of soil sampling is provided in Section 5.2.1 and in Field Methods in Appendix B. During ARCH drilling, soil cuttings were field screened every 10 ft and soil core collected during sonic drilling soil was field screened every 5 ft. Field screening was completed with a PID. Soil samples were collected every 10 ft of each cored interval. A total of 42 soil samples were collected from KAFB-106V3 and KAFB-106S10 and submitted for laboratory analysis of VOCs by EPA Method 8260B/C and TPH-GRO/DRO/motor oil range by EPA Method 8015D. EDB was analyzed as part of the EPA Method 8260B/C VOC analysis but was not analyzed by EPA Method 8011. As a result, the DLs provided by EPA Method 8260B/C are higher than those that would have been provided by EPA Method 8011.

6.2 Source Area Soil Sampling Laboratory Analytical Results

Analytical data for organic compounds are presented on Figures 6-1 and 6-2 and provided in Table 5-3. For the purposes of this report, only results for the primary contaminants of potential concern, BTEX, and TPH are discussed. The Data Quality Evaluation Report for the soil laboratory analysis is included as Appendix N-1. Level 2 laboratory analytical reports and a searchable and sortable file containing the analytical results in Microsoft Excel format are included in Appendix N-2. The Level 4 laboratory analytical reports are maintained by the U.S. Air Force and are available for NMED review upon request. To simplify the understanding of contaminant concentrations in the vadose and saturated zones, the data are presented separately for each zone below.

6.2.1 Source Area Vadose Zone Summary

The vadose zone extends from ground surface to the water table (approximately 472 ft bgs). The following summarizes the detected laboratory TPH and VOC concentration ranges in the vadose zone (KAFB-106V3 and KAFB-106S10) by constituent (not including non-detected constituents):

- There were 16 TPH-GRO detections in the vadose zone. Detected concentrations ranged from a low of 1.2J mg/kg (KAFB-106S10 at 240 ft bgs) to a high of 100 mg/kg (KAFB-106S10 at 470 ft bgs).
- There were nine TPH-DRO detections in the vadose zone. Detected concentrations ranged from a low of 3.6J mg/kg (KAFB-106V3 at 230 ft bgs) to a high of 35 mg/kg (KAFB-106S10 at 470 ft bgs).
- There were three TPH-motor oil detections in the vadose zone. Detected concentrations ranged from a low of 7.6J mg/kg (KAFB-106S10 at 415 ft bgs) to a high of 21J mg/kg (KAFB-106S10 at 400 ft bgs).
- There were seven EDB detections in the vadose zone. Detected concentrations ranged from a low of 0.0016J mg/kg (KAFB-106S10 at 245 ft bgs) to a high of 0.04J mg/kg (KAFB-106V3 at 271 ft bgs).

- There were 19 benzene detections in the vadose zone. Detected concentrations ranged from a low of 0.00056J mg/kg (KAFB-106S10 at 281 ft bgs) to a high of 1.6 mg/kg (KAFB-106S10 at 480 ft bgs).
- There were 30 toluene detections in the vadose zone. Detected concentrations ranged from a low of 0.00025J mg/kg (KAFB-106S10 at 350 ft bgs) to a high of 0.89 mg/kg (KAFB-106V3 at 271 ft bgs).
- There were 17 ethylbenzene detections in the vadose zone. Detected concentrations ranged from a low of 0.00034J mg/kg (KAFB-106V3 at 260 ft bgs) to a high of 0.15 mg/kg (KAFB-106S10 at 420 ft bgs).
- There were 20 total xylenes (sum of m-, p-, and 0-xylenes) detections in the vadose zone. Detected concentrations ranged from a low of 0.00042J mg/kg (KAFB-106S10 at 370 ft bgs) to a high of 0.75 mg/kg (KAFB-106S10 at 420 ft bgs).

The highest benzene concentration in the vadose zone was observed in KAFB-106S10 (Figure 6-1 and Table 5-3) at a depth of 480 ft bgs. The highest total BTEX and TPH concentrations were also found in KAFB-106S10 at a depth of 470 ft bgs, just above the water table (Figures 6-1, 6-2, and Table 5-3).

6.2.2 Source Area Saturated Zone Summary

The following summarizes the detected laboratory TPH and VOC concentration ranges in the saturated zone below the water table located at approximately 472 ft bgs by constituent (not including non-detected constituents). There were no detections of EDB within the saturated zone. The detected results are from KAFB-106S10 (KAFB-106V3 was not advanced to the water table):

- There were three TPH-GRO detections in the saturated zone. Detected concentrations ranged from a low of 1.7J mg/kg at 500 ft bgs to a high of 73J mg/kg at 480 ft bgs.
- There were two TPH-DRO detections and no TPH-motor oil detections in the saturated zone. Detected concentrations of TPH-DRO ranged from a low of 20 mg/kg at 480 ft bgs to a high of 31 mg/kg at 490 ft bgs.
- There were two benzene detections in the saturated zone. Detected concentrations ranged from a low of 0.11 mg/kg at 490 ft bgs to a high of 1.6 mg/kg at 490 ft bgs.
- There were five toluene detections in the saturated zone. Detected concentrations ranged from a low of 0.00041J mg/kg at 510 and 517 ft bgs to a high of 4.5 mg/kg at 480 ft bgs.
- There were two ethylbenzene detections in the saturated zone. Detected concentrations ranged from a low of 0.043J mg/kg at 490 ft bgs to a high of 0.16J mg/kg at 480 ft bgs.
- There were three total xylenes (sum of m-, p-, and o-xylenes) detections in the saturated zone. Detected total xylenes concentrations ranged from a low of 0.00043J mg/kg 500 ft bgs to a high of 2.86 mg/kg at 480 ft bgs.

The highest benzene, total BTEX, and TPH concentration in the saturated zone was observed in KAFB-106S10 at a depth of 480 ft bgs (Figures 6-1 and 6-2, Table 5-3). None of the detected soil concentrations exceeded the project screening levels.

6.2.3 Source Area Soil Laboratory Analytical Data Review and Usability

Chemical analytical data for the source area soil samples underwent EPA Stage 3 data validation on 100% of the sample data by a third-party subcontractor, Environmental Data Services, Inc., Florida. The following quality control criteria were included in the EPA Stage 3 validation per the Quality Assurance Project Plan, as applicable to the analytical method to evaluate precision, accuracy, representativeness, comparability, completeness, and sensitivity for the data set:

- Sample preservation and extraction and analysis holding times
- Laboratory method blank contamination
- Surrogate spike and internal standard recoveries
- Laboratory control sample and duplicate recoveries
- Matrix spike and matrix spike duplicate recoveries
- Initial and continuing calibrations
- Trip, and rinse blank results
- Field duplicate sample precision

Data quality exceedances that resulted in data qualification during validation include: (1) blank contamination for one VOC (acetone), (2) surrogate recoveries for VOCs and TPH-GRO above the control limit, (3) matrix spike recovery exceedances for VOCs and TPH-GRO, and (4) calibration criteria exceedance for VOCs. Data were qualified as estimated detect (J), estimated non-detect (UJ), and non-detect (U). Estimated sample data are usable to achieve project objectives. The 95% technical completeness goal was achieved for all analytical methods for the source area coring sampling event. Data are determined to be usable to achieve the project data quality objectives as qualified based on validation. Details regarding the analytical data validation and data usability are provided in Appendix N-1 – Data Quality Evaluation Report.

6.3 Source Area Soil Vapor Chemical Analytical Results

The initial SVM event at KAFB-106V3 was performed on April 20, 2021. The results from this initial monitoring event will also be used in the Q2 2021 semiannual SVM discussion. Table 6-1 summarizes the soil vapor results.

The Data Quality Evaluation Report for the soil vapor data is provided in Appendix N-1. The Level 2 analytical reports and a searchable and a sortable file containing the analytical results in Microsoft Excel format of the soil vapor data are provided in Appendix N-3.

6.3.1 Soil Vapor Laboratory Analytical Results

Using the Horiba, subsurface hydrocarbon concentrations were recorded at 8 ppmv within KAFB-106V3-007, 16 ppmv within KAFB-106V3-015, and 6 ppmv within KAFB-106V3-272. Subsurface oxygen concentrations were recorded at 19.97% within KAFB-106V3-007, 19.07% within KAFB-106V3-015, and 21.11% within KAFB-106V3-272. Subsurface carbon dioxide concentrations were recorded at 0.30% within KAFB-106V3-007, 1.04% within KAFB-106V3-015, and 0.04% within KAFB-106V3-272.

Soil vapor concentrations of EDB and benzene exceeding the residential VISLs (1.2 micrograms per cubic meter $[\mu g/m^3]$ for EDB and 120 $\mu g/m^3$ for benzene) were observed in each of the well screens during this first sampling event. Concentrations of EDB were 6.8, 12, and 17 $\mu g/m^3$ in well screens at 7, 15, and 272 ft bgs, respectively. Concentrations of benzene were 260, 160, and 200 $\mu g/m^3$ in well screens at 7, 15, and 272 ft bgs, respectively. No other soil vapor concentrations exceeded the residential VISL. Soil vapor analytical results are provided in Table 6-1.

Since this SVM location is located on-Base within the BFF, soil vapor concentrations were also compared to the industrial VISLs. Benzene concentrations were below the industrial VISL of 588 μ g/m³ and the EDB concertation at 7 ft bgs was below the industrial VISL of 7.65 μ g/m³.

VISLs are intended to be screened against soil vapor samples collected from below building foundations (sub slab samples). Screening VISLs to the concentrations measured in the shallow (7 and 15 ft bgs) SVMPs is more applicable to the intended use of VISLS, than screening for the deeper SVMP located at 272 ft bgs. It is likely that the elevated concentrations observed in the shallow SVMPs are due to subsurface vapor disturbance caused by the air rotary drilling used to install the SVM well. These points will continue to be sampled during the regular semi-annual monitoring events.

6.3.2 Soil Vapor Laboratory Analytical Data Review and Usability

Environmental Data Services, Inc. performed EPA Stage 3 data validation on 100% of the soil vapor analytical data. Analytical results were qualified as estimated detect "J" and estimated non-detect data "UJ" based on exceedance of data quality indicator criteria for (1) laboratory control sample recovery above the control limit for ethyl acetate, and (2) field duplicate relative percent difference above 50% for two VOCs. The 95% technical completeness goal was achieved for the data gap well installation soil vapor sample data. Data are usable to achieve the project data quality objectives as qualified based on validation.

In addition, the EDB LOQ for three soil vapor samples and a field duplicate exceeded the project screening level (VISL) due to the elevated EDB sample concentrations requiring dilution during analysis. As per the analytical method, when samples require dilution to bring target analytes within the instrument calibration range, all analyte reporting limits become elevated in the sample.

6.4 Groundwater Sampling

Initial groundwater samples were collected from each GWM well following well development and submitted for laboratory analysis for the constituents specified in the approved Work Plan (Kirtland AFB, 2020a). Three groundwater samples, one field duplicate, and equipment rinse and trip blanks were collected in association with the sampling.

The Data Quality Evaluation Report for the groundwater analytical results is provided in Appendix N-1. The initial groundwater sampling analytical results for TPH, BTEX, EDB, dissolved iron, and dissolved manganese for each of the newly installed wells are presented below (only detected analytes are reported) and shown in Table 6-2. Level 2 laboratory reports for the initial sampling event and a searchable and sortable file containing the analytical results in Microsoft Excel format are provided in Appendix N-4.

6.4.1 Groundwater Laboratory Analytical Results

A map showing the EDB concentrations of the newly installed wells in relation to the fourth quarter (Q4) 2020 EDB plume is presented on Figure 6-3. A map showing the BTEX and TPH concentrations of the

newly installed wells in relation to the Q4 2020 benzene plume is presented on Figure 6-4. A summary of the detected EDB, TPH, and VOC concentrations above the project screening level is presented below:

- A concentration of EDB above the project screening level of 0.05 μg/L was observed in well KAFB-106S10 (15 micrograms per liter [μg/L]).
- TPH-GRO concentrations above the project screening level of 550 µg/L were observed in KAFB-106S10 (61,000 µg/L) and KAFB-106250 (3,900 µg/L).
- TPH-DRO concentrations above the project screening level of 1,300 µg/L were observed in KAFB-106S10 (23,000 µg/L) and KAFB-106250 (21,000 µg/L).
- TPH ORO concentrations (C28 to C40) above the project screening level of 800 µg/L were observed in KAFB-106250 (8,200 µg/L).
- Benzene concentrations above the project screening level of 5 µg/L were observed in KAFB-106S10 (8,400 µg/L) and KAFB-106250 (8.1 µg/L).
- A concentration of ethylbenzene above the project screening level of 750 μg/L was observed in KAFB-106S10 (850 μg/L).
- A concentration of toluene above the project screening level of 1,000 μg/L was observed in KAFB-106S10 (16,000 μg/L).
- A concentration of total xylenes above the project screening level of 620 μg/L was observed in KAFB-106S10 (3,800 μg/L).

Of the inorganic constituents sampled, only manganese exceeded the project screening level of 0.2 mg/L in wells KAFB-106249 (0.38 mg/L), KAFB-106250 (2.4 mg/L), KAFB-106251 (0.41 mg/L), and KAFB-106S10 (0.6 mg/L). No other concentrations of contaminants of potential concern were observed to exceed the project screening levels (Table 6-2).

6.4.2 Groundwater Analytical Data Quality and Data Usability

Laboratory deliverables were generated, and a data review was conducted for groundwater data in accordance with Parts 6.5.18.2 and 6.5.18.3 of the RCRA Permit (NMED, 2010). The data gap well installation groundwater analytical data underwent 100% EPA Stage 2B data validation per the GWM requirements. Analytical results were qualified as estimated detect "J" and estimated non-detect data "UJ" based on exceedance of data quality indicator criteria for (1) matrix spike recovery for alkalinity, and (2) continuing calibration exceedance for VOCs. The 95% technical completeness goal was achieved for the data gap well installation groundwater sample data. Data are usable to achieve the project data quality objectives as qualified based on validation.

During the data gap well installation groundwater analyses, 12 detect and non-detect sample results for VOCs, EDB, and TPH-GRO were reported with LOQs that exceeded the project screening level. Five detections of EDB, benzene, TPH-GRO, and 1,2,3-trichloropropane above the project screening level exhibited elevated LOQs as a result of the high concentration of these analytes in the samples and, therefore, required sample dilution during analysis. Elevated concentrations of target analytes in a sample resulted in sample dilution during analysis to meet DoD QSM and EPA analytical method criteria. When

samples require dilution, all analyte reporting limits become elevated by the amount of the dilution; thus resulting in the exceedances. Data validation guidelines determine these data to be usable and achieve project data quality objectives.

7. SUMMARY AND CONCLUSIONS

This report documents activities performed to provide additional data for the characterization and identification of contaminant migration pathways beneath the source area and to address data gaps in the GWM well network. Wells installed included source area data gap wells, GWM data gap wells, and an extraction assessment well. Source area data gap wells were installed for two purposes. The first was to look for a gap in the clay layer located between 250 and 300 ft bgs. The second was to further assess the lithology and contaminant concentrations in the source area. GWM data gap wells were installed to provide groundwater analytical data at the water table as groundwater elevations continue to rise. The extraction assessment well was installed to assess the performance of extraction well KAFB-106234 for semiannual plume capture evaluation of the EDB plume north of Ridgecrest.

The source area data gap wells included one GWM well (KAFB-106S10) and one SVM well (KAFB-106V3). The data gap wells included four GWM wells (KAFB-106249 to KAFB-106251) located south and east of the source area plume (Figure 1-2). The extraction assessment well (KAFB-106252) was located southwest of extraction well (KAFB-106234).

In general, soils observed within the data gap GWM and extraction assessment wells were consistent with previous investigations. The soils observed in KAFB-106V3 and KAFB-106S10 were also generally consistent with previously recorded site lithology observed in the source area. From the ground surface to 160 ft bgs, the lithology in KAFB-106S10 and KAFB-106V3 was dominated by lower permeability units (silt and clay) interbedded with lesser amounts of higher permeability units (sand). Below 160 ft bgs, fine to coarse gravelly sand dominated to a depth of approximately 240–270 ft bgs. Induction, Gamma Ray, and Neutron geophysical logs were run in wells KAFB-106S10 and KAFB-106V3 following their installation. The Gamma Ray and Neutron logs generally confirmed the well annular depths. The Induction logs generally confirmed the lithology and lithologic contact depths.

An upper clay unit was observed at a depth of 255–256 ft bgs in KAFB-106V3 and at a depth of 250–254 ft bgs in KAFB-106S10. The lower clay was observed in both wells at depths of 270.5 and 274 ft bgs in KAFB-106V3 and KAFB-106S10, respectively. The bottom of the lower clay unit was observed at approximately 280.5 ft bgs in both borings. This clay was classified in the field as very stiff to hard and contained no silt fraction. Below 300 ft bgs, a fine to coarse gravelly sand dominated with minor interbedding (<10 ft) of lower permeability material to the total depth of drilling (517 ft bgs at KAFB-106S10).

The clay unit from 270 to 281 ft bgs that was observed in KAFB-106V3 and KAFB-106S10 appears to be generally present across the BFF based on cross sections of the subsurface lithology (Figures 5-2, 5-3, and 5-4). The thickness of this clay unit varies at each borehole. This clay unit ultimately pinched out completely to the north (e.g., absent at KAFB-106S4 and KAFB-106S5).

PID readings were collected every 10 ft from ARCH-drilled intervals and every 5 ft from the sonic cored intervals to the total depth of each borehole. Field screening data obtained from soil samples collected from the source area data gap wells were also generally consistent with data collected from previous boreholes. Elevated PID readings (greater than 100 ppmv) were observed to be present above and within the clay unit found at 270–281 ft bgs in both boreholes. High PID readings (greater than 1,000 ppmv) associated with historic water levels were observed in KAFB-106S10 (Table 5-2). In general, the PID readings were consistent with other boreholes located within the source area (Figures 5-2 through 5-4). Field screening for source area boreholes also included using a UV flashlight to look for the presence of LNAPL in soil cores. The UV field screening did not indicate the presence of LNAPL in any of the cores. Soil samples were collected from sonic-cored intervals every 10 ft of depth to the total depth of the borehole. Soil samples submitted for laboratory analysis were analyzed for VOCs by EPA Method 8260B/C and TPH by EPA Method 8015D. The highest TPH, EDB, benzene, and total BTEX concentrations in vadose zone soil samples were observed in KAFB-106S10 (Figures 6-1 and 6-2, Table 5-3) as follows:

- TPH (135 mg/kg) at a depth of 470 ft bgs
- Benzene (0.36 mg/kg) at a depth of 250 ft bgs
- Total BTEX (1.146 mg/kg) at a depth of 420 ft bgs

The highest EDB concentration (0.04 mg/kg) present in the vadose zone was observed in KAFB-106V3 at a depth of 271 ft bgs. Concentrations of EDB above the limit of detection were not observed in the saturated zone. The highest TPH (93 mg/kg), benzene (1.6 mg/kg), and total BTEX (9.12 mg/kg) concentrations in the saturated zone were observed in KAFB-106S10 at a depth of 480 ft bgs (Figures 6-1 and 6-2, Table 5-3). In general, soil laboratory analytical data were consistent with other boreholes located within the source area (Figures 5-2 through 5-4).

A nest of two wells capable of accepting a groundwater pump capable of low-flow sampling was installed in each of the GWM borings (KAFB-106S10, KAFB-106249 through KAFB-106252). Well construction approvals were received from NMED prior to construction of each well. Each nested well was constructed with a lower water table well (constructed with 15 ft of saturated thickness), and a contingency well to account for a rise in the water table.

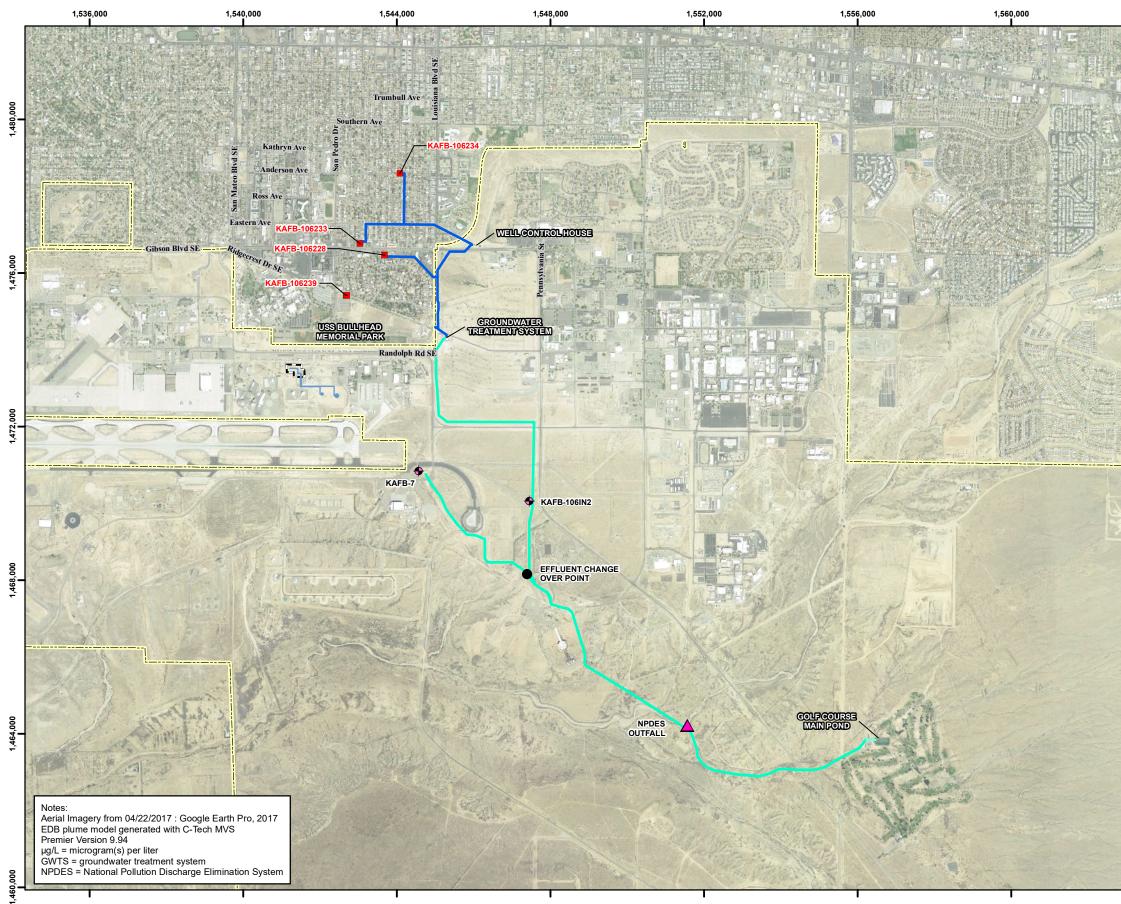
The SVM well (KAFB-106V3) was constructed with a deeper SVMP that intersected the upper portion of the clay found at 270 ft bgs. This well also included two shallow SVMPs installed at 7 and 15 ft bgs. Soil vapor samples were collected from each screen of KAFB-106V3. Soil vapor concentrations of EDB and benzene exceeding the residential VISLs were observed in each of the well screens (Table 6-1). Concentrations of EDB were 6.8, 12, and 17 μ g/m³ in well screens at 7, 15, and 272 ft bgs, respectively. Concentrations of benzene were 260, 160, and 200 μ g/m³ in well screens at 7, 15, and 272 ft bgs, respectively. No other soil vapor concentrations exceeded the residential VISL.

Groundwater samples were collected from each of the GWM wells following their installation and development. Concentrations of EDB above the project screening level were observed in well KAFB-106S10 (15 μ g/L [Table 6-2]). Benzene concentrations above the project screening level were observed in KAFB-106S10 (8,400 μ g/L) and KAFB-106250 (8.1 μ g/L). Concentrations of ethylbenzene (850 μ g/L), toluene (16,000 μ g/L), and total xylene (3,800 μ g/L) above the project screening level were observed in well KAFB-106S10. Of the inorganic constituents sampled, only manganese exceeded the project screening levels in wells KAFB-106249 (0.38 μ g/L), KAFB-106250 (2.4 μ g/L), KAFB-106251 (0.41 μ g/L), and KAFB-106S10 (0.6 μ g/L). No other concentrations of contaminants of potential concern were observed to exceed the project screening levels.

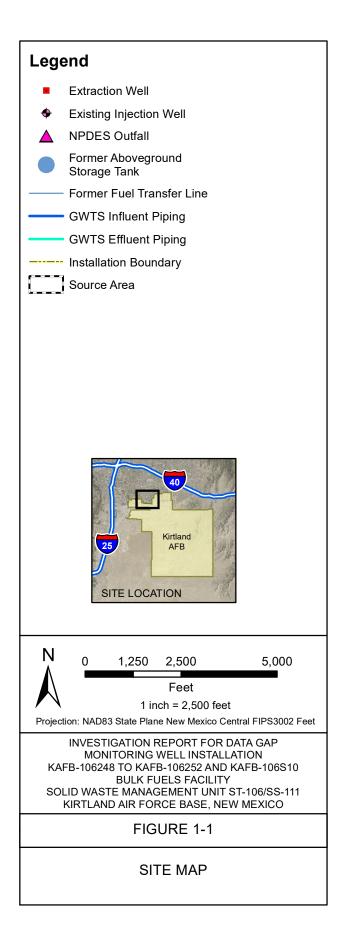
8. RECOMMENDATIONS

The data collected during this investigation have provided additional lithologic information in the source area and filled data gaps associated with rising groundwater levels. This information, when incorporated with existing data collected from other investigations, will be presented in the Phase II RFI. The monitoring wells installed as part of this investigation will continue to be monitored quarterly and incorporated into the GWM program. Data obtained from this investigation support the following recommendations:

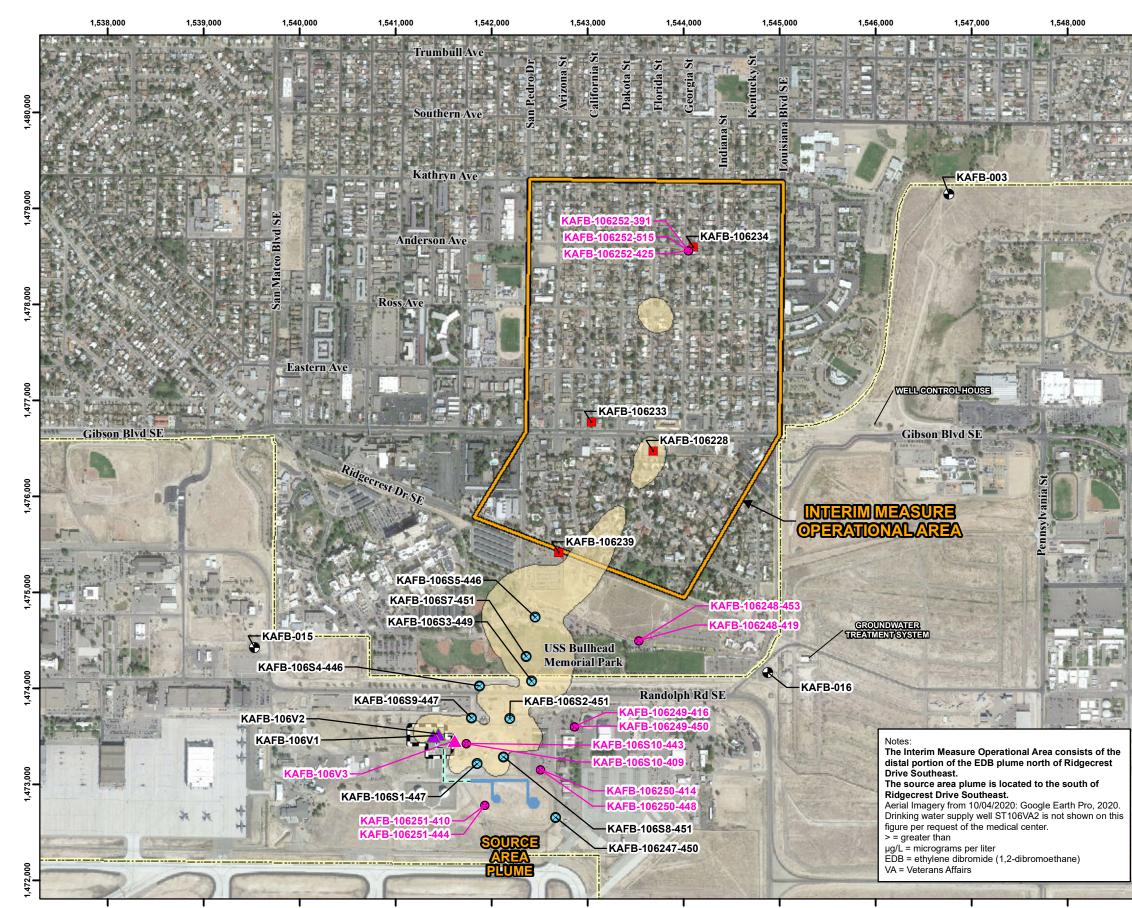
- Semiannual SVM and quarterly GWM are ongoing. It is recommended to continue monitoring of the subsurface to assess changes in the GWM and SVM well networks.
- The source area lithology, soil vapor, and groundwater data collected from this investigation are consistent with data collected from previous investigations. Based on this, the investigation phase of this project is coming to an end. The nature and extent of contamination have been defined to the extent necessary to perform the Corrective Measures Evaluation. It is recommended that no additional investigations be performed in the source area and to begin drafting the Phase II RFI Report. The Phase II RFI Report will summarize the ending of the investigation phase and demonstrate that the nature and extent of contamination is defined to the extent necessary to inform the Corrective Measures Evaluation. However, if there are additional data gaps identified from routine monitoring data evaluation or from changing site conditions, those additional data gaps will be addressed as part of the corrective action process.

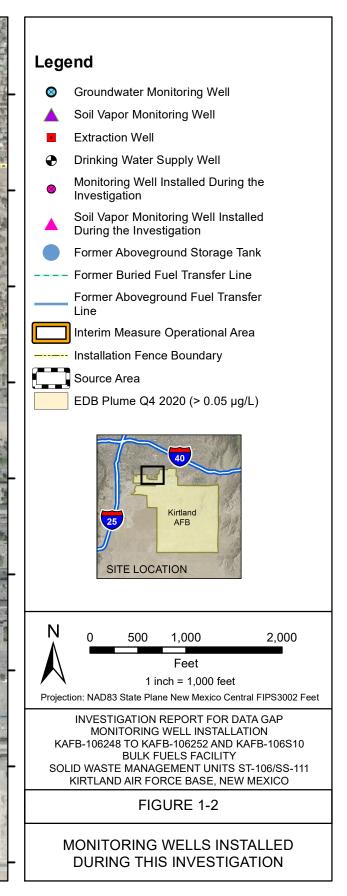

9. REFERENCES

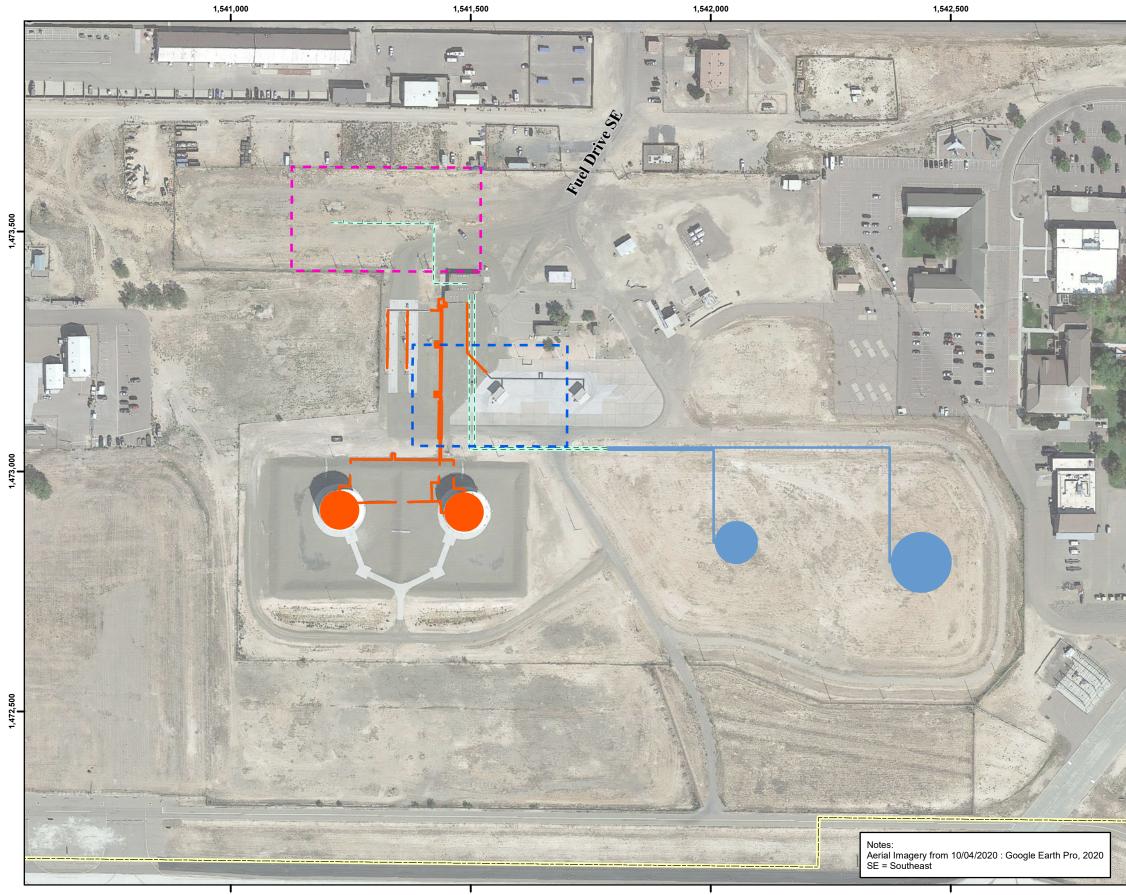
- ASTM International. 2012. Standard Guide for Field Logging of Subsurface Explorations of Soil and Rock; ASTM D5434-12. ASTM International, West Conshohocken, Pennsylvania.
- Department of Defense (DoD) and Department of Energy. 2019. Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3. May.
- Kirtland Air Force Base (AFB). 2017. Work Plan for Vadose Zone Coring, Vapor Monitoring, and Water Supply Sampling, Bulk Fuels Facility, Solid Waste Management Units ST-106/SS-111, Revision 1.
 Prepared by EA Engineering, Science, and Technology, Inc., PBC for the USACE–Albuquerque District under USACE Contract No. W9128F-13-D-0006-DM02. December.
- Kirtland AFB. 2018. Phase I RCRA Facility Investigation Report Bulk Fuels Facility Release Solid Waste Management Units ST-106/SS-111. Prepared by Sundance Consulting, Inc., for USACE Albuquerque District under USACE Contract No. W912PP-16-C-0002. August.
- Kirtland AFB. 2019a. Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252, Bulk Fuels Facility, SWMUs ST-106/SS-111. Prepared by Sundance Consulting, Inc., for Kirtland AFB under USACE–Albuquerque District Contract No. W912PP-17-C-0028. December.
- Kirtland AFB. 2019b. Quarterly Monitoring Report April-June 2019, Bulk Fuels Facility, SWMUs ST-106/SS-111. Prepared by EA Engineering, Science, and Technology, Inc., PBC for USACE Albuquerque District under USACE Contract No. W912DR-12-D-006. September.
- Kirtland AFB. 2020a. Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 and KAFB-106S10. Prepared by Sundance Consulting, Inc., for USACE Albuquerque District under USACE Contract No. W912PP-17-C-0028. September.
- Kirtland AFB. 2020b. Completion Report for Data Gap Monitoring Wells KAFB-106240, KAFB-106241, KAFB-106242, KAFB-106243, KAFB-106245 and KAFB-106246, Solid Waste Management Units ST-106/SS-111, Kirtland Air Force Base, New Mexico. Prepared by EA Engineering, Science, and Technology, Inc., PBC, for USACE Albuquerque District under USACE Contract No. W912DR-12-D-0006/Delivery Order DM01. September.
- Kirtland AFB. 2021. Source Zone Characterization Report Revision 1 Bulk Fuels Facility, SWMUs ST-106/SS-111. Prepared by EA Engineering, Science, and Technology, Inc., PBC for USACE Albuquerque District under USACE Contract No. W912DR-12-D-006. April. Currently in review.
- New Mexico Environment Department (NMED). 2010. Hazardous Waste Treatment Facility Operating Permit, EPA ID No. NM9570024423, issued to U.S. Air Force for the Open Detonation Unit Located at Kirtland Air Force Base, Bernalillo County, New Mexico, by the NMED Hazardous Waste Bureau. July.
- NMED. 2019a. Risk Assessment Guidance for Site Investigations and Remediation, Volume 1 Soil Screening Guidance for Human Health Risk Assessments, Table 6-2, Soil Screening limits, Table A-1, NMED Soil Screening Limits, Revision 2, February.
- NMED. 2019b. Correspondence from Dave Cobrain, Program Manager, Environment Department to Colonel David S. Miller, Base Commander, Kirtland AFB, New Mexico, and Lt. Colonel Wayne J.

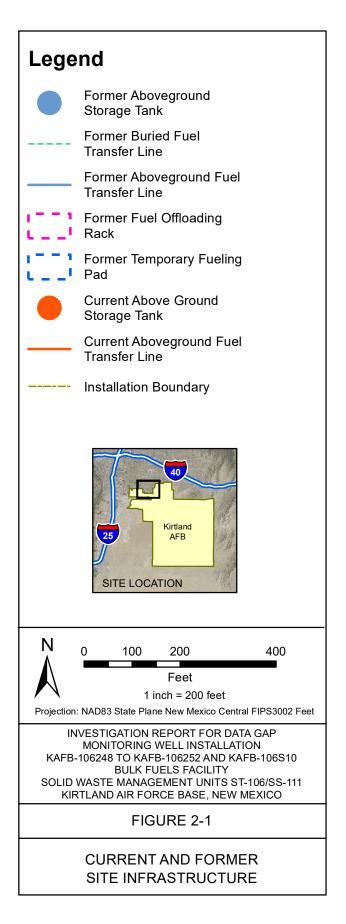

Acosta, Civil Engineer Office, Kirtland AFB, New Mexico, Re: Requirement to Submit Well Installation Work Plan, Kirtland Air Force Base, New Mexico, EPA ID #NM9570024423, HWB-KAFB-BFF-MISC. November 4.

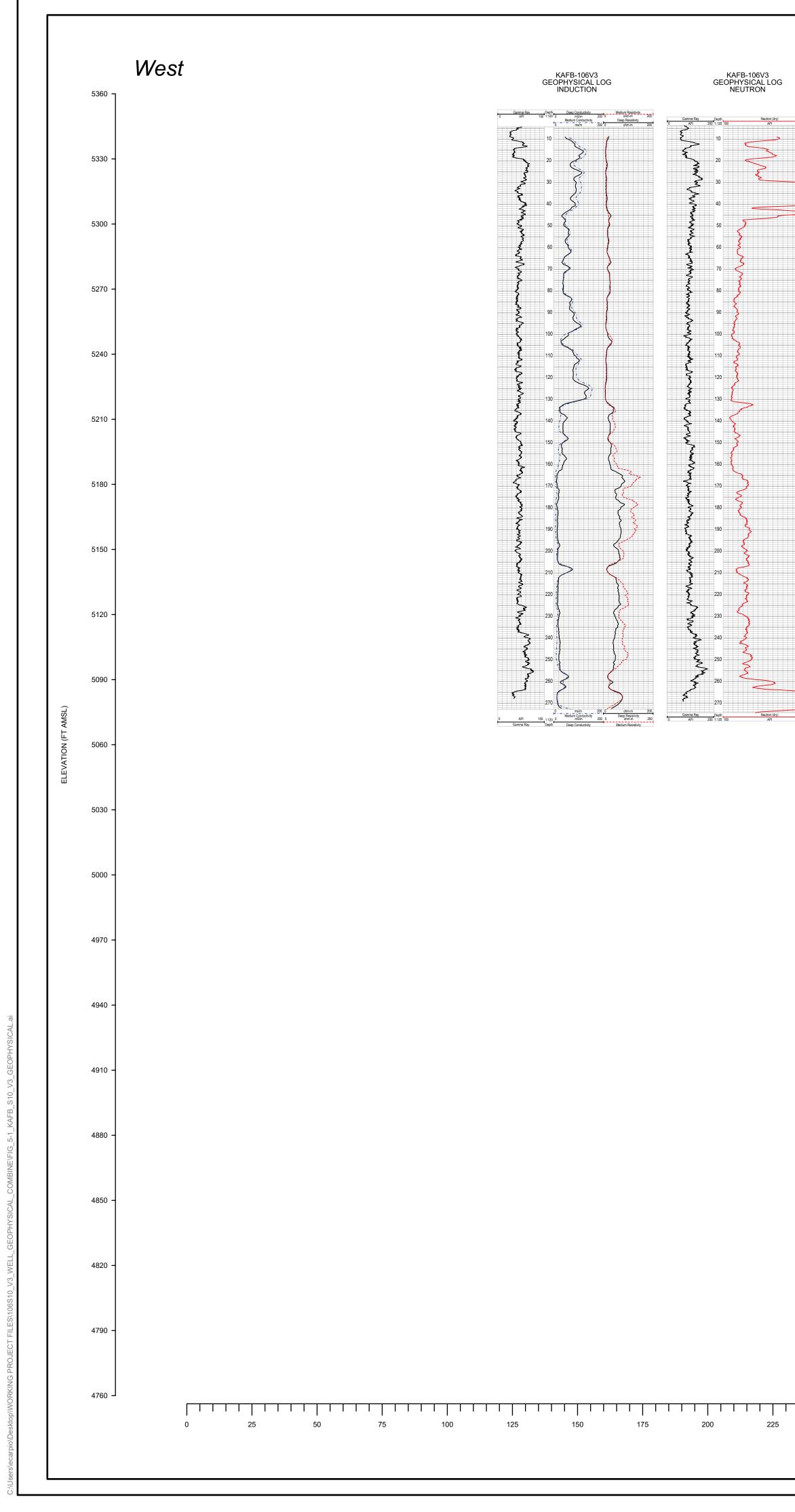
- NMED. 2020a. Correspondence from Kevin Pierard, Chief, Environment Department to Colonel David S. Miller, Base Commander, Kirtland AFB, New Mexico, and Lt. Colonel Wayne J. Acosta, Civil Engineer Office, Kirtland AFB, New Mexico, Re: Approval with Modifications, Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252, Bulk Fuels Facility Solid Waste Management Units ST-106 and SS-111, Kirtland Air Force Base, New Mexico, EPA ID# NM6213820974, HWB-KAFB-19-015. July 14.
- NMED. 2020b. Correspondence from Kevin Pierard, Chief, Environment Department to Colonel David S. Miller, Base Commander, Kirtland AFB, New Mexico, and Lt. Colonel Wayne J. Acosta, Civil Engineer Office, Kirtland AFB, New Mexico, Re: Reporting Requirements for All Documents Submittals, Kirtland Air Force Base, New Mexico, EPA ID# NM6213820974, HWB-KAFB-20-MISC. September 2.
- NMED. 2020c. Correspondence from Mr. Kevin Pierard, Chief, Hazardous Waste Bureau, to Colonel David S. Miller, Base Commander, 377 AB/CC, Kirtland AFB, NM and Lt. Colonel Wayne J. Acosta, Civil Engineer Office, 377 Civil Engineer Division, Kirtland AFB, NM, re: Quarterly Monitoring Report for April-June 2019, Bulk Fuels Facility Solid Waste Management Units ST-106/SS-111, Kirtland Air Force Base, New Mexico. EPA ID# NM6213820974, HWB-KAFB-19-017. July 11.
- NMED. 2020d. Electronic Correspondence from Dave Cobrain, Program Manager, Environment Department to Sheen Kottkamp, Environmental Program Manager, Kirtland AFB, New Mexico, and Kathryn Lynnes, Senior Advisor, SAF/IEE, Kirtland AFB, New Mexico, RE: Data Gap Well Installation Scope. June 1.
- NMED. 2020e. Electronic Correspondence from Lane Andress, NMED Hazardous Waste Bureau to Sheen Kottkamp, Environmental Program Manager, Kirtland AFB, New Mexico, and Ben Moayyad, Project Manager, U.S. Army Corps of Engineers, Albuquerque District, New Mexico, RE: Modification to KAFB-106V3 construction details. November 16.
- New Mexico Office of the State Engineer (NMOSE). 2020a. "RG-1579 POD 387"; E-Mail message from Christopher Burrus, CPG to Rachel Hobbs, PG, Sundance Consulting, Inc. December 8.
- NMOSE. 2020b. Permit to Drill Monitoring Wells, RG-1579 POD387 (nested), issued to Kirtland Air Force Base, AFCEC/CZO, Bernalillo County, New Mexico, by the NMOSE, District 1. October 14.
- U.S. Environmental Protection Agency (EPA). 2020. Regional Screening Levels Master Table. Available online at <u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables</u>. May.

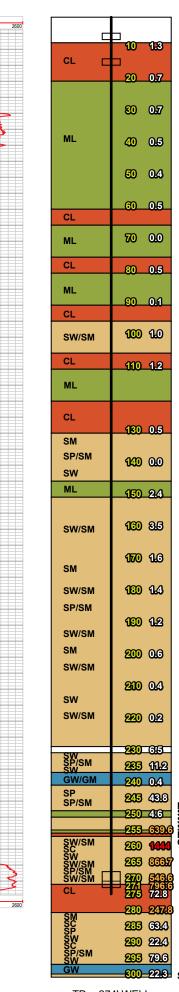

FIGURES


P:\Projects\Kirtland\Figures\Data Gap Monitoring Wells\2020_Data_Gap_Well_Install\1-1_2020_2021_DATA_GAP_SITE_MAP.mxd 6/16/2021 EA ecarpio

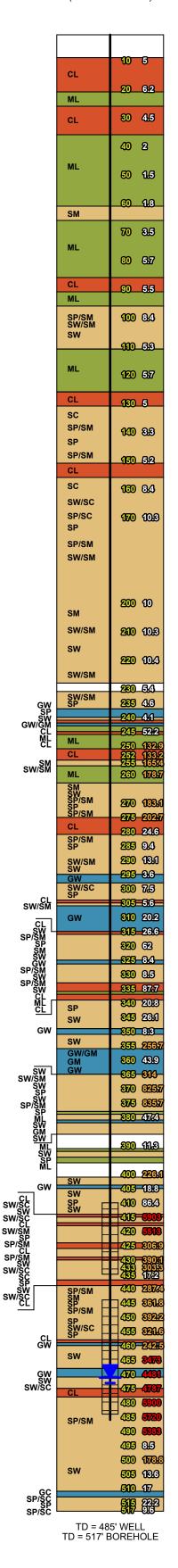

This page intentionally left blank

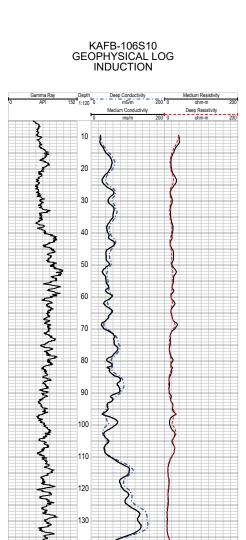

P:\Projects\Kirtland\Figures\Data Gap Monitoring Wells\2020_Data_Gap_Well_Install\1-2_2020_2021_DATA_GAP_WELL_INSTALLED.mxd 7/28/2021 EA ecarpio


This page intentionally left blank


P:\Projects\Kirtland\Figures\Data Gap Monitoring Wells\2020_Data_Gap_Well_Install\2-1_2020_2021_DATA_GAP_Current and Former Site Infrastructure.mxd 6/16/2021 EA ecarpio

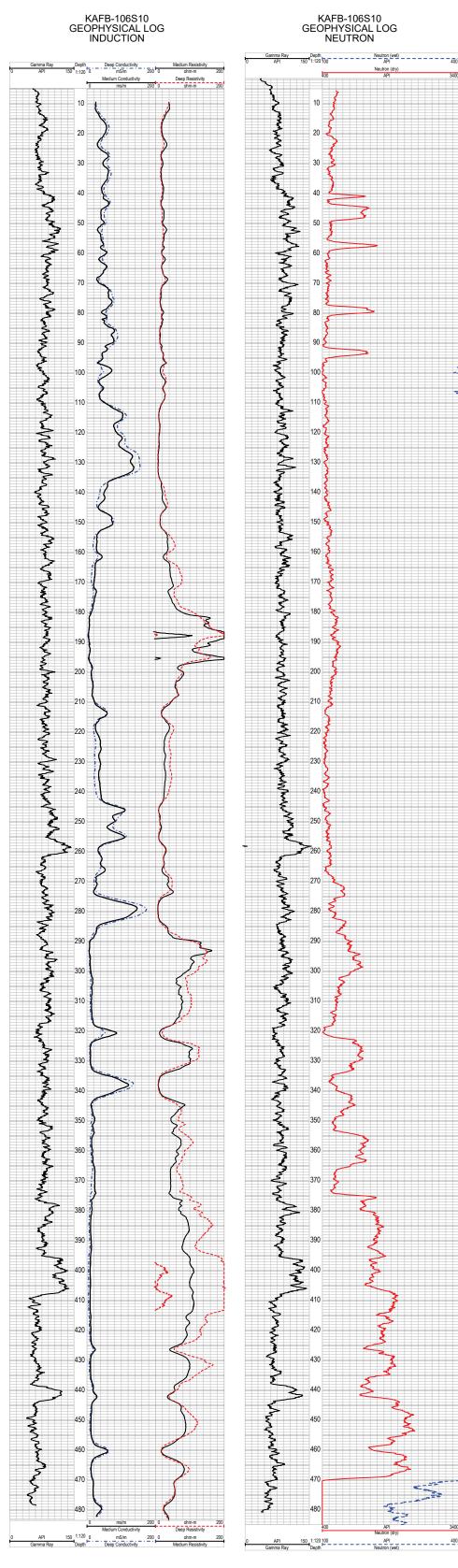
This page intentionally left blank




KAFB-106V3 (5346.95 FT AMSL)

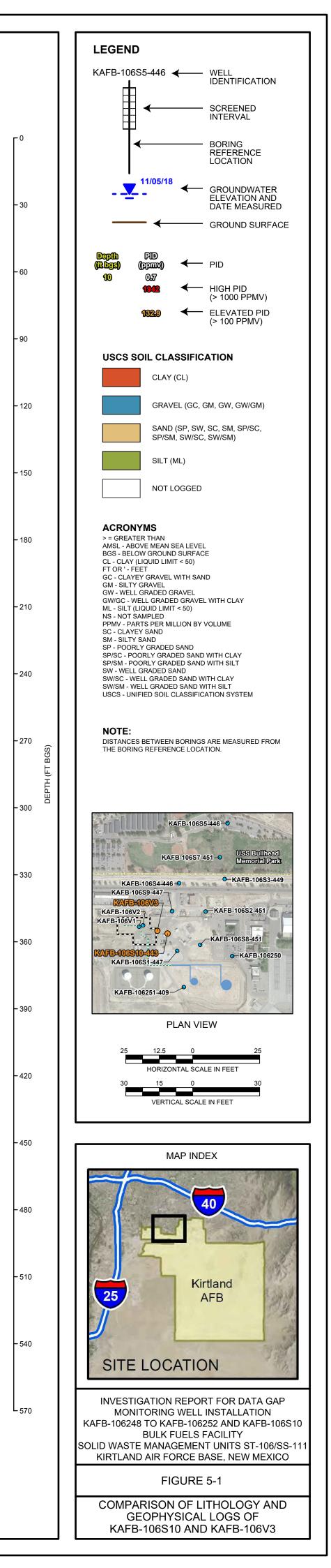
TD = 274' WEL TD = 300' BOREHOLE

KAFB-106S10-443/449 (5348.73 FT AMSL)

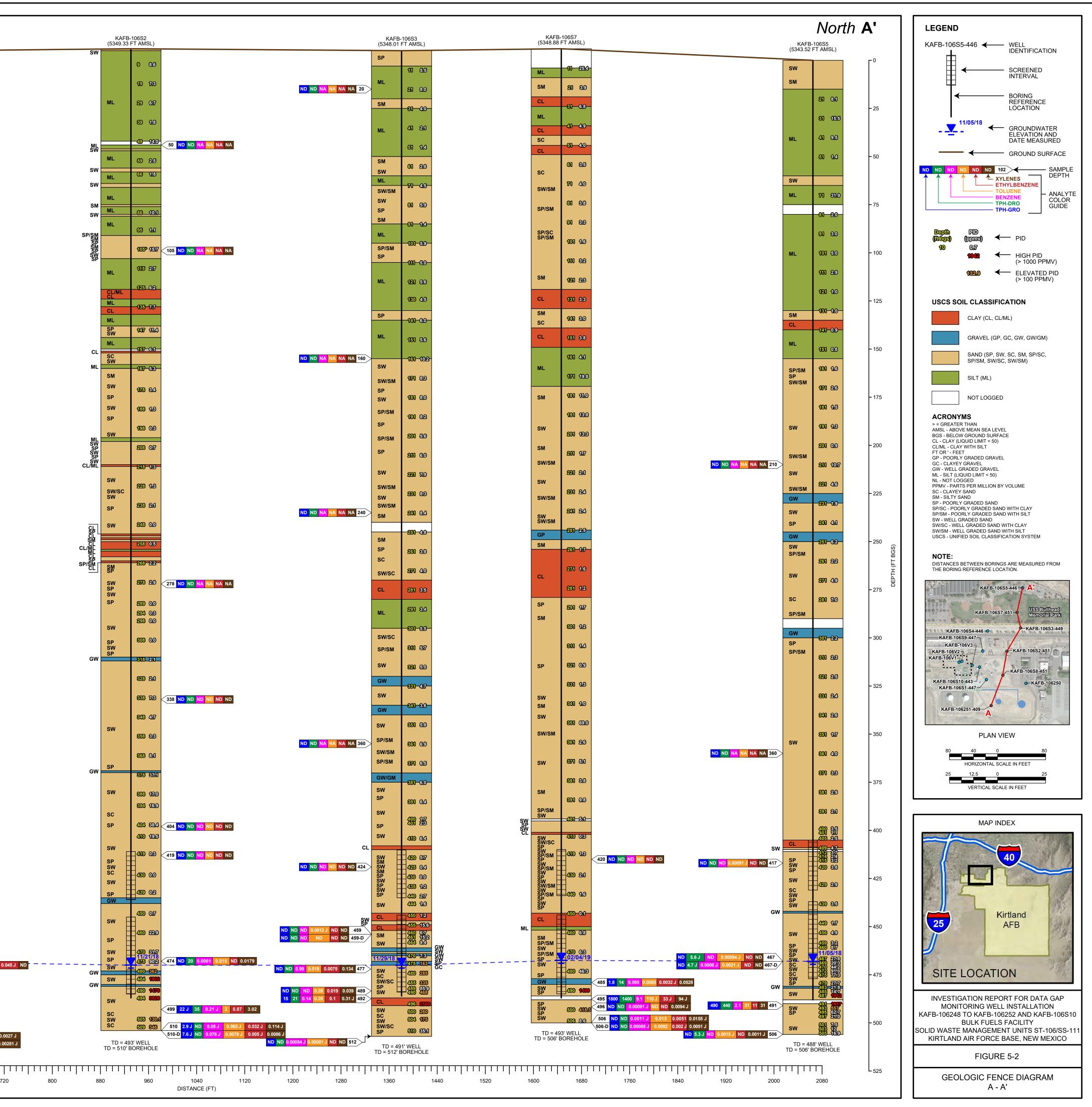


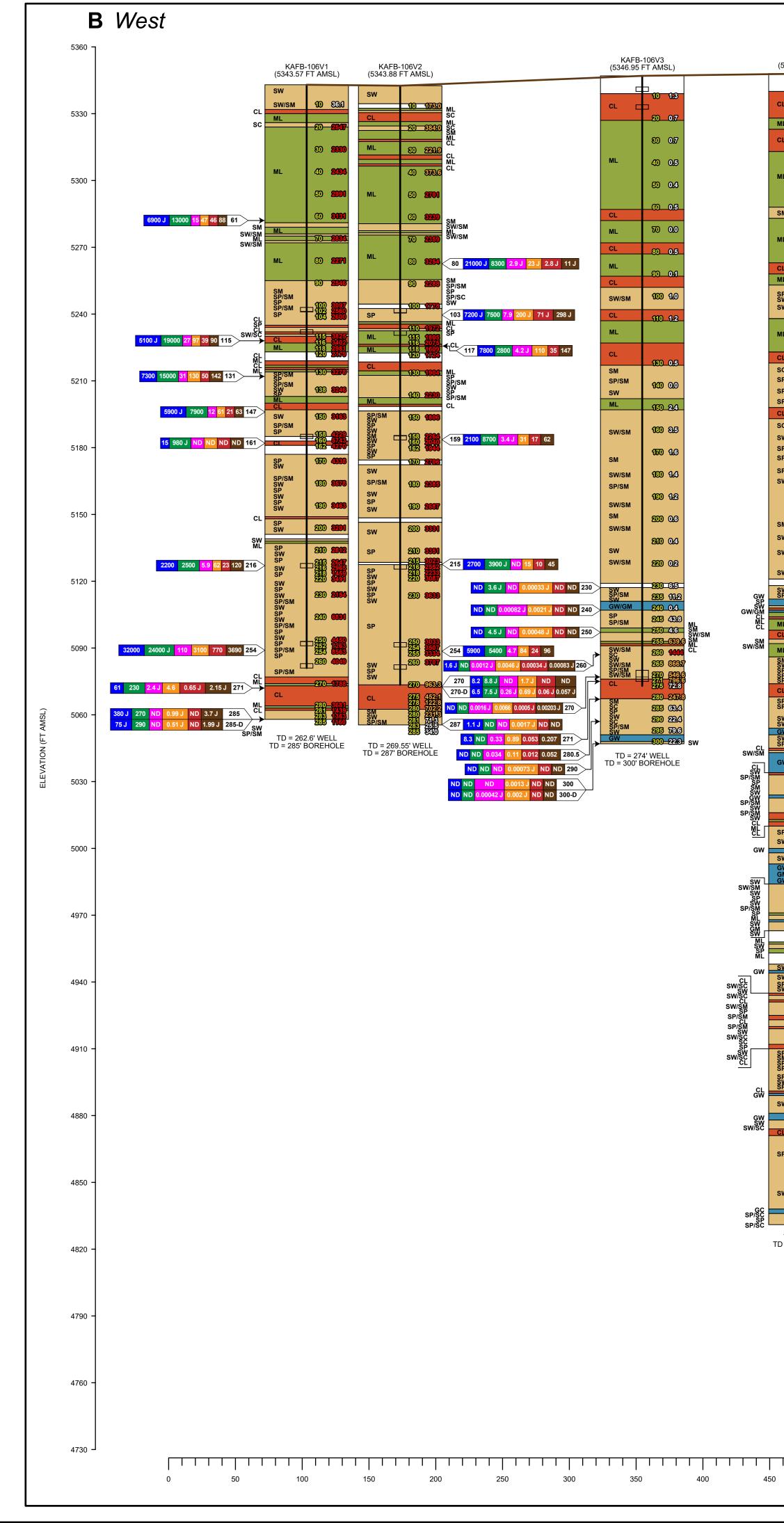
280 -

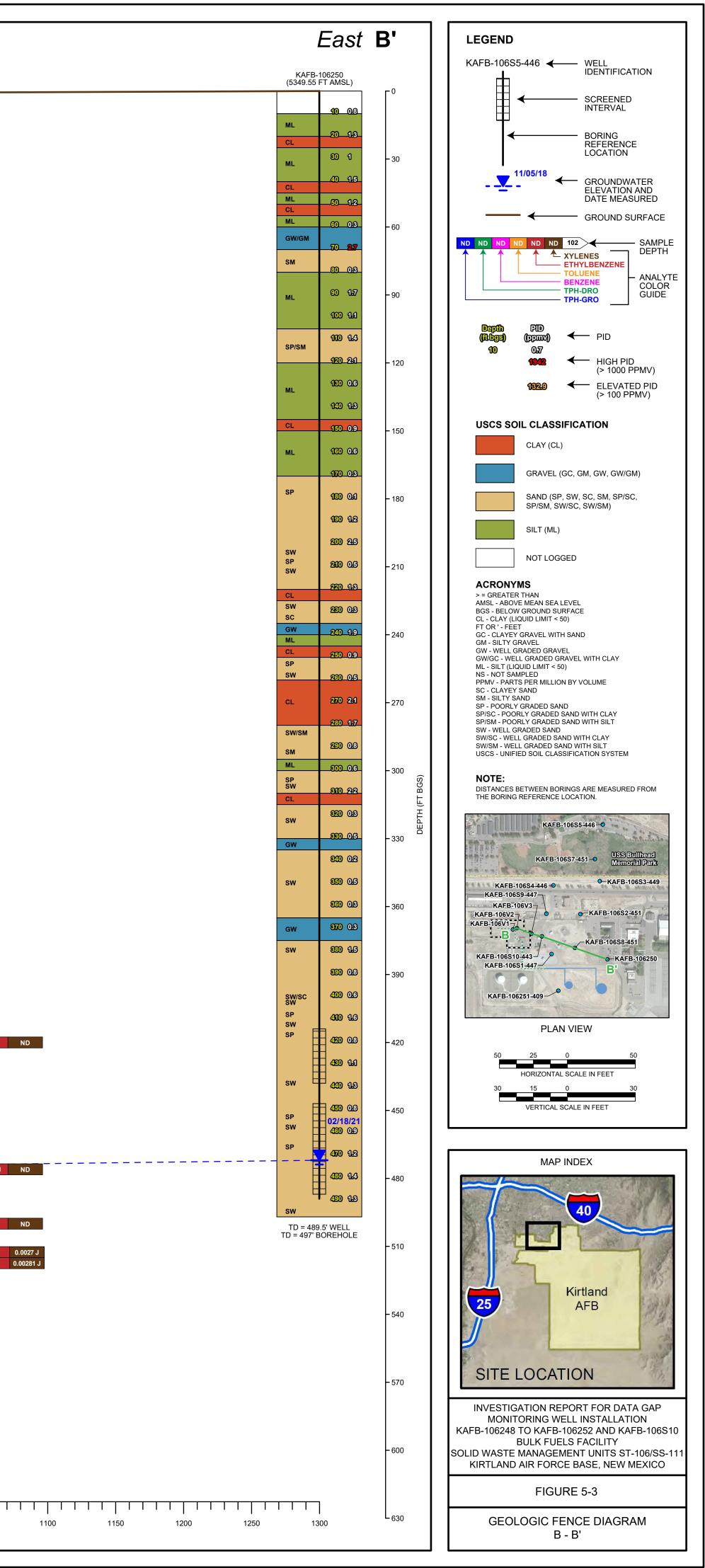
5 400

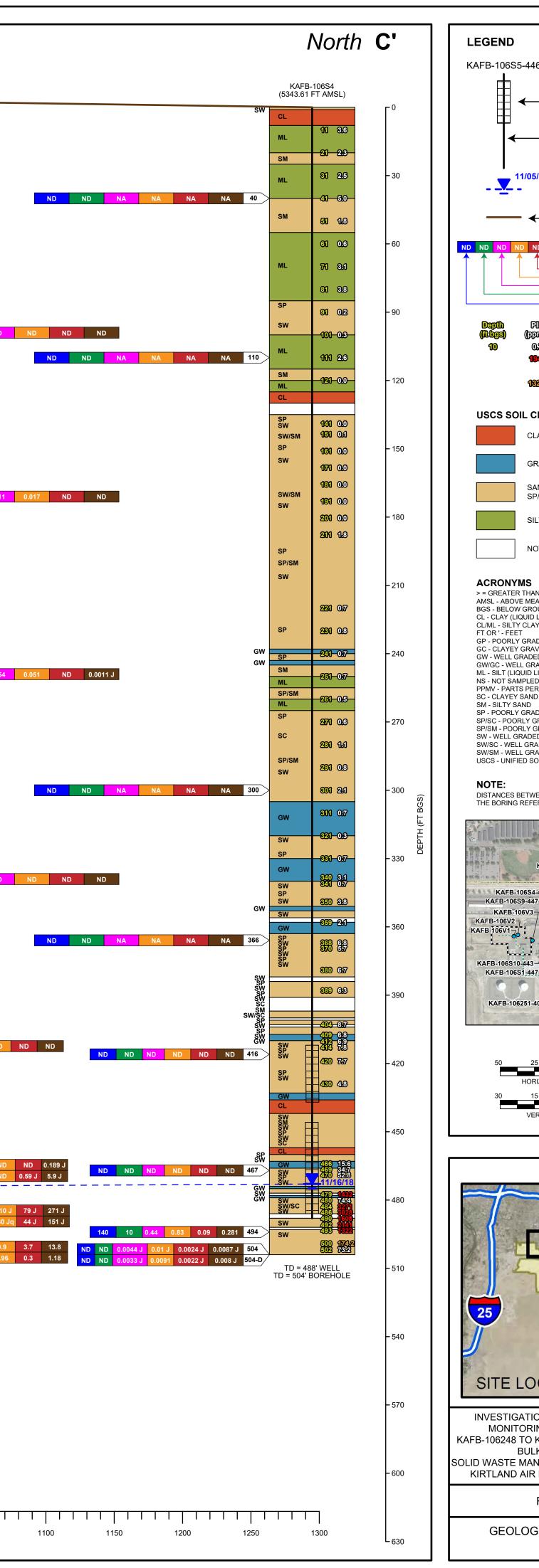

ohm-m 200 Deep Resistivity

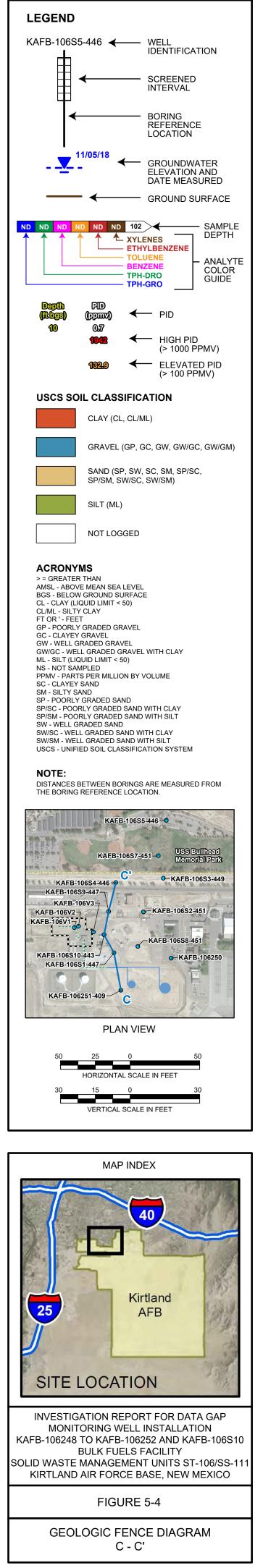
u ms/m 200 0 Medium Conductivity

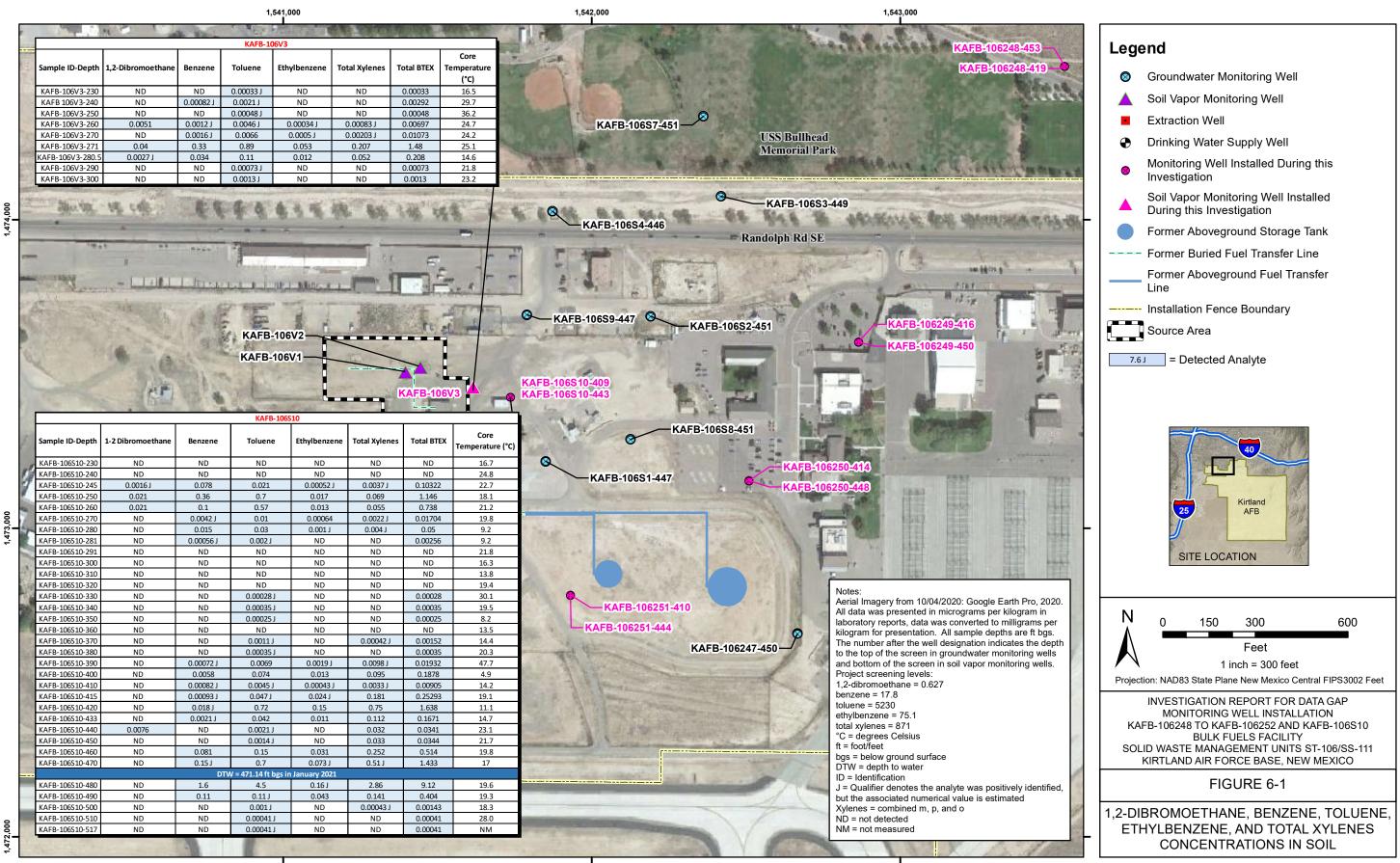



350 375 DISTANCE (FT)

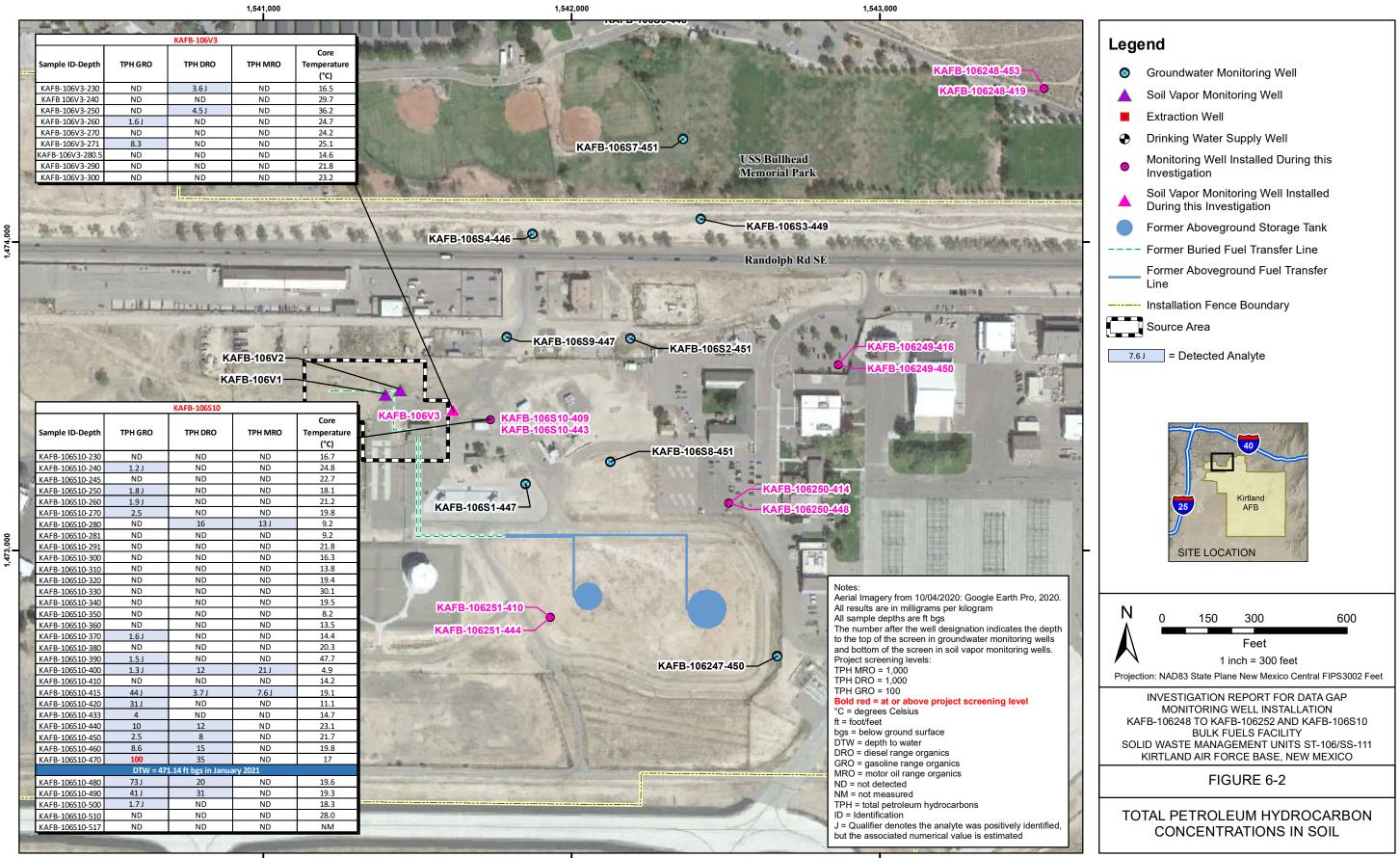

	► ⁵³⁵⁰]	Sout (5348.06	106251 FT AMSL)						-106S8 FT AMSL)	
			<u>10</u> 0.7					SP/SM	10 34	
	5325 -	ML SM	20 0.4					ML	20 2.4	
	3323 -	SW/SM	<u>80 13.6</u>				CL	CL ML	-80 1.9	
		ML	40 5.5					ML	40 0.4	
	5300 -	CL	50 0.1				CL		50 1.6	
		ML	60 1.6				SM :	ML	(1) (5,3)	
	5275 -	SW/SM SM	70 83.5				-	SW	70 245	
			80 8.9					ML	80 3.9	
	5050	ML	90 28.1						90 1.7	
	5250 -	SM	100 1.3 110 1.6					SP/SM	100 2.1	
			120 2.3				CL ML CL	SW/SM	110 2.6 120 2.0	
	5225 -	ML	160 2.2				ML	CL	130 0.2	
		CL	100 1.3					CL	-140-349-	
	5200 -	SW SP SC	150 0.1				CL ML	SM SP SW/SM SP	1 50 2:3	
		CL	160 3.9				ML	SM SP/SM SW	130 1.6	
	5175 -	SP SP/SM	1770 245					SM SP/SM SW SC SW SP SP/SM	1770 0.9	
	5175 -	SW	130 8					SW SM SW/SM	130 8.7	
		SP	100 1					SW/SM SW SP SM SP	190 246	
	5150 -	SP/SM SW/SM	200 9.9					SM SP SW		
		SP SW/SM	2410 0.6					SP SW	210 0.7	
	5125 -	SP/SM SW/SM SC	220 1.7					SP	220 0.0	
		sw	280 1.6 210 9.5					SW SP SW SP/SM SW	280 2.5	
SL)	5100 -	SP	250 4.5				0.14	SP/SM SW SP	240 244	
ELEVATION (FT AMSL)		CL	200 1.5				GW ML	SP CL	260 5.2	
VATION		SP/SM	2170 0.17					CL SP ML	270 3.1	
ELE	5075 -	SM	230 1.3				-	SP SW	230 1.0	
		CL SC	290 0.7					CL SW CL SP		
	5050 -	sw/sc sw	800 089					SP		
			310 1. 3					SP SW SM SP	310 0.7	
	5025 -	SW/SC	820 1.2					SW	320 0,4	
		GW	880 29					SP SW	380 0.2	
		sw	800 0,4					SP CL	810 0. 3	
	5000 -	GW	850 0.7				ML	SW CL SP	850 10.6	
			<u>330 0.4</u> 370 0.5				GW	SW SP	830 0.4	
	4975 -	SW	800 0.6					sw	870 0.1 830 0.6	
		GW	<u></u>					SW/SM SW SP	800 Q.5	
	4950 -	SW SW/SC	400 2.5				CL	SW SP/SM	400-0.4	
		sw	410 1.2					SW SP/SC SW	410 Q.1	
	4925 -		420 0.5				CL	SP SW SP		419 ND ND ND ND ND ND
	4020	SP	430 0.3					sw –	430 1.2	
		sw F	430 0 .9						430 1.4	
	4900 -	SP GP	450 0.3				CL SP CL	SP SM SP	<u>450</u> 70.41	
		SW	430 1.5						430 124.	3
	4875 -	SP	4570 1.1 <u>/ 1/11/21</u>	 	 	 				475 13 J ND 0.023 J 0.060
			430 1						430 844	
	4850 - SW/S							SP	500 8.1	499 ND ND ND ND ND ND
		TD = 48 TD = 497' I	86' WELL BOREHOLE					SW SP SW	510 9.7	
							l		3' WELL BOREHOLE	514 ND ND 0.0014 J ND N 514-D ND ND 0.0014 J ND N
	4825 J		[]]]	тттт		 				

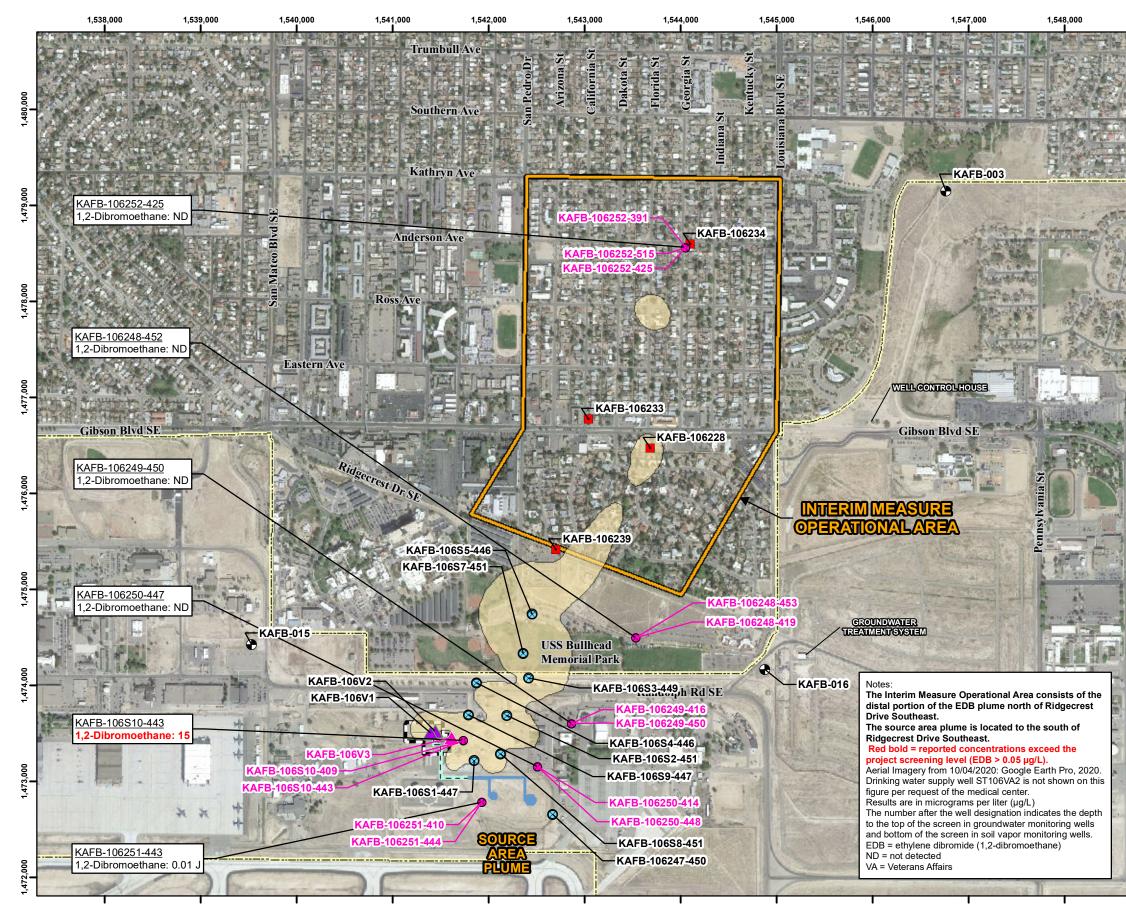



KAF (5348.	FB-106S10 .73 FT AMSL)		(53	KAFB-′ 348.45 F	106S8 T AMSL)		
CL	10 5		SP/		10 8/4		
ML	20 6.2		ML		20 2.4		
CL	80 4.5	CL	CL ML		-80-1.9		
ML	402		ML		40 0.4		
	50 1.5	CL	ML		50 1.6		
SM	- <u>60</u> 1.8 70 3.5	SM	ML				
ML	80 5.7	SW	/		80 3.9		
CL	90 5.5		ML		60 1.7		
ML SP/SM SW/SM	100 8.4		0.01	014	100_2.1		
SW	110 53		SP/: SW/		110 2.6		
ML	120 5.7	ČE	ML		120 2.0		
CL SC	180_5	ML	CL		180 0.2		
SP/SM SP	140 020		SM SP SW/ SP	/SM	140 319		
SP/SM CL		CL	ML		150 213		
SC SW/SC SP/SC			SM SP/3 SW SSC SSW SSP/3		130 1.6 1770 0.9		
SP SP/SM			SP/S		130 3.7		
SW/SM			SM SW	/SM	100 246		
	200 10		SW SP SM SP				
SM SW/SM	210 10.3		sw		210 0.7		
SW	220 10.4		SP SW		220 0.0		
SW/SM SW/SM SP	280 54	230 ND ND ND ND ND	SP SW SP		280 215		
	240 -4.1 245 -52.2	240 1.2 ND ND ND ND 245 ND ND 0.0078 J 0.021 0.00052 J 0.0037 J	SP SW SP/: SW	SM	210 243		
CL	250 132.9 252 133.2 255 1654	250 1.8 J ND 0.36 0.7 0.017 0.069 GW	CL				
ML SM SP/SM SP/SM SP/SM	260 178.7	260 <u>1.9 J ND 0.1 0.57 0.013 0.055</u>	CL SP		260 5.2		
SP/SM SP/SM CL	270 1334 275 2025 280 24.6		ML SP		270 3.1 230 1.0		
SP/SM SP SW/SM	235 9.4	281 ND ND 0.00056 J 0.002 J ND ND	SW CL SW				
SW/SM SW GW SW/SC SP	<u>- 203</u> -316 - 800 745	291-D ND ND ND ND ND	CL SP				
GW	310 20.2	300 ND ND ND ND 310 ND ND ND ND	SP SW SM SP SV		310 0.17		
}		320 ND ND ND ND ND	SP SW		320 0,4		
	880 8.5 835 87.7	330 ND ND 0.00028 J ND ND	SP SW		880 0.2		
SP SW	840 2018 845 234	340 ND ND 0.00035 J ND ND	SP CL		810 0.6		
W SW GW/GM	850 8.3 855 253.7	350 ND ND 0.00025 J ND ND ML 360 ND ND		-	850 10.6		
GW/GM GM GW	830 43.9 835 814 870 82557	360-D ND ND ND ND ND GW	SP SW SP SW		830 0.4 870 0.1		
<u>;</u>	375 335.7	370 1.6 J ND 0.0011 J ND 0.00042 J 380 ND ND 0.00035 J ND ND			830 0.6		
	800 111.3	390 1.5 J ND 0.00072 J 0.0069 0.0019 J 0.0098 J	SW SW SP SW		890 045		
	400 223.1	400 <u>1.3 J</u> 12 <u>0.0058</u> <u>0.074</u> <u>0.013</u> <u>0.095</u> CL	SP/		400-0.4		
W SW SP SW	410 83.4	410 ND 0.00082 J 0.0045 J 0.00043 J 0.0033 J	SW SP/:	sc	410 0.1		
	4113 5908 2 420 5518 423 8039	415 44 J 3.7 J 0.00093 J 0.047 J 0.024 J 0.181 J 420 31 J ND 0.018 J 0.72 0.15 J 0.75	SW SP SW SP SW			419 ND ND	ND ND N
	430 - 630 1 433 - 308 3 433 - 17/2	433 4 ND 0.0021 J 0.042 0.0011 0.112	SW		430 1.2		
SP/SM SM SP SP/SM		440 10 12 ND 0.0021 J ND 0.032	SP	H	430 1.4		
SP SW/SC	455 521.6	450 2.5 8 ND 0.0041 J ND 0.033	SM		450 70.4		
św sw	433 3473	460 8.6 15 0.081 0.15 0.031 0.252			430 124.0		
	470 4431 473 4737 430 5900	470 100 35 0.15 0.7 0.073 J 0.51 J 480 72 J 20 4.5 0.46 2.86	<u>02/04</u>	1/ <u>19</u>	470 544 430 844	475 13 J ND	0.023 J 0.066 J 0.04
SP/SM		480 73 J 20 1.6 4.5 0.16 2.86 490 41 J 31 0.11 0.043 0.141	SP GW		490 1493		
	495 8.5 500 1788	500 1.7 J ND ND 0.001 J ND 0.00043 J	SP SW		500 8.1	499 ND ND	ND ND N
sw	503 18.6 510 17	510 ND ND 0.00041 J ND ND	SP SW		510 3.7 514 3.7	514 ND ND	0.0014 J ND N
TD =	485' WELL 7' BOREHOLE	517 ND ND 0.00041 J ND ND 517-D ND ND 0.00023 J ND ND	Т	D = 493		514-D ND ND	0.0014 J ND N
TD = 51	1. ROREHOLE		- 0 -	ים די כ			

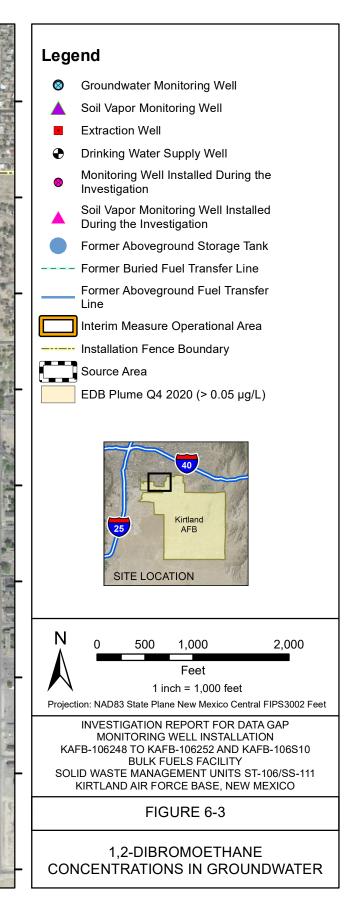

700 750 DISTANCE (FT)

5360 -	KAFB-106251 (5348.06 FT AMSL)			KAFE (5345.2	B-106S1 2 FT AMSL)		KAFB-106 (5348.73 FT	6S10 AMSL)		KAFB-106S9 (5345.79 FT AMSL)	
5330 -	10 0.7 ML 20 0.4			SP ML CL/ML	10 3.1		CL	10 5 20 6:2	ML SW	SM	
	SM SW/SM <u>80 186</u>				20 810 a 80 218	20 ND ND NA NA NA NA	CL	30 4.5		ML SM <u>20 00</u> CL	
5300 -	ML 40 5.5 CL 50 0.1			CL ML	40 2.3			40 2 50 1.5	SM .	CL 59 0.0 SW 49 0.0 SM 77 0.0	
	ML 60 143		c	CL/ML ML ML	<u></u>		SM	<u>60 13</u>		SM 53 0,0 SM 59 0,0 SW	
5270 -	SW/SM 70 9345 SM 60 349			CL/ML ML	70 1.3 50 1.3		ML	70 SL5 60 5.7	CL/ML CL/ML CL/ML	ML 63 0.0 ML 79 0.0	
	ML 60 284			CL ML SP			ML	60 5.5	c∟⁄ME	ML 89 0.0 SW	
5240 -	SM 1100 1.3			SW ML	100 1.3 110 1.6		SW/SM	100 53 100_53		SW 100 0.0	102 ND
	ML 120 2.3		(120 2.7			120 5.7 130 5		ML 949 0.0 CL CL/ML 929 0.0	
5210 -	CL 1/0 1.8 SW			SP CL	180 2.2	140 ND ND ND ND ND	SC SP/SM SP	140 8.8	GW	CL CL/ML SP 169 0.0	
	SP 150 0.41 SC 160 3.9			SW CL SM SW/SM SW	130 147		CL SC a	150 5.2	CL/ML	ML 150 1.5 SW SW/SM SW 159 0.0	
5180 -	SP 1770 245 SP/SM			CL SM	130 4.8 170 4.2		JF	170 10.8	CL	SP SW SP SW 1039 0.0 1075 0.0)
	SW 1030 8 SP 1030 1			SC SP/SM SW	180 2.5 190 2.2		SP/SM SW/SM		Ű.	SW 1779 0.0 SW 1930 0.0	
5150 -	SP/SM 200 Q.9 SW/SM SP 200 Q.9			CL SP	200-4.4		SM	200 10	GW	197 0.0	
	SP 2300 0.3 220 1.57 SW/SM			SW SW/SM SW	2400 24.1 2220 24.5		SW/SM	200 10.3 220 10.4	GW	SW SW 2222-0.5	
5120 -	SP/SM SW/SM 280 143 SC			SW/SM SW	280 2.4	GS	SP SP		ND	SW 229 5.8	3
	SW 240 345 SP 250 4.5			CL SP SW SP SW CL	230 3.0 230 22.7	GW/G C C S SW/S	ML	240 431 240 1.2 ND ND ND ND 245 52.22 245 ND ND 0.078 J 0.021 0.00052 J 250 132.9 250 1.8 J ND 0.36 0.7 0.017 255 153.4 154.4 154.4 154.4 154.4 154.4	0.069 CL/ML	283 0.0 CL 22.8 1.6 22.4 8.9 2.4 22.7 1.4 2.4 22.9 1.5 2.52	3
5090 -	260 1.5 SP/SM 270 0.7		S	SM SP	230-25.1-		ML 2	260 17637 260 1.9 J ND 0.1 0.57 0.013 270 1384 270 2.5 ND 0.0042 J 0.01 0.00064		933 4.6 SW 233 7.7	<u> </u>
	SM 280 1.3			ŠÞ/SM CL	270 11.2 230 24.1	279 ND ND 0.0096 J 0.02 J ND ND	CL	275 202.7 280 24.6 285 9.4	0.004 J	CL/ML CL 230 3.4	
5060 -	SC 290 047 SW/SC 800 049			SP SW/SM SP SW	200 227		SW/SM 28 SW GW 28 SW/SC 28	281 ND ND 0.00056 J 0.002 J ND 290 18.4 291 ND ND ND ND ND ND 293 9.6 291-D ND ND ND ND ND ND 800 7.5 4 291-D ND ND ND ND ND	ND ND ND	SP SW SP SW 233 1.4 SP SW 800 0.3	
	SW 300 1.3 SW/SC ସେଲ 1 ର			SP/SM SP SW SM SW/SC SW/SC	800 0.3 810 1.9	SW/S SW/S SW SP/SM	GW 8	805=516 300 ND <	ND ND	GW 600-0.6	
5030 -	SW/SC 820 1.2 SW 880 249			CL SW SC	920 29 930 933	SP SM SW GW SP/SM SP/SM SP/SM SP/SM SP/SM SP/SM		320 62 320 ND N			
5000 -	SW 850 047		S S	SW SC SW/SC SM/SM SW/SM	830 25		SP 8	840 2013 340 ND ND ND 0.00035 J ND 8435 2634	SW SP SW SM CL/ML SW	201 21.0	0 342 ND
	GW 860 0.4		S S	SP/SM SW/SC SP/SM SW/SM SW/SM GW SW/SM	330 3.8 	GI SW/ <u>SW</u>	SW gw/GM	850 831 350 ND ND ND 0.00025 J ND 8351 23337		GW 850 0.8 SW 859 1.8 SP	
4970 -	SW 870 0.5			SW SP/SM SW	370 3.2	SW SP SW SP/SM SP SW SP SW SP SW SP SW		370 32557 370 1.6 J ND ND 0.0011 J ND 375 63357 380 ND ND ND 0.00035 J ND	0.00042 J ND	SW SP SW 570 122 SW 570 12	
	GW <u>890 1</u> SW			SW/SC SW SW/SM SC CL	830 0.4 830 0.5	ČM SS SM	SW	800 11.5 ND 0.00072 0.0069 0.0019 J		SP 539 1.5	
4940 -	sw/sc 400 245 sw 400 142			SW/SM SC SM SW SP		400 ND ND ND ND ND G	SW	400 223.0 400 1.3 J 12 0.0058 0.074 0.013 400 1.3 J 12 0.0058 0.074 0.013 400 83.4 410 ND ND 0.00082 J 0.0045 J 0.00043 J	0.095 0.0033 J	SW SW SP SW SP SW SP SW SW SW SW SW SW SW SW SW SW SW SW SW	
	SP 420 0.5			SP/SM SM SW/SM SW/SM SW/SM SW/SM	410 122	414 ND ND ND ND ND ND SW/SC SW/SC 414 ND ND ND ND ND SW/SM SP/SM		415 44 J 3.7 J 0.00093 J 0.047 J 0.024 J 420 5318 420 31 J ND 0.018 J 0.72 0.15 J 425_8039 8039			
4910 -	SP 430 0.3 SW 430 0.9			SP/SC SW	430 21.7	SP/SM SW/SC SC SC SV SV/SC SW/SC SW/SC	SP/SM C	430 5304 433 4 ND 0.0021 J 0.042 0.0011 430 2374 440 10 12 ND 0.0021 J ND	0.112 0.032 GW		
	SP (15) 0.3 GP SW CT (15) 0.3			ML SM SW	430 432.8	sw/šč	SP/SM SP/SM SP SW/SC SP	433 824.6	0.033 CL SM SW SP SW	449-0.5	
4880 -	SW 430 1.5 01/11/21 SP 430 1.5			CL SW/SM SW/SM	4330-63346 02/18/19 4370- 28398	459 12 91 ND 0.71 J ND ND G 461 1200 2000 ND 1.8 J 1.1 J 53 G - - - - - - - SW/S SW/S SW/S SW/S SW/S SW/S SW/S SW/S	v sw d	460 8.6 15 0.081 0.15 0.031 435 9078 470 100 35 0.15 0.7 0.073 J 475 470 100 35 0.15 0.7 0.073 J	0.252 SW SM 0.51 J	SM - 451 964 SW - 453 445	300 11 500 500 500 500 500 500 500 500 50
	430 1			SW	430 2572	475 1300 630 ND 2.2 J 1.2 J 27 480 2700 670 2.2 J 18 6.1 63	L#14	430 5900 480 73 J 20 1.6 4.5 0.16 433 5720 490 41 J 31 0.11 0.11 J 0.043		11/08/18 SP SW SC SP/SC SP/SC SP SP/SC SP SP SP SP SP SP SP SP SP SP	490 2300 J 1900
₄₈₅₀ _ s	TD = 486' WELL TD = 497' BOREHOLE			SM CL SW/SC SP/SC SW/SC	500 1433 505 23.6	489 3600 3300 17 110 26 103	sw (493 8.5 500 17686 500 1.7 J ND ND 0.001 J ND 505 1833	0.00043 J	sp 433 433 500 230 501 439	490-D 1400 J 190
	ID - 497 BOREHULE			SM SP TD = 4 TD = 510'	510 2158 510 2158 489' WELL ' BOREHOLE	510 ND ND 0.0012 J 0.0042 J ND 0.00271 J SP/S 510-D ND ND 0.00063 J 0.0022 J ND 0.0011 J SP/S		510 ND ND ND 0.00041 J ND 515 2242 517 ND ND ND 0.00041 J ND 517 916 517 ND ND ND 0.00041 J ND WELL 517-D ND ND ND 0.00023 J ND	ND ND	TD = 489' WELL TD = 510' BOREHOLE	501 18 ND
4820 -							TD = 517' BOF	REHOLE ND ND ND 0.00023 J ND	ND		
4790 -											
4760 -											
4730											
- 001		50 100 150 200			450	500 550 600	650	700 750 800 850	900	950	1000



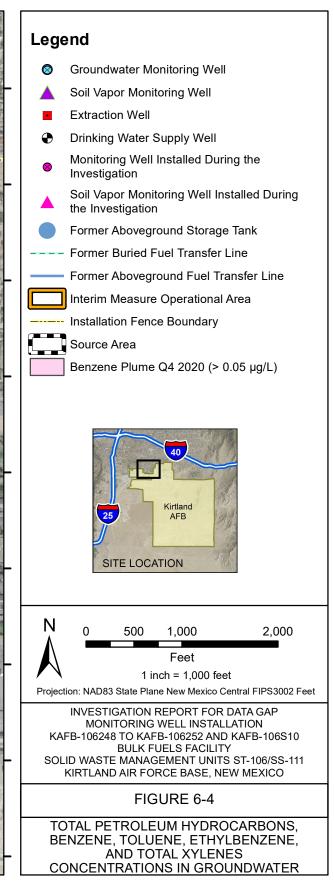

P:\Projects\Kirtland\Figures\Data Gap Monitoring Wells\2020_Data_Gap_Well_Install\6-1_2020_2021_DATA_GAP_WELL_BTEX.mxd 7/28/2021 EA ecarpio

This page intentionally left blank



P:\Projects\Kirtland\Figures\Data Gap Monitoring Wells\2020_Data_Gap_Well_Install\6-2_2020_2021_DATA_GAP_WELL_TPH.mxd 7/28/2021 EA ecarpio

This page intentionally left blank


P:\Projects\Kirtland\Figures\Data Gap Monitoring Wells\2020_Data_Gap_Well_Install\6-3_2020_2021_DATA_GAP_EDB_GW.mxd 7/28/2021 EA ecarpio

This page intentionally left blank

P:\Projects\Kirtland\Figures\Data Gap Monitoring Wells\2020_Data_Gap_Well_Install\6-4_2020_2021_DATA_GAP_TPH_BTEX_GW.mxd 7/28/2021 EA ecarpio

This page intentionally left blank

TABLES

Table 5-1Coring Intervals and Soil Sample Locations

				g Method t bgs)		Soil Sample D	Depths (ft bgs)	
Coring Location	Laboratory Analysis	Total Depth (ft bgs)	ARCH	Sonic Coring ^a	200-300	300-400	400-500	500-600
KAFB-106S10		517	0-227	227-517	230, 240, 245, 250, 260, 270, 280, 281, 291	300, 310, 320, 330, 340, 350, 360, 370, 380, 390	400, 410, 415, 420, 433, 440, 450, 460, 470, 480, 490	500, 510, 517
KAFB-106V3	TPH and VOCs	300	0-227	227-300	230, 240, 250 ^b , 260, 270, 271, 280.5, 290, 300			

All analyses were performed on samples collected from sonic cores.

^a The sonic drill rig performed a borehole cleanout from 227-230 ft bgs before coring for samples.

^b This sample was disturbed during collection.

AFB = Air Force Base

ARCH = air rotary casing hammer

bgs = below ground surface

EPA = U.S. Environmental Protection Agency

MW = monitoring well

TPH = total petroleum hydrocarbons. Soil samples were analyzed for gasoline range, diesel range, and motor oil range total petroleum hydrocarbons by EPA Method 8015M.

VOCs = volatile organic compounds. Soil samples were analyzed by EPA Method 8260 B/C.

ft = foot/feet

-- = samples not collected.

This page intentionally left blank

Table 5-2 Photoionization Detector and Core Temperature Field Screening Data

		6248			240				250				254				2050									B 4001/2	
Historical	KAFB-106 Drilling	6248 Depth PID	Historical	KAFB-106 Drilling	6249 Depth	PID	Historical	KAFB-106 Drilling	250 Depth	PID	Historical	KAFB-106 Drilling	5251 Depth	PID	Historical	KAFB-106 Drilling	6252 Depth	PID	Historical	K/ Drilling	FB-106S		Temperature	Drilling	KAF Depth	B-106V3 PID	Temperature
DTW (ft bgs)	Method				(ft bgs)	(ppm-v)	DTW (ft bgs)	Method	(ft bgs)		DTW (ft bgs)	Method	(ft bgs)		DTW (ft bgs)	Method			DTW (ft bgs)	Method	(ft bgs)		(°C)	Method			(°C)
		10 1.2	_		10	0.0			10	0.8			10	0.7			10	0.5			10	5.0	NA		10	1.3	NA
		20 1.4 30 0.8	_		20 30	0.2			20 30	1.3 1.0			20	0.4			20 30	0.0			20 30	6.2	NA	-	20	0.7	NA
data were not abl		30 0.8 40 2.0	-		30 40	0.1			30 40	1.0			30 40	18.6 5.5			30 40	0.0			30 40	4.5 2.0	NA NA	-	30 40	0.7	NA NA
data were not abi		50 0.9			50	0.1			50	1.2			50	0.1	1		50	0.3			50	1.5	NA		50	0.4	NA
		60 2.7			60	0.1			60	0.3			60	1.6			60	0.0			60	1.8	NA		60	0.5	NA
		70 0.6	_		70	0.1			70	2.7			70	36.5			70	0.2			70	3.5	NA	-	70	0.0	NA
		80 1.3 90 1.7	-		80 90	0.3			80 90	0.3			80 90	3.9 28.1			80 90	1.2 1.1			80 90	5.7 5.5	NA NA	-	80 90	0.5	NA NA
		100 1.9	-		90 100	0.9			90 100	1.7			90 100	28.1			100	0.4		А	100	5.5 8.4	NA	А	100	1.0	NA
		110 1.9			110	2.5			110	1.4			110	1.6	1		110	0.1		R	110	5.3	NA	R	110	1.2	NA
		120 2.2			120	1.6			120	2.1			120	2.3			120	0.2		с Н	120	5.7	NA	с н	120	-	NA
		130 2.6 140 3.6	-		130 140	0.9 2.4			130 140	0.6			130 140	2.2 1.3			130 140	0.2			130 140	5.0 3.3	NA NA		130 140	0.5	NA NA
		150 2.3			150	1.8			150	0.9			150	0.1			150	1.2			150	5.2	NA		150	2.4	NA
		160 2.3			160	0.9			160	0.6			160	3.9			160	1.3			160	8.4	NA	_	160	3.5	NA
		170 2.8 180 2.5	-		170 180	1.6 0.6			170 180	0.3			170 180	2.5 3.0			170 180	1.8 1.4			170 180	10.3	NA NA	-	170 180	1.6 1.4	NA NA
		190 0.9	-		180	0.6			190	1.2			190	1.0			190	1.4			190	-	NA	-	190	1.4	NA
		200 1.1			200	1.4			200	2.5			200	9.9			200	6.3			200	10.0	NA		200	0.6	NA
		210 4.6			210	1.0			210	0.5			210	0.6			210	2.5			210	10.3	NA	_	210	0.4	NA
		220 4.0 230 4.5	-		220 230	2.1 2.3			220 230	1.3 0.3			220 230	1.7 1.6			220 230	3.4 2.3			220 230	10.4 5.4	NA 16.7		220 230	0.2	NA 16.5
		240 3.1	-	A	230	1.7		A	230	1.9		A	230	3.5			230	2.3			230	5.4 4.6	14.1	-	230	11.2	22.4
	A R	250 3.2		R C	250	1.3		R C	250	0.9		R C	250	4.5			250	0.9			240	4.1	24.8		240	0.4	29.7
	C	260 4.8	_	н	260	0.4		н	260	0.5		Ĥ	260	1.5		А	260	2.6			245	52.2	22.7		245	43.8	36.2
	н	270 4.7 280 2.6	-		270 280	0.3			270 280	2.1 1.7			270 280	0.7		R	270 280	2.9 2.0			250 252	132.9 133.2	18.1 18.1	-	250 ^e 255	4.6 639.6	36.2 20.5
		290 1.7	-		200	1.9			200	0.8			290	0.7		С Н	200	1.4			255	165.4	15.9	s	260	1,444	20.3
		300 1.5			300	0.0			300	0.6			300	0.9			300	2.3			260	178.7	21.2	O N	265	866.7	24.2
		310 1.5	_		310	0.0			310	2.2			310	1.3			310	1.7			265	-	21.4	1	270	546.6	25.1
		320 0.6 330 0.8	-		320 330	0.3			320 330	0.3			320 330	1.2 2.9			320 330	2.6 1.6			270 275	183.1 202.7	19.8 23.0	С	271 275	796.6 72.8	25.1 45.8
		340 0.4			340	0.0			340	0.2			340	0.4			340	2.4			280	24.6	9.2		280	247.8	14.6
		350 0.3			350	0.3			350	0.5			350	0.7			350	0.9			285	9.4	22.6		285	63.4	25.3
		360 1.1 370 1.1	_		360 370	1.6 0.4			360 370	0.3			360 370	0.4	375 ^a		360 370	3.7 5.1			290 ^e 295	13.1 3.6	65.2 24.3	-	290 295	22.4 79.6	21.8 23.2
		380 3.5	-		370	1.7			370	1.5			380	0.6	385 ^b		370	5.1			300	7.5	16.3	-	300	22.3	23.2
		390 3.2			390	1.8			390	0.8	395 ^ª		390	1.0	395 [°]		390	2.5			305	5.6	13.8		Max	1,444	45.8
403 ^a		400 3.2	403 ^a		400	0.6	399 ^a		400	0.6	405 ^b		400	2.5			400	1.1			310	20.2	13.9		Min	0.0	14.6
413 ^b 423 ^c		410 3.5 420 2.4	413 ^b 423 ^c		410 420	0.3 2.5	409 ^b 419 ^c		410 420	1.6 0.8	415 [°]		410 420	1.2 0.5			410 420	1.1 1.3			315 320	26.6 62.0	21.5 19.4	-			
120		430 8.1	120		430	0.3			430	1.1			430	0.3			430	1.0			325	8.4	24.6				
		440 0.9			440	0.3			440	1.3			440	0.9			440	0.8			330	8.5	30.1	_			
		450 6.5 460 3.8	-		450 460	0.6			450 460	0.8			450 460	0.3			450 460	2.1 2.7			335 340	87.7 20.8	14.5 19.5	-			
		470 2.2	-		400	0.3			400	1.2			400	1.1	473 ^d		400	1.5			345	26.1	13.5				
		480 4.0			480	1.3			480	1.4			480	1.0			480	2.4			350	8.3	8.2				
501 ^d		490 3.0	_		490	0.9		_	490	1.3	493 ^d		490	1.2			490	2.1			355	256.7	17.3	-			
301		500 1.0 508 0.8	-		Max Min	2.5			Max Min	2.7 0.1			Max Min	36.5 0.1			500 510	1.9 2.4		s	360 365	43.9 314.0	13.5 17.0	-			
		Max 8.1															520	2.0		0	370	825.7	14.4				
		Min 0.3															527	1.7		N	375	835.7	8.8	_			
																	530 538	1.8		c	380 385 ^e	47.4	20.3	-			
																	Max	6.3			390	11.3	47.7				
																	Min	0.0	395 ^a		395°	-	-				
																			405 ^b		400	226.1 18.8	4.9 21.8	-			
																			405		405 410	18.8 86.4	21.8	-			
																			415 [°]		415	5,903	19.1				
																					420	5,513	11.1	_			
																					425 430 ^e	306.9 390.1	16.2 14.7	-			
																					433	390.1	14.7	1			
																					435	17.2	23.1	1			
																					440	287.4	18.0	4			
																					445 450	361.8 392.2	20.7 21.7	1			
																					455	321.6	22.0	1			
																					460	242.5	19.8	1			
																					465	3,473	15.9	4			
																					470 475	4,481 4,787	17.0 17.0	1			
																					473	5,900	19.6	1			
																					485	5,720	19.6				
																			493 ^d		490	5,383	19.3	-			
																					495 500	8.5 178.8	19.3 18.3	-			
																			1	l	505	13.6	18.3	1			

 500
 178.8
 18.3

 505
 13.6
 18.3

 510
 17.0
 28.0

 515
 22.2
 28.0

 517
 9.6
 28.0

 Max
 5,903 65.2

 Min
 1.5
 4.9

^a 1950 historical depth to water ^b 1960 historical depth to water ^c 1970 historical depth to water ^d 2009 historical depth to water ^e Indicates sample was partially recovered, disturbed during collection, or not able to be recovered. "-" Indicates that data were not able to be collected. ARCH = air rotary casing hammer bgs = below ground surface °C = degrees Celsius ft = foot/feet DTW = depth to water MAX = maximum MIN = minimum MW = monitoring well NA = not applicable (temperature was only recorded during coring operations). PID = photoionization detector ppm-v = parts per million by volume Bold print PID numbers indicate readings greater than 1,000 ppm.

				Well Location ID:	KA	FB-106S1	0	KA	FB-106S1	0	KA	FB-106S1	10	KA	FB-106S1	10
				Sample Date:	11	1/22/2020		1	1/22/2020		1 [.]	1/22/2020)	1	1/22/2020)
				Sample Depth (ft bgs)		230			240			245			250	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		16.7			24.8			22.7			18.1	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	22	ND	U	23	ND	U	31	ND	U	25
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	7.5	ND	U	8	ND	U	10	ND	U	8.6
		TPH-GRO (C6-C10)	TPH-GRO	100	ND	U	2.5	1.2	J	1.9	ND	U	3.2	1.8	J	2.3
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6		ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	—	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		1,1,2,2-Tetrachloroethane	79-34-5	—	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		1,1,2-Trichloroethane	79-00-5	—	ND	U	3.8	ND	U	3	ND	U	3.7	ND	U	3.8
		1,1-Dichloroethane	75-34-3	—	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		1,1-Dichloroethene	75-35-4	—	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		1,1-Dichloropropene	563-58-6	—	ND	UJ	0.48	ND	UJ	0.37	ND	UJ	0.46	ND	UJ	0.48
		1,2,3-Trichlorobenzene	87-61-6	—	ND	U	3.8	ND	U	3	ND	U	3.7	ND	U	3.8
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		1,2,4-Trimethylbenzene	95-63-6	—	ND	U	6	ND	U	4.6	ND	U	5.7	0.0052	J	6
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	12	ND	U	9.2	ND	U	11	ND	U	12
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.9	ND	U	1.5	0.0016	J	1.8	0.021		1.9
		1,2-Dichlorobenzene	95-50-1	—	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		1,2-Dichloroethane	107-06-2	—	ND	UJ	1.9	ND	UJ	1.5	ND	UJ	1.8	ND	UJ	1.9
		1,2-Dichloroethene	540-59-0		ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		1,2-Dichloropropane	78-87-5	—	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		1,3,5-Trimethylbenzene	108-67-8		ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		1,3-Dichlorobenzene	541-73-1	_	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		1,3-Dichloropropane	142-28-9	_	ND	U	0.48	ND	U	0.37	ND	U	0.46	ND	U	0.48
		1,4-Dichlorobenzene	106-46-7	_	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		2,2-Dichloropropane	594-20-7		ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		2-Butanone	78-93-3	_	ND	U	15	ND	U	12	ND	U	15	0.15		15
		2-Chlorotoluene	95-49-8	<u> </u>	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		2-Hexanone	591-78-6	—	ND	U	15	ND	U	12	ND	U	15	ND	U	15
		4-Chlorotoluene	106-43-4	<u> </u>	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		4-Isopropyltoluene	99-87-6		ND	U	3.8	ND	U	3	ND	U	3.7	ND	U	3.8
		4-Methyl-2-pentanone	108-10-1	<u> </u>	ND	U	15	ND	U	12	ND	U	15	0.008	J	15
		Acetone	67-64-1	—	ND	U	86	ND	U	66	ND	U	82	3.3	J	4900
		Benzene	71-43-2	17.8	ND	U	0.48	ND	U	0.37	0.078		0.46	0.36		27
		Bromobenzene	108-86-1		ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9

				Well Location ID:	KA	FB-106S1	10	KA	FB-106S1	10	KA	FB-106S ²	10	KA	FB-106S1	10
				Sample Date:	1'	1/22/2020)	1	1/22/2020)	1	1/22/2020)	1	1/22/2020)
				Sample Depth (ft bgs)		230			240			245			250	
				Sample Type:		REG			REG		1	REG			REG	
				Core Temperature (°C)		16.7			24.8			22.7			18.1	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5	_	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
	(mg/kg)	Bromodichloromethane	75-27-4	_	ND	UJ	6	ND	UJ	4.6	ND	UJ	5.7	ND	UJ	6
		Bromoform	75-25-2	—	ND	U	6.1	ND	U	4.7	ND	U	5.8	ND	U	6.1
		Bromomethane	74-83-9	—	ND	U	3.8	ND	U	3	ND	U	3.7	ND	U	3.8
		Carbon disulfide	75-15-0	—	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		Carbon tetrachloride	56-23-5	—	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		Chlorobenzene	108-90-7	—	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		Chloroethane	75-00-3	—	ND	U	7.6	ND	U	5.9	ND	U	7.3	ND	U	7.7
		Chloroform	67-66-3	—	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		Chloromethane	74-87-3	—	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		cis-1,3-Dichloropropene	10061-01-5	—	ND	UJ	0.48	ND	UJ	0.37	ND	UJ	0.46	ND	UJ	0.48
		Dibromochloromethane	124-48-1	—	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		Dibromomethane	74-95-3	—	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		Dichlorodifluoromethane	75-71-8	—	ND	U	7.6	ND	U	5.9	ND	U	7.3	ND	U	7.7
		Ethylbenzene	100-41-4	75.1	ND	U	0.95	ND	U	0.74	0.00052	J	0.91	0.017		0.96
		Hexachloro-1,3-butadiene	87-68-3	—	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		Isopropylbenzene	98-82-8	—	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		m- & p-Xylenes	179601-23-1	871 ^b	ND	U	3.8	ND	U	3	0.0026	J	3.7	0.043		3.8
		Methyl tert-butyl ether	1634-04-4	_	ND	UJ	7.6	ND	UJ	5.9	ND	UJ	7.3	ND	UJ	7.7
		Methylene chloride	75-09-2	_	ND	U	3.8	ND	U	3	ND	U	3.7	ND	U	3.8
		Naphthalene	91-20-3		ND	U	8	ND	U	6.2	ND	U	7.6	ND	U	8
		n-Butylbenzene	104-51-8	_	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		n-Propylbenzene	103-65-1	—	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		o-Xylene	95-47-6	871 ^b	ND	U	0.95	ND	U	0.74	0.0011	J	0.91	0.026		0.96
		sec-Butylbenzene	135-98-8		ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		Styrene	100-42-5	—	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		tert-Butylbenzene	98-06-6	_	ND	U	1.9	ND	U	1.5	ND	U	1.8	ND	U	1.9
		Tetrachloroethene	127-18-4		ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		Toluene	108-88-3	5230	ND	U	0.95	ND	U	0.74	0.021		0.91	0.7		55
		trans-1,2-Dichloroethene	156-60-5	—	ND	U	0.95	ND	U	0.74	ND	U	0.91	ND	U	0.96
		trans-1,3-Dichloropropene	10061-02-6		ND	UJ	0.24	ND	UJ	0.18	ND	UJ	0.23	ND	UJ	0.24
		Trichloroethene	79-01-6	_	ND	U	6	ND	U	4.6	ND	U	5.7	ND	U	6
		Trichlorofluoromethane	75-69-4	_	ND	U	12	ND	U	9.2	ND	U	11	ND	U	12
		Vinyl chloride	75-01-4	_	ND	UJ	3.8	ND	UJ	3	ND	UJ	3.7	ND	UJ	3.8

				Well Location ID:	KA	FB-106S1	0	KA	FB-106S1	0	KA	FB-106S1	10	KA	FB-106S1	0
				Sample Date:	11	1/22/2020)	1 ⁻	1/22/2020		1 [.]	1/24/2020		1	1/24/2020	,
				Sample Depth (ft bgs)		260			270			280			281	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		21.2			19.8			9.2			9.2	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	26	ND	U	23	13	J	25	ND	U	24
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	9	ND	U	7.8	16		8.7	ND	U	8.3
		TPH-GRO (C6-C10)	TPH-GRO	100	1.9	J	2.1	2.5		2.1	ND	U	2.1	ND	U	2.2
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6		ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	—	ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		1,1,2,2-Tetrachloroethane	79-34-5	—	0.00078	J	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		1,1,2-Trichloroethane	79-00-5	—	ND	U	2.9	ND	U	3.4	ND	U	2.9	ND	U	3.2
		1,1-Dichloroethane	75-34-3	-	ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		1,1-Dichloroethene	75-35-4	_	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		1,1-Dichloropropene	563-58-6	—	ND	UJ	0.36	ND	UJ	0.43	ND	U	0.36	ND	U	0.39
		1,2,3-Trichlorobenzene	87-61-6	_	ND	U	2.9	ND	U	3.4	ND	U	2.9	ND	U	3.2
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		1,2,4-Trimethylbenzene	95-63-6	—	0.013		4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	9	ND	U	11	ND	U	9	ND	U	9.9
		1,2-Dibromoethane	106-93-4	0.672	0.021		1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		1,2-Dichlorobenzene	95-50-1	—	ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		1,2-Dichloroethane	107-06-2	—	ND	UJ	1.4	ND	UJ	1.7	ND	U	1.4	ND	U	1.6
		1,2-Dichloroethene	540-59-0	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		1,2-Dichloropropane	78-87-5	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		1,3,5-Trimethylbenzene	108-67-8	—	ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		1,3-Dichlorobenzene	541-73-1	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		1,3-Dichloropropane	142-28-9		ND	U	0.36	ND	U	0.43	ND	U	0.36	ND	U	0.39
		1,4-Dichlorobenzene	106-46-7	_	ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		2,2-Dichloropropane	594-20-7	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		2-Butanone	78-93-3	—	0.21		11	ND	U	14	ND	U	11	ND	U	13
		2-Chlorotoluene	95-49-8	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		2-Hexanone	591-78-6	_	ND	U	11	ND	U	14	ND	U	11	ND	U	13
		4-Chlorotoluene	106-43-4	—	ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		4-Isopropyltoluene	99-87-6		ND	U	2.9	ND	U	3.4	ND	U	2.9	ND	U	3.2
		4-Methyl-2-pentanone	108-10-1	—	0.034		11	ND	U	14	ND	U	11	ND	U	13
		Acetone	67-64-1	—	2.3	J	3500	0.35		77	ND	U	65	ND	U	71
		Benzene	71-43-2	17.8	0.1		0.36	0.0042	J	0.43	0.015		0.36	0.00056	J	0.39
		Bromobenzene	108-86-1	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6

				Well Location ID:	KA	FB-106S1	0	KA	FB-106S1	0	KA	FB-106S1	10	KA	FB-106S1	10
				Sample Date:	11	1/24/2020		11	1/24/2020)	1 [.]	1/24/2020)	1	1/24/2020	,
				Sample Depth (ft bgs)		291			291			300			310	
				Sample Type:		REG		Fiel	d Duplica	te		REG			REG	
				Core Temperature (°C)		21.8			21.8			16.3			13.9	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	22	ND	U	23	ND	U	23	ND	U	24
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	7.7	ND	U	7.9	ND	U	8	ND	U	8.1
		TPH-GRO (C6-C10)	TPH-GRO	100	ND	U	2.2	ND	U	2.2	ND	U	2.3	ND	U	2.1
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	_	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	—	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		1,1,2,2-Tetrachloroethane	79-34-5	_	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		1,1,2-Trichloroethane	79-00-5	—	ND	U	3.1	ND	U	3	ND	U	3.7	ND	U	3.3
		1,1-Dichloroethane	75-34-3	—	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		1,1-Dichloroethene	75-35-4	_	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		1,1-Dichloropropene	563-58-6	—	ND	U	0.39	ND	U	0.37	ND	U	0.46	ND	U	0.41
		1,2,3-Trichlorobenzene	87-61-6	—	ND	U	3.1	ND	U	3	ND	U	3.7	ND	U	3.3
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		1,2,4-Trichlorobenzene	120-82-1	_	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		1,2,4-Trimethylbenzene	95-63-6	—	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	9.7	ND	U	9.3	ND	U	12	ND	U	10
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		1,2-Dichlorobenzene	95-50-1		ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		1,2-Dichloroethane	107-06-2	—	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		1,2-Dichloroethene	540-59-0	<u> </u>	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		1,2-Dichloropropane	78-87-5	<u> </u>	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		1,3,5-Trimethylbenzene	108-67-8		ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		1,3-Dichlorobenzene	541-73-1		ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		1,3-Dichloropropane	142-28-9	<u> </u>	ND	U	0.39	ND	U	0.37	ND	U	0.46	ND	U	0.41
		1,4-Dichlorobenzene	106-46-7	<u> </u>	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		2,2-Dichloropropane	594-20-7		ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		2-Butanone	78-93-3	—	ND	U	12	ND	U	12	ND	U	15	ND	U	13
		2-Chlorotoluene	95-49-8		ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		2-Hexanone	591-78-6	—	ND	U	12	ND	U	12	ND	U	15	ND	U	13
		4-Chlorotoluene	106-43-4	—	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		4-Isopropyltoluene	99-87-6	—	ND	U	3.1	ND	U	3	ND	U	3.7	ND	U	3.3
		4-Methyl-2-pentanone	108-10-1	—	ND	U	12	ND	U	12	ND	U	15	ND	U	13
		Acetone	67-64-1	—	ND	U	70	ND	U	67	ND	U	83	ND	U	74
		Benzene	71-43-2	17.8	ND	U	0.39	ND	U	0.37	ND	U	0.46	ND	U	0.41
		Bromobenzene	108-86-1	—	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6

				Well Location ID:	KA	FB-106S1	10	KA	FB-106S1	10	KA	FB-106S ²	10	KA	FB-106S	10
				Sample Date:	11	/22/2020)	11	1/22/2020)	1	1/24/2020)	1	1/24/2020)
				Sample Depth (ft bgs)		260			270			280			281	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		21.2			19.8			9.2			9.2	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5		ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
	(mg/kg)	Bromodichloromethane	75-27-4		ND	UJ	4.5	ND	UJ	5.3	ND	U	4.5	ND	U	4.9
		Bromoform	75-25-2		ND	U	4.6	ND	U	5.4	ND	U	4.6	ND	U	5
		Bromomethane	74-83-9		ND	U	2.9	ND	U	3.4	ND	U	2.9	ND	U	3.2
		Carbon disulfide	75-15-0	_	ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		Carbon tetrachloride	56-23-5	—	ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		Chlorobenzene	108-90-7	—	ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		Chloroethane	75-00-3	—	ND	U	5.7	ND	U	6.8	ND	U	5.7	ND	U	6.3
		Chloroform	67-66-3	—	ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		Chloromethane	74-87-3	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		cis-1,3-Dichloropropene	10061-01-5	—	ND	UJ	0.36	ND	UJ	0.43	ND	U	0.36	ND	U	0.39
		Dibromochloromethane	124-48-1	—	ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		Dibromomethane	74-95-3	—	ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		Dichlorodifluoromethane	75-71-8	—	ND	U	5.7	ND	U	6.8	ND	U	5.7	ND	U	6.3
		Ethylbenzene	100-41-4	75.1	0.013		0.72	0.00064	J	0.85	0.001	J	0.72	ND	U	0.79
		Hexachloro-1,3-butadiene	87-68-3	_	ND	U	4.5	ND	U	5.3	ND	UJ	4.5	ND	UJ	4.9
		Isopropylbenzene	98-82-8		ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		m- & p-Xylenes	179601-23-1	871 ^b	0.038		2.9	0.0015	J	3.4	0.0026	J	2.9	ND	U	3.2
		Methyl tert-butyl ether	1634-04-4	—	ND	UJ	5.7	ND	UJ	6.8	ND	UJ	5.7	ND	UJ	6.3
		Methylene chloride	75-09-2		ND	U	2.9	ND	U	3.4	ND	U	2.9	ND	U	3.2
		Naphthalene	91-20-3	—	ND	U	6	ND	U	7.1	ND	U	6	ND	U	6.6
		n-Butylbenzene	104-51-8	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		n-Propylbenzene	103-65-1	_	0.0012	J	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		o-Xylene	95-47-6	871 ^b	0.017		0.72	0.00069	J	0.85	0.0014	J	0.72	ND	U	0.79
		sec-Butylbenzene	135-98-8		0.00075	J	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		Styrene	100-42-5	—	ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		tert-Butylbenzene	98-06-6	—	ND	U	1.4	ND	U	1.7	ND	U	1.4	ND	U	1.6
		Tetrachloroethene	127-18-4		ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		Toluene	108-88-3	5230	0.57		38	0.01		0.85	0.03		0.72	0.002	J	0.79
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.72	ND	U	0.85	ND	U	0.72	ND	U	0.79
		trans-1,3-Dichloropropene	10061-02-6		ND	UJ	0.18	ND	UJ	0.21	ND	U	0.18	ND	U	0.2
		Trichloroethene	79-01-6		ND	U	4.5	ND	U	5.3	ND	U	4.5	ND	U	4.9
		Trichlorofluoromethane	75-69-4		ND	U	9	ND	U	11	ND	U	9	ND	U	9.9
		Vinyl chloride	75-01-4		ND	UJ	2.9	ND	UJ	3.4	ND	U	2.9	ND	U	3.2

				Well Location ID:	KA	FB-106S1	10	KA	FB-106S1	10	KA	FB-106S ²	10	KA	FB-106S1	10
				Sample Date:	11	1/24/2020)	1	1/24/2020)	1	1/24/2020)	1	1/24/2020)
				Sample Depth (ft bgs)		291			291			300			310	
				Sample Type:		REG		Fiel	d Duplica	te		REG			REG	
				Core Temperature (°C)		21.8			21.8			16.3			13.9	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5	_	ND	U	4.8	ND	U	4.6	ND	UJ	5.8	ND	U	5.1
	(mg/kg)	Bromodichloromethane	75-27-4	—	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		Bromoform	75-25-2		ND	U	4.9	ND	U	4.7	ND	U	5.9	ND	U	5.2
		Bromomethane	74-83-9		ND	U	3.1	ND	U	3	ND	U	3.7	ND	U	3.3
		Carbon disulfide	75-15-0		ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		Carbon tetrachloride	56-23-5	—	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		Chlorobenzene	108-90-7	—	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		Chloroethane	75-00-3	—	ND	U	6.2	ND	U	5.9	ND	U	7.4	ND	U	6.6
		Chloroform	67-66-3	—	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		Chloromethane	74-87-3	—	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		cis-1,3-Dichloropropene	10061-01-5	—	ND	U	0.39	ND	U	0.37	ND	U	0.46	ND	U	0.41
		Dibromochloromethane	124-48-1	—	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		Dibromomethane	74-95-3	—	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		Dichlorodifluoromethane	75-71-8	<u> </u>	ND	U	6.2	ND	U	5.9	ND	U	7.4	ND	U	6.6
		Ethylbenzene	100-41-4	75.1	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		Hexachloro-1,3-butadiene	87-68-3		ND	UJ	4.8	ND	UJ	4.6	ND	UJ	5.8	ND	UJ	5.1
		Isopropylbenzene	98-82-8	<u> </u>	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		m- & p-Xylenes	179601-23-1	871 ^b	ND	U	3.1	ND	U	3	ND	U	3.7	ND	U	3.3
		Methyl tert-butyl ether	1634-04-4		ND	UJ	6.2	ND	UJ	5.9	ND	UJ	7.4	ND	UJ	6.6
		Methylene chloride	75-09-2	_	ND	U	3.1	ND	U	3	ND	U	3.7	ND	U	3.3
		Naphthalene	91-20-3	_	ND	U	6.5	ND	U	6.2	ND	U	7.8	ND	U	6.9
		n-Butylbenzene	104-51-8	—	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		n-Propylbenzene	103-65-1	—	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		o-Xylene	95-47-6	871 ^b	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		sec-Butylbenzene	135-98-8	_	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		Styrene	100-42-5	_	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		tert-Butylbenzene	98-06-6	_	ND	U	1.5	ND	U	1.5	ND	U	1.9	ND	U	1.6
		Tetrachloroethene	127-18-4	_	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		Toluene	108-88-3	5230	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		trans-1,2-Dichloroethene	156-60-5	_	ND	U	0.77	ND	U	0.74	ND	U	0.93	ND	U	0.82
		trans-1,3-Dichloropropene	10061-02-6	_	ND	U	0.19	ND	U	0.19	ND	U	0.23	ND	U	0.21
		Trichloroethene	79-01-6	_	ND	U	4.8	ND	U	4.6	ND	U	5.8	ND	U	5.1
		Trichlorofluoromethane	75-69-4		ND	U	9.7	ND	U	9.3	ND	U	12	ND	U	10
		Vinyl chloride	75-01-4	—	ND	U	3.1	ND	U	3	ND	U	3.7	ND	U	3.3

				Well Location ID:	KA	FB-106S1	0	KA	FB-106S1	0	KA	FB-106S	10	KA	FB-106S1	0
				Sample Date:	11	1/24/2020		11	/25/2020		1	1/25/2020)	1	1/25/2020	,
				Sample Depth (ft bgs)		320			330			340			350	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		19.4			30.1			19.5			8.2	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	23	ND	U	23	ND	U	23	ND	U	24
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	7.9	ND	U	7.9	ND	U	8	ND	U	8.3
		TPH-GRO (C6-C10)	TPH-GRO	100	ND	U	2.2	ND	U	2.1	ND	U	2.2	ND	U	2
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		1,1,2,2-Tetrachloroethane	79-34-5	—	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		1,1,2-Trichloroethane	79-00-5	—	ND	U	3.5	ND	U	3.3	ND	U	3.6	ND	U	3.1
		1,1-Dichloroethane	75-34-3	—	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		1,1-Dichloroethene	75-35-4	—	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		1,1-Dichloropropene	563-58-6	—	ND	U	0.43	ND	UJ	0.42	ND	UJ	0.45	ND	UJ	0.39
		1,2,3-Trichlorobenzene	87-61-6	—	ND	U	3.5	ND	U	3.3	ND	U	3.6	ND	U	3.1
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		1,2,4-Trimethylbenzene	95-63-6	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	11	ND	U	10	ND	U	11	ND	U	9.7
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		1,2-Dichlorobenzene	95-50-1	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		1,2-Dichloroethane	107-06-2	—	ND	U	1.7	ND	UJ	1.7	ND	UJ	1.8	ND	UJ	1.6
		1,2-Dichloroethene	540-59-0		ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		1,2-Dichloropropane	78-87-5	—	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		1,3,5-Trimethylbenzene	108-67-8	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		1,3-Dichlorobenzene	541-73-1	—	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		1,3-Dichloropropane	142-28-9		ND	U	0.43	ND	U	0.42	ND	U	0.45	ND	U	0.39
		1,4-Dichlorobenzene	106-46-7		ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		2,2-Dichloropropane	594-20-7		ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		2-Butanone	78-93-3		ND	U	14	ND	U	13	ND	U	14	ND	U	12
		2-Chlorotoluene	95-49-8	<u> </u>	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		2-Hexanone	591-78-6	_	ND	U	14	ND	U	13	ND	U	14	ND	U	12
		4-Chlorotoluene	106-43-4	<u> </u>	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		4-Isopropyltoluene	99-87-6		ND	U	3.5	ND	U	3.3	ND	U	3.6	ND	U	3.1
		4-Methyl-2-pentanone	108-10-1	<u> </u>	ND	U	14	ND	U	13	ND	U	14	ND	U	12
		Acetone	67-64-1	<u> </u>	ND	U	78	ND	U	75	ND	U	80	ND	U	70
		Benzene	71-43-2	17.8	ND	U	0.43	ND	U	0.42	ND	U	0.45	ND	U	0.39
		Bromobenzene	108-86-1	—	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6

				Well Location ID:	KA	FB-106S1	10	KA	FB-106S1	10	KA	-B-106S	10	KA	FB-106S1	10
				Sample Date:	1'	1/24/2020)	11	1/25/2020)	11	/25/2020)	11	1/25/2020)
				Sample Depth (ft bgs)		320			330			340			350	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		19.4			30.1			19.5			8.2	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
	(mg/kg)	Bromodichloromethane	75-27-4	_	ND	U	5.4	ND	UJ	5.2	ND	UJ	5.6	ND	UJ	4.9
		Bromoform	75-25-2	—	ND	U	5.5	ND	U	5.3	ND	U	5.7	ND	U	5
		Bromomethane	74-83-9	—	ND	U	3.5	ND	U	3.3	ND	U	3.6	ND	U	3.1
		Carbon disulfide	75-15-0	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		Carbon tetrachloride	56-23-5	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		Chlorobenzene	108-90-7	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		Chloroethane	75-00-3	—	ND	U	6.9	ND	U	6.7	ND	U	7.1	ND	U	6.2
		Chloroform	67-66-3	—	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		Chloromethane	74-87-3	—	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		cis-1,3-Dichloropropene	10061-01-5	—	ND	U	0.43	ND	UJ	0.42	ND	UJ	0.45	ND	UJ	0.39
		Dibromochloromethane	124-48-1	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		Dibromomethane	74-95-3	—	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		Dichlorodifluoromethane	75-71-8	—	ND	U	6.9	ND	U	6.7	ND	U	7.1	ND	U	6.2
		Ethylbenzene	100-41-4	75.1	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		Hexachloro-1,3-butadiene	87-68-3	—	ND	UJ	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		Isopropylbenzene	98-82-8	—	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		m- & p-Xylenes	179601-23-1	871 ^b	ND	U	3.5	ND	U	3.3	ND	U	3.6	ND	U	3.1
		Methyl tert-butyl ether	1634-04-4	_	ND	UJ	6.9	ND	UJ	6.7	ND	UJ	7.1	ND	UJ	6.2
		Methylene chloride	75-09-2	_	ND	U	3.5	ND	U	3.3	ND	U	3.6	ND	U	3.1
		Naphthalene	91-20-3	_	ND	U	7.3	ND	U	7	ND	U	7.5	ND	U	6.5
		n-Butylbenzene	104-51-8	_	ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		n-Propylbenzene	103-65-1		ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		o-Xylene	95-47-6	871 ^b	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		sec-Butylbenzene	135-98-8		ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		Styrene	100-42-5	_	ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		tert-Butylbenzene	98-06-6		ND	U	1.7	ND	U	1.7	ND	U	1.8	ND	U	1.6
		Tetrachloroethene	127-18-4	_	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		Toluene	108-88-3	5230	ND	U	0.87	0.00028	J	0.83	0.00035	J	0.89	0.00025	J	0.78
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.87	ND	U	0.83	ND	U	0.89	ND	U	0.78
		trans-1,3-Dichloropropene	10061-02-6	_	ND	U	0.22	ND	UJ	0.21	ND	UJ	0.22	ND	UJ	0.19
		Trichloroethene	79-01-6	_	ND	U	5.4	ND	U	5.2	ND	U	5.6	ND	U	4.9
		Trichlorofluoromethane	75-69-4		ND	U	11	ND	U	10	ND	U	11	ND	U	9.7
		Vinyl chloride	75-01-4	_	ND	U	3.5	ND	UJ	3.3	ND	UJ	3.6	ND	UJ	3.1

				Well Location ID:	KA	FB-106S1	10	KA	FB-106S1	0	KA	FB-106S1	10	KA	FB-106S1	10
				Sample Date:	1	2/1/2020		1	2/1/2020		1	2/1/2020		1	2/1/2020	
				Sample Depth (ft bgs)		360			360			370			380	
				Sample Type:		REG		Fiel	d Duplica	te		REG			REG	
				Core Temperature (°C)		13.5			13.5			14.4			20.3	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	24	ND	U	24	ND	U	24	ND	U	22
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	8.2	ND	U	8.3	ND	U	8.1	ND	U	7.6
		TPH-GRO (C6-C10)	TPH-GRO	100	ND	U	2.1	ND	U	2.3	1.6	J	2.1	ND	U	2.2
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	_	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	_	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		1,1,2,2-Tetrachloroethane	79-34-5	_	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		1,1,2-Trichloroethane	79-00-5	_	ND	U	3.7	ND	U	3.2	ND	U	3.3	ND	U	3.1
		1,1-Dichloroethane	75-34-3	_	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		1,1-Dichloroethene	75-35-4	_	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		1,1-Dichloropropene	563-58-6	—	ND	U	0.46	ND	U	0.4	ND	U	0.42	ND	U	0.39
		1,2,3-Trichlorobenzene	87-61-6	_	ND	U	3.7	ND	U	3.2	ND	U	3.3	ND	U	3.1
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		1,2,4-Trichlorobenzene	120-82-1	_	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		1,2,4-Trimethylbenzene	95-63-6	—	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	11	ND	U	10	ND	U	10	ND	U	9.7
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		1,2-Dichlorobenzene	95-50-1	—	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		1,2-Dichloroethane	107-06-2	—	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		1,2-Dichloroethene	540-59-0	—	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		1,2-Dichloropropane	78-87-5	—	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		1,3,5-Trimethylbenzene	108-67-8	—	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		1,3-Dichlorobenzene	541-73-1	_	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		1,3-Dichloropropane	142-28-9	—	ND	U	0.46	ND	U	0.4	ND	U	0.42	ND	U	0.39
		1,4-Dichlorobenzene	106-46-7	—	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		2,2-Dichloropropane	594-20-7	—	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		2-Butanone	78-93-3	—	ND	U	15	ND	U	13	ND	U	13	ND	U	12
		2-Chlorotoluene	95-49-8	—	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		2-Hexanone	591-78-6	—	ND	U	15	ND	U	13	ND	U	13	ND	U	12
		4-Chlorotoluene	106-43-4	—	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		4-Isopropyltoluene	99-87-6	—	ND	U	3.7	ND	U	3.2	ND	U	3.3	ND	U	3.1
		4-Methyl-2-pentanone	108-10-1		ND	U	15	ND	U	13	ND	U	13	ND	U	12
		Acetone	67-64-1	—	ND	U	82	ND	U	73	ND	U	75	ND	U	70
		Benzene	71-43-2	17.8	ND	U	0.46	ND	U	0.4	ND	U	0.42	ND	U	0.39
		Bromobenzene	108-86-1	—	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6

				Well Location ID:	KA	FB-106S1	10	KA	FB-106S1	10	KA	FB-106S ²	10	KA	FB-106S	10
				Sample Date:	1	2/1/2020		1	2/1/2020		1	2/1/2020		1	2/1/2020	
				Sample Depth (ft bgs)		360			360			370			380	
				Sample Type:		REG		Fiel	d Duplica	ite		REG			REG	
				Core Temperature (°C)		13.5			13.5			14.4			20.3	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5	_	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
	(mg/kg)	Bromodichloromethane	75-27-4		ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		Bromoform	75-25-2		ND	U	5.8	ND	U	5.1	ND	U	5.3	ND	U	5
		Bromomethane	74-83-9		ND	U	3.7	ND	U	3.2	ND	U	3.3	ND	U	3.1
		Carbon disulfide	75-15-0	_	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		Carbon tetrachloride	56-23-5		ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		Chlorobenzene	108-90-7	—	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		Chloroethane	75-00-3	—	ND	U	7.3	ND	U	6.5	ND	U	6.7	ND	U	6.2
		Chloroform	67-66-3	—	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		Chloromethane	74-87-3	_	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		cis-1,3-Dichloropropene	10061-01-5	_	ND	U	0.46	ND	U	0.4	ND	U	0.42	ND	U	0.39
		Dibromochloromethane	124-48-1	_	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		Dibromomethane	74-95-3	—	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		Dichlorodifluoromethane	75-71-8		ND	U	7.3	ND	U	6.5	ND	U	6.7	ND	U	6.2
		Ethylbenzene	100-41-4	75.1	ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		Hexachloro-1,3-butadiene	87-68-3		ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		Isopropylbenzene	98-82-8		ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		m- & p-Xylenes	179601-23-1	871 ^b	ND	U	3.7	ND	U	3.2	ND	U	3.3	ND	U	3.1
		Methyl tert-butyl ether	1634-04-4		ND	U	7.3	ND	U	6.5	ND	U	6.7	ND	U	6.2
		Methylene chloride	75-09-2		ND	U	3.7	ND	U	3.2	ND	U	3.3	ND	U	3.1
		Naphthalene	91-20-3	—	ND	U	7.6	ND	U	6.8	ND	U	7	ND	U	6.5
		n-Butylbenzene	104-51-8	—	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		n-Propylbenzene	103-65-1	_	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		o-Xylene	95-47-6	871 ^b	ND	U	0.91	ND	U	0.81	0.00042	J	0.83	ND	U	0.78
		sec-Butylbenzene	135-98-8	_	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		Styrene	100-42-5		ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		tert-Butylbenzene	98-06-6	_	ND	U	1.8	ND	U	1.6	ND	U	1.7	ND	U	1.6
		Tetrachloroethene	127-18-4	_	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		Toluene	108-88-3	5230	ND	U	0.91	ND	U	0.81	0.0011	J	0.83	0.00035	J	0.78
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.91	ND	U	0.81	ND	U	0.83	ND	U	0.78
		trans-1,3-Dichloropropene	10061-02-6		ND	U	0.23	ND	U	0.2	ND	U	0.21	ND	U	0.19
		Trichloroethene	79-01-6	_	ND	U	5.7	ND	U	5	ND	U	5.2	ND	U	4.9
		Trichlorofluoromethane	75-69-4		ND	U	11	ND	U	10	ND	U	10	ND	U	9.7
		Vinyl chloride	75-01-4	—	ND	U	3.7	ND	U	3.2	ND	U	3.3	ND	U	3.1

				Well Location ID:	KA	FB-106S1	0	KA	FB-106S1	0	KA	FB-106S ²	10	KA	FB-106S1	10
				Sample Date:	1	2/2/2020		12	2/12/2020		12	2/12/2020)	1:	2/12/2020)
				Sample Depth (ft bgs)		390			400			410			415	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		47.7			4.9			14.2			19.1	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	23	21	J	23	ND	U	23	7.6	J	22
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	7.9	12		7.9	ND	U	7.8	3.7	J	7.7
		TPH-GRO (C6-C10)	TPH-GRO	100	1.5	J	1.9	1.3	J	1.9	ND	U	2.1	44	J	1.8
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		1,1,2,2-Tetrachloroethane	79-34-5	—	ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		1,1,2-Trichloroethane	79-00-5	_	ND	U	2.8	ND	U	2.9	ND	U	3.2	ND	U	2.8
		1,1-Dichloroethane	75-34-3	—	ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		1,1-Dichloroethene	75-35-4	_	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		1,1-Dichloropropene	563-58-6	_	ND	U	0.35	ND	U	0.37	ND	U	0.4	ND	U	0.35
		1,2,3-Trichlorobenzene	87-61-6	_	ND	U	2.8	ND	U	2.9	ND	U	3.2	ND	U	2.8
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		1,2,4-Trimethylbenzene	95-63-6		0.0024	J	4.4	0.016		4.6	ND	U	5	0.033	J	4.4
		1,2-Dibromo-3-chloropropane	96-12-8	_	ND	U	8.8	ND	U	9.2	ND	U	10	ND	U	8.8
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		1,2-Dichlorobenzene	95-50-1	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		1,2-Dichloroethane	107-06-2	—	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		1,2-Dichloroethene	540-59-0	—	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		1,2-Dichloropropane	78-87-5	—	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		1,3,5-Trimethylbenzene	108-67-8	—	ND	U	4.4	0.0081		4.6	ND	U	5	0.021	J	4.4
		1,3-Dichlorobenzene	541-73-1	—	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		1,3-Dichloropropane	142-28-9	—	ND	U	0.35	ND	U	0.37	ND	U	0.4	ND	U	0.35
		1,4-Dichlorobenzene	106-46-7	—	ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		2,2-Dichloropropane	594-20-7	—	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		2-Butanone	78-93-3	—	ND	U	11	ND	U	12	ND	U	13	ND	U	11
		2-Chlorotoluene	95-49-8	—	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		2-Hexanone	591-78-6	—	0.016	J	11	ND	U	12	ND	U	13	ND	U	11
		4-Chlorotoluene	106-43-4	—	ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		4-Isopropyltoluene	99-87-6	—	ND	U	2.8	0.001	J	2.9	ND	U	3.2	0.0025	J	2.8
		4-Methyl-2-pentanone	108-10-1		ND	U	11	ND	U	12	ND	U	13	ND	U	11
		Acetone	67-64-1	—	0.11		63	ND	U	66	ND	U	72	ND	U	64
		Benzene	71-43-2	17.8	0.00072	J	0.35	0.0058		0.37	0.00082	J	0.4	0.00093	J	0.35
		Bromobenzene	108-86-1	—	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4

				Well Location ID:	KA	FB-106S1	10	KA	FB-106S1	0	KA	FB-106S	10	KA	FB-106S1	10
				Sample Date:	1	2/2/2020		1:	2/12/2020)	12	2/12/2020)	1:	2/12/2020)
				Sample Depth (ft bgs)		390			400			410			415	
				Sample Type:		REG			REG		1	REG			REG	
				Core Temperature (°C)		47.7			4.9			14.2			19.1	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
	(mg/kg)	Bromodichloromethane	75-27-4	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		Bromoform	75-25-2	—	ND	U	4.5	ND	U	4.7	ND	U	5.1	ND	U	4.5
		Bromomethane	74-83-9	—	ND	U	2.8	ND	U	2.9	ND	U	3.2	ND	U	2.8
		Carbon disulfide	75-15-0	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		Carbon tetrachloride	56-23-5	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		Chlorobenzene	108-90-7	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		Chloroethane	75-00-3	—	ND	U	5.6	ND	UJ	5.9	ND	U	6.4	ND	U	5.7
		Chloroform	67-66-3	—	ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		Chloromethane	74-87-3	_	ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		cis-1,3-Dichloropropene	10061-01-5	—	ND	U	0.35	ND	U	0.37	ND	U	0.4	ND	U	0.35
		Dibromochloromethane	124-48-1	—	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		Dibromomethane	74-95-3	—	ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		Dichlorodifluoromethane	75-71-8	_	ND	U	5.6	ND	U	5.9	ND	U	6.4	ND	U	5.7
		Ethylbenzene	100-41-4	75.1	0.0019	J	0.7	0.013		0.73	0.00043	J	0.8	0.024	J	0.71
		Hexachloro-1,3-butadiene	87-68-3	_	ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		Isopropylbenzene	98-82-8		ND	U	4.4	0.0026	J	4.6	ND	U	5	0.009	J	4.4
		m- & p-Xylenes	179601-23-1	871 ^b	0.0068		2.8	0.065		2.9	0.0022	J	3.2	0.13	J	2.8
		Methyl tert-butyl ether	1634-04-4		ND	U	5.6	ND	U	5.9	ND	U	6.4	ND	U	5.7
		Methylene chloride	75-09-2		ND	U	2.8	ND	U	2.9	ND	U	3.2	ND	U	2.8
		Naphthalene	91-20-3		ND	U	5.9	ND	U	6.2	ND	U	6.7	ND	U	5.9
		n-Butylbenzene	104-51-8		0.00055	J	1.4	0.0022	J	1.5	ND	U	1.6	0.0062	J	1.4
		n-Propylbenzene	103-65-1	—	0.00092	J	1.4	0.0044	J	1.5	ND	U	1.6	0.012	J	1.4
		o-Xylene	95-47-6	871 ^b	0.003	J	0.7	0.03		0.73	0.0011	J	0.8	0.051	J	0.71
		sec-Butylbenzene	135-98-8		0.00078	J	1.4	0.0035	J	1.5	ND	U	1.6	0.014	J	1.4
		Styrene	100-42-5		ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		tert-Butylbenzene	98-06-6		ND	U	1.4	ND	U	1.5	ND	U	1.6	ND	U	1.4
		Tetrachloroethene	127-18-4		ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		Toluene	108-88-3	5230	0.0069		0.7	0.074		0.73	0.0045	J	0.8	0.047	J	0.71
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.7	ND	U	0.73	ND	U	0.8	ND	U	0.71
		trans-1,3-Dichloropropene	10061-02-6		ND	U	0.18	ND	U	0.18	ND	U	0.2	ND	U	0.18
		Trichloroethene	79-01-6		ND	U	4.4	ND	U	4.6	ND	U	5	ND	U	4.4
		Trichlorofluoromethane	75-69-4		ND	U	8.8	ND	U	9.2	ND	U	10	ND	U	8.8
		Vinyl chloride	75-01-4		ND	U	2.8	ND	U	2.9	ND	U	3.2	ND	U	2.8

				Well Location ID:	KA	FB-106S1	0	KA	FB-106S1	0	KA	FB-106S	10	KA	FB-106S	10
				Sample Date:	12	2/12/2020		12	2/13/2020		1:	2/13/2020)	1	2/13/2020)
				Sample Depth (ft bgs)		420			433			440			450	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		11.1			14.7			18			21.7	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD									
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	23	ND	U	23	ND	U	24	ND	U	22
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	7.8	ND	U	7.8	12		8.3	8		7.5
		TPH-GRO (C6-C10)	TPH-GRO	100	31	J	2	4		2.1	10		2.1	2.5		2
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	—	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	—	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		1,1,2,2-Tetrachloroethane	79-34-5	—	ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		1,1,2-Trichloroethane	79-00-5	—	ND	U	2.9	ND	U	3	ND	U	3.3	ND	U	3.2
		1,1-Dichloroethane	75-34-3	—	ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
	1,1-Dichloropropene51,2,3-Trichlorobenzene31,2,3-Trichloropropane3	75-35-4	—	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6	
		1,1-Dichloropropene	563-58-6	—	ND	U	0.37	ND	U	0.38	ND	U	0.42	ND	U	0.39
		1,2,3-Trichlorobenzene	87-61-6	_	ND	U	2.9	ND	U	3	ND	U	3.3	ND	U	3.2
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		1,2,4-Trimethylbenzene	95-63-6	—	0.1	J	4.6	0.029		4.8	0.024		5.2	0.018		4.9
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	9.2	ND	U	9.5	ND	U	10	ND	U	9.9
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.5	ND	U	1.5	0.0076		1.7	ND	U	1.6
		1,2-Dichlorobenzene	95-50-1	—	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		1,2-Dichloroethane	107-06-2	—	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		1,2-Dichloroethene	540-59-0	—	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		1,2-Dichloropropane	78-87-5	_	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		1,3,5-Trimethylbenzene	108-67-8	—	0.067	J	4.6	0.015		4.8	0.009		5.2	0.0072		4.9
		1,3-Dichlorobenzene	541-73-1	—	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		1,3-Dichloropropane	142-28-9	—	ND	U	0.37	ND	U	0.38	ND	U	0.42	ND	U	0.39
		1,4-Dichlorobenzene	106-46-7	—	ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		2,2-Dichloropropane	594-20-7	—	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		2-Butanone	78-93-3	—	ND	U	12	0.023		12	0.18		13	ND	U	13
		2-Chlorotoluene	95-49-8	_	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		2-Hexanone	591-78-6	—	ND	U	12	ND	U	12	0.038		13	ND	U	13
		4-Chlorotoluene	106-43-4	_	ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		4-Isopropyltoluene	99-87-6		0.0062	J	2.9	0.0021	J	3	0.0021	J	3.3	0.0017	J	3.2
		4-Methyl-2-pentanone	108-10-1	_	ND	U	12	ND	U	12	0.025		13	ND	U	13
		Acetone	67-64-1	_	0.069	J	66	0.1		69	ND	U	3700	0.28		71
		Benzene	71-43-2	17.8	0.018	J	0.37	0.0021	J	0.38	ND	U	0.42	ND	U	0.39
		Bromobenzene	108-86-1	_	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6

				Well Location ID:	KA	FB-106S	10	KA	FB-106S1	10	KA	FB-106S ²	10	KA	FB-106S	10
				Sample Date:	12	2/12/2020)	12	2/13/2020)	12	2/13/2020)	1:	2/13/2020)
				Sample Depth (ft bgs)		420			433			440			450	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		11.1			14.7			18			21.7	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5		ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
	(mg/kg)	Bromodichloromethane	75-27-4		ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		Bromoform	75-25-2	—	ND	U	4.7	ND	U	4.9	ND	U	5.3	ND	U	5
		Bromomethane	74-83-9	—	ND	U	2.9	ND	U	3	ND	U	3.3	ND	U	3.2
		Carbon disulfide	75-15-0	_	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		Carbon tetrachloride	56-23-5	—	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		Chlorobenzene	108-90-7	_	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		Chloroethane	75-00-3	_	ND	U	5.9	ND	U	6.1	ND	U	6.7	ND	U	6.3
		Chloroform	67-66-3	_	ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		Chloromethane	74-87-3	—	ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		cis-1,2-Dichloroethene	156-59-2	_	ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		cis-1,3-Dichloropropene	10061-01-5	_	ND	U	0.37	ND	U	0.38	ND	U	0.42	ND	U	0.39
		Dibromochloromethane	124-48-1	—	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		Dibromomethane	74-95-3	—	ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		Dichlorodifluoromethane	75-71-8	—	ND	U	5.9	ND	U	6.1	ND	U	6.7	ND	U	6.3
		Ethylbenzene	100-41-4	75.1	0.15	J	0.73	0.011		0.76	ND	U	0.83	ND	U	0.79
		Hexachloro-1,3-butadiene	87-68-3	_	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		Isopropylbenzene	98-82-8	—	0.036	J	4.6	0.0044	J	4.8	ND	U	5.2	ND	U	4.9
		m- & p-Xylenes	179601-23-1	871 ^b	0.55		130	0.078		3	0.019		3.3	0.021		3.2
		Methyl tert-butyl ether	1634-04-4		ND	U	5.9	ND	U	6.1	ND	U	6.7	ND	U	6.3
		Methylene chloride	75-09-2	_	ND	U	2.9	ND	U	3	ND	U	3.3	ND	U	3.2
		Naphthalene	91-20-3		ND	U	6.2	0.0065		6.4	0.036		7	0.025		6.6
		n-Butylbenzene	104-51-8		0.014	J	1.5	0.0058		1.5	0.0064		1.7	0.0039	J	1.6
		n-Propylbenzene	103-65-1		0.045	J	1.5	0.0062		1.5	ND	U	1.7	ND	U	1.6
		o-Xylene	95-47-6	871 ^b	0.2		32	0.034		0.76	0.013		0.83	0.012		0.79
		sec-Butylbenzene	135-98-8		0.037	J	1.5	0.0095		1.5	0.0072		1.7	0.0063		1.6
		Styrene	100-42-5		ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		tert-Butylbenzene	98-06-6		ND	U	1.5	ND	U	1.5	ND	U	1.7	ND	U	1.6
		Tetrachloroethene	127-18-4	_	ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		Toluene	108-88-3	5230	0.72		32	0.042		0.76	0.0021	J	0.83	0.0014	J	0.79
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.73	ND	U	0.76	ND	U	0.83	ND	U	0.79
		trans-1,3-Dichloropropene	10061-02-6		ND	U	0.18	ND	U	0.19	ND	U	0.21	ND	U	0.2
		Trichloroethene	79-01-6		ND	U	4.6	ND	U	4.8	ND	U	5.2	ND	U	4.9
		Trichlorofluoromethane	75-69-4	_	ND	U	9.2	ND	U	9.5	ND	U	10	ND	U	9.9
		Vinyl chloride	75-01-4		ND	U	2.9	ND	U	3	ND	U	3.3	ND	U	3.2

				Well Location ID:	KA	FB-106S1	0	KA	FB-106S1	0	KA	FB-106S1	10	KA	FB-106S1	10
				Sample Date:	12	2/13/2020		12	2/14/2020		1:	2/14/2020)	1:	2/14/2020	,
				Sample Depth (ft bgs)		460			470			480			490	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		19.8			17			19.6			19.3	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD									
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	26	ND	U	24	ND	U	26	ND	U	25
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	15		9	35		8.2	20		9	31		8.6
		TPH-GRO (C6-C10)	TPH-GRO	100	8.6		2.2	100		2.4	73	J	2.1	41	J	2.5
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	—	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	_	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		1,1,2,2-Tetrachloroethane	79-34-5	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		1,1,2-Trichloroethane	79-00-5	—	ND	U	3	ND	U	2.8	ND	U	2.6	ND	U	2.8
		1,1-Dichloroethane	75-34-3	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		1,1-Dichloroethene	75-35-4	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		1,1-Dichloropropene	563-58-6	—	ND	U	0.38	ND	U	0.35	ND	U	0.32	ND	U	0.36
		1,2,3-Trichlorobenzene	87-61-6	_	ND	U	3	ND	U	2.8	ND	U	2.6	ND	U	2.8
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		1,2,4-Trimethylbenzene	95-63-6	—	0.084		4.7	0.3		240	0.13	J	4.1	0.05		4.4
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	9.4	ND	U	8.8	ND	U	8.1	ND	U	8.9
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		1,2-Dichlorobenzene	95-50-1	—	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		1,2-Dichloroethane	107-06-2	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		1,2-Dichloroethene	540-59-0	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		1,2-Dichloropropane	78-87-5	_	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		1,3,5-Trimethylbenzene	108-67-8	—	0.052		4.7	0.13	J	4.4	0.054	J	4.1	0.019		4.4
		1,3-Dichlorobenzene	541-73-1	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		1,3-Dichloropropane	142-28-9		ND	U	0.38	ND	U	0.35	ND	U	0.32	ND	U	0.36
		1,4-Dichlorobenzene	106-46-7	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		2,2-Dichloropropane	594-20-7	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		2-Butanone	78-93-3	_	2.8		500	0.1	J	11	ND	U	10	ND	U	11
		2-Chlorotoluene	95-49-8	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		2-Hexanone	591-78-6		0.46		12	ND	U	11	ND	U	10	ND	U	11
		4-Chlorotoluene	106-43-4	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		4-Isopropyltoluene	99-87-6		0.0031	J	3	0.0088	J	2.8	0.0071	J	2.6	0.0055		2.8
		4-Methyl-2-pentanone	108-10-1	—	0.13		12	ND	U	11	ND	U	10	ND	U	11
		Acetone	67-64-1	—	11		2800	ND	U	3400	0.14	J	58	0.12		64
		Benzene	71-43-2	17.8	0.081		0.38	0.15	J	0.35	1.6		18	0.11		0.36
		Bromobenzene	108-86-1	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4

				Well Location ID:	KAI	FB-106S1	10	KA	FB-106S1	10	KA	FB-106S	10	KA	FB-106S1	10
				Sample Date:	12	2/13/2020)	12	2/14/2020)	12	2/14/2020)	1:	2/14/2020)
				Sample Depth (ft bgs)		460			470			480			490	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		19.8			17			19.6			19.3	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD									
VOCs	Methods SW8260B	Bromochloromethane	74-97-5		ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
	(mg/kg)	Bromodichloromethane	75-27-4		ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		Bromoform	75-25-2	_	ND	U	4.8	ND	U	4.5	ND	U	4.1	ND	U	4.5
		Bromomethane	74-83-9		ND	U	3	ND	U	2.8	ND	U	2.6	ND	U	2.8
		Carbon disulfide	75-15-0	_	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		Carbon tetrachloride	56-23-5	_	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		Chlorobenzene	108-90-7	_	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		Chloroethane	75-00-3	—	ND	U	6	ND	U	5.6	ND	U	5.2	ND	U	5.7
		Chloroform	67-66-3	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		Chloromethane	74-87-3	—	ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		cis-1,3-Dichloropropene	10061-01-5	_	ND	U	0.38	ND	U	0.35	ND	U	0.32	ND	U	0.36
		Dibromochloromethane	124-48-1	_	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		Dibromomethane	74-95-3	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		Dichlorodifluoromethane	75-71-8	—	ND	U	6	ND	U	5.6	ND	U	5.2	ND	U	5.7
		Ethylbenzene	100-41-4	75.1	0.031		0.75	0.073	J	0.7	0.16	J	0.65	0.043		0.71
		Hexachloro-1,3-butadiene	87-68-3	—	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		Isopropylbenzene	98-82-8	—	0.011		4.7	0.03	J	4.4	0.029	J	4.1	0.0092		4.4
		m- & p-Xylenes	179601-23-1	871 ^b	0.17		3	0.37		150	2.1		150	0.098		2.8
		Methyl tert-butyl ether	1634-04-4	_	ND	U	6	ND	U	5.6	ND	U	5.2	ND	U	5.7
		Methylene chloride	75-09-2	_	ND	U	3	ND	U	2.8	ND	U	2.6	ND	U	2.8
		Naphthalene	91-20-3	_	0.061		6.3	0.12	J	5.9	0.034	J	5.4	0.015		6
		n-Butylbenzene	104-51-8		0.025		1.5	0.057	J	1.4	0.018	J	1.3	0.013		1.4
		n-Propylbenzene	103-65-1	—	0.041		1.5	0.11	J	1.4	0.052	J	1.3	0.015		1.4
		o-Xylene	95-47-6	871 ^b	0.082		0.75	0.14	J	0.7	0.76		36	0.043		0.71
		sec-Butylbenzene	135-98-8		0.052		1.5	0.13	J	1.4	0.028	J	1.3	0.012		1.4
		Styrene	100-42-5	—	ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		tert-Butylbenzene	98-06-6		ND	U	1.5	ND	U	1.4	ND	U	1.3	ND	U	1.4
		Tetrachloroethene	127-18-4		ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		Toluene	108-88-3	5230	0.15		0.75	0.7		38	4.5		36	0.11	J	36
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.75	ND	U	0.7	ND	U	0.65	ND	U	0.71
		trans-1,3-Dichloropropene	10061-02-6		ND	U	0.19	ND	U	0.18	ND	U	0.16	ND	U	0.18
		Trichloroethene	79-01-6	_	ND	U	4.7	ND	U	4.4	ND	U	4.1	ND	U	4.4
		Trichlorofluoromethane	75-69-4	<u> </u>	ND	U	9.4	ND	U	8.8	ND	U	8.1	ND	U	8.9
		Vinyl chloride	75-01-4	_	ND	U	3	ND	U	2.8	ND	U	2.6	ND	U	2.8

				Well Location ID:	KA	FB-106S1	0	KA	FB-106S1	0	KA	FB-106S1	10	KA	FB-106S1	0
				Sample Date:	12	2/14/2020		12	2/14/2020		12	2/14/2020)	1	2/14/2020	
				Sample Depth (ft bgs)		500			510			517			517	
				Sample Type:		REG			REG			REG		Fie	Id Duplica	te
				Core Temperature (°C)		18.3			28			28			28	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	25	ND	U	25	ND	U	23	ND	U	24
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	8.4	ND	U	8.6	ND	U	8	ND	U	8.1
		TPH-GRO (C6-C10)	TPH-GRO	100	1.7	J	2.4	ND	U	2.5	ND	U	2.2	ND	U	2.2
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	—	ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	—	ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		1,1,2,2-Tetrachloroethane	79-34-5	—	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		1,1,2-Trichloroethane	79-00-5	—	ND	U	3	ND	U	3	ND	U	2.9	ND	U	2.8
		1,1-Dichloroethane	75-34-3	—	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		1,1-Dichloroethene	75-35-4	—	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		1,1-Dichloropropene	563-58-6	—	ND	U	0.37	ND	U	0.37	ND	U	0.36	ND	U	0.35
		1,2,3-Trichlorobenzene	87-61-6	—	ND	U	3	ND	U	3	ND	U	2.9	ND	U	2.8
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		1,2,4-Trimethylbenzene	95-63-6	—	ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	9.3	ND	U	9.4	ND	U	9.1	ND	U	8.7
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		1,2-Dichlorobenzene	95-50-1		ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		1,2-Dichloroethane	107-06-2		ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		1,2-Dichloroethene	540-59-0	<u> </u>	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		1,2-Dichloropropane	78-87-5		ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		1,3,5-Trimethylbenzene	108-67-8	_	ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		1,3-Dichlorobenzene	541-73-1	<u> </u>	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		1,3-Dichloropropane	142-28-9	—	ND	U	0.37	ND	U	0.37	ND	U	0.36	ND	U	0.35
		1,4-Dichlorobenzene	106-46-7	<u> </u>	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		2,2-Dichloropropane	594-20-7	<u> </u>	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		2-Butanone	78-93-3	—	ND	U	12	ND	U	12	ND	U	12	ND	U	11
		2-Chlorotoluene	95-49-8		ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		2-Hexanone	591-78-6	—	ND	U	12	ND	U	12	ND	U	12	ND	U	11
		4-Chlorotoluene	106-43-4	<u> </u>	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		4-Isopropyltoluene	99-87-6	—	ND	U	3	ND	U	3	ND	U	2.9	ND	U	2.8
		4-Methyl-2-pentanone	108-10-1	<u> </u>	ND	U	12	ND	U	12	ND	U	12	ND	U	11
		Acetone	67-64-1	<u> </u>	ND	U	67	ND	U	67	ND	U	65	ND	U	63
		Benzene	71-43-2	17.8	ND	U	0.37	ND	U	0.37	ND	U	0.36	ND	U	0.35
		Bromobenzene	108-86-1		ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4

				Well Location ID:	KA	FB-106S ²	10	KA	FB-106S1	10	KA	FB-106S ²	10	KA		10
				Sample Date:	12	2/14/2020)	12	2/14/2020)	1:	2/14/2020)	12	2/14/2020)
				Sample Depth (ft bgs)		500			510			517			517	
				Sample Type:		REG			REG			REG		Fiel	d Duplica	ate
				Core Temperature (°C)		18.3			28			28			28	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5		ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
	(mg/kg)	Bromodichloromethane	75-27-4		ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		Bromoform	75-25-2	—	ND	U	4.7	ND	U	4.8	ND	U	4.6	ND	U	4.4
		Bromomethane	74-83-9	—	ND	U	3	ND	U	3	ND	U	2.9	ND	U	2.8
		Carbon disulfide	75-15-0	—	ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		Carbon tetrachloride	56-23-5	—	ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		Chlorobenzene	108-90-7	—	ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		Chloroethane	75-00-3	—	ND	U	5.9	ND	U	6	ND	U	5.8	ND	U	5.6
		Chloroform	67-66-3	—	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		Chloromethane	74-87-3	—	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		cis-1,3-Dichloropropene	10061-01-5	—	ND	U	0.37	ND	U	0.37	ND	U	0.36	ND	U	0.35
		Dibromochloromethane	124-48-1	_	ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		Dibromomethane	74-95-3	—	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		Dichlorodifluoromethane	75-71-8		ND	U	5.9	ND	U	6	ND	U	5.8	ND	U	5.6
		Ethylbenzene	100-41-4	75.1	ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		Hexachloro-1,3-butadiene	87-68-3		ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		Isopropylbenzene	98-82-8		ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		m- & p-Xylenes	179601-23-1	871 ^b	ND	U	3	ND	U	3	ND	U	2.9	ND	U	2.8
		Methyl tert-butyl ether	1634-04-4	—	ND	U	5.9	ND	U	6	ND	U	5.8	ND	U	5.6
		Methylene chloride	75-09-2	—	ND	U	3	ND	U	3	ND	U	2.9	ND	U	2.8
		Naphthalene	91-20-3	—	ND	U	6.2	ND	U	6.3	ND	U	6.1	ND	U	5.8
		n-Butylbenzene	104-51-8	—	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		n-Propylbenzene	103-65-1	—	ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		o-Xylene	95-47-6	871 ^b	0.00043	J	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		sec-Butylbenzene	135-98-8		ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		Styrene	100-42-5		ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		tert-Butylbenzene	98-06-6		ND	U	1.5	ND	U	1.5	ND	U	1.5	ND	U	1.4
		Tetrachloroethene	127-18-4		ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		Toluene	108-88-3	5230	0.001	J	0.74	0.00041	J	0.75	0.00041	J	0.73	0.00023	J	0.7
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.74	ND	U	0.75	ND	U	0.73	ND	U	0.7
		trans-1,3-Dichloropropene	10061-02-6		ND	U	0.19	ND	U	0.19	ND	U	0.18	ND	U	0.17
		Trichloroethene	79-01-6		ND	U	4.6	ND	U	4.7	ND	U	4.5	ND	U	4.4
		Trichlorofluoromethane	75-69-4		ND	U	9.3	ND	U	9.4	ND	U	9.1	ND	U	8.7
L		Vinyl chloride	75-01-4	—	ND	U	3	ND	U	3	ND	U	2.9	ND	U	2.8

				Well Location ID:	KA	FB-106V	3	KA	FB-106V	3	KA	FB-106V	3	KA	FB-106V	3
				Sample Date:	1'	1/11/2020		1	1/11/2020		1 [.]	1/11/2020)	1	1/11/2020	,
				Sample Depth (ft bgs)		230			240			250			260	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		16.5			29.7			36.2			24.7	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	23	ND	U	24	ND	U	24	ND	U	24
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	3.6	J	7.7	ND	U	8.1	4.5	J	8.1	ND	U	8.3
		TPH-GRO (C6-C10)	TPH-GRO	100	ND	U	2.3	ND	U	2.2	ND	U	2.7	1.6	J	2.5
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	—	ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
	(mg/kg)	1,1,1-Trichloroethane	71-55-6		ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		1,1,2,2-Tetrachloroethane	79-34-5	_	ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		1,1,2-Trichloroethane	79-00-5	—	ND	U	3.3	ND	U	6.1	ND	U	4.2	ND	U	3.3
		1,1-Dichloroethane	75-34-3	—	ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		1,1-Dichloroethene	75-35-4	—	ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		1,1-Dichloropropene	563-58-6	—	ND	U	0.41	ND	U	0.77	ND	U	0.52	ND	U	0.41
		1,2,3-Trichlorobenzene	87-61-6	—	ND	U	3.3	ND	U	6.1	ND	U	4.2	ND	U	3.3
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		1,2,4-Trichlorobenzene	120-82-1	_	ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		1,2,4-Trimethylbenzene	95-63-6	—	ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		1,2-Dibromo-3-chloropropane	96-12-8	_	ND	U	10	ND	U	19	ND	U	13	ND	U	10
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.6	ND	U	3.1	ND	U	2.1	0.0051		1.6
		1,2-Dichlorobenzene	95-50-1	—	ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		1,2-Dichloroethane	107-06-2	—	ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		1,2-Dichloroethene	540-59-0		ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		1,2-Dichloropropane	78-87-5	—	ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		1,3,5-Trimethylbenzene	108-67-8		ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		1,3-Dichlorobenzene	541-73-1	—	ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		1,3-Dichloropropane	142-28-9		ND	U	0.41	ND	U	0.77	ND	U	0.52	ND	U	0.41
		1,4-Dichlorobenzene	106-46-7		ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		2,2-Dichloropropane	594-20-7	—	ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		2-Butanone	78-93-3		ND	U	13	ND	U	25	ND	U	17	6.4		670
		2-Chlorotoluene	95-49-8		ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		2-Hexanone	591-78-6	—	ND	U	13	ND	U	25	ND	U	17	0.12	<u> </u>	13
		4-Chlorotoluene	106-43-4		ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		4-Isopropyltoluene	99-87-6		ND	U	3.3	ND	U	6.1	ND	U	4.2	ND	U	3.3
		4-Methyl-2-pentanone	108-10-1		ND	U	13	ND	U	25	ND	U	17	0.094		13
		Acetone	67-64-1	<u> </u>	ND	U	74	ND	U	140	ND	U	94	27	<u> </u>	3800
		Benzene	71-43-2	17.8	ND	U	0.41	0.00082	J	0.77	ND	U	0.52	0.0012	J	0.41
		Bromobenzene	108-86-1		ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6

				Well Location ID:	KA	FB-106V	3	KA	FB-106V	3	KA	FB-106V	3	KA	FB-106V	3
				Sample Date:	1	1/11/2020)	1	1/11/2020)	11	1/11/2020)	1 ⁻	1/11/2020)
				Sample Depth (ft bgs)		230	-		240			250	- -		260	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		16.5			29.7			36.2			24.7	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5		ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
	(mg/kg)	Bromodichloromethane	75-27-4		ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		Bromoform	75-25-2		ND	U	5.2	ND	U	9.8	ND	U	6.6	ND	U	5.2
		Bromomethane	74-83-9		ND	U	3.3	ND	U	6.1	ND	U	4.2	ND	U	3.3
		Carbon disulfide	75-15-0	_	ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		Carbon tetrachloride	56-23-5	—	ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		Chlorobenzene	108-90-7	—	ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		Chloroethane	75-00-3	—	ND	U	6.6	ND	U	12	ND	U	8.3	ND	U	6.6
		Chloroform	67-66-3	—	ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		Chloromethane	74-87-3	—	ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		cis-1,3-Dichloropropene	10061-01-5	—	ND	U	0.41	ND	U	0.77	ND	U	0.52	ND	U	0.41
		Dibromochloromethane	124-48-1	—	ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		Dibromomethane	74-95-3	—	ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		Dichlorodifluoromethane	75-71-8	_	ND	U	6.6	ND	U	12	ND	U	8.3	ND	U	6.6
		Ethylbenzene	100-41-4	75.1	ND	U	0.82	ND	U	1.5	ND	U	1	0.00034	J	0.82
		Hexachloro-1,3-butadiene	87-68-3		ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		Isopropylbenzene	98-82-8		ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		m- & p-Xylenes	179601-23-1	871 ^b	ND	U	3.3	ND	U	6.1	ND	U	4.2	ND	U	3.3
		Methyl tert-butyl ether	1634-04-4	—	ND	U	6.6	ND	U	12	ND	U	8.3	ND	U	6.6
		Methylene chloride	75-09-2	—	ND	U	3.3	ND	U	6.1	ND	U	4.2	ND	U	3.3
		Naphthalene	91-20-3	—	ND	U	6.9	ND	U	13	ND	U	8.7	ND	U	6.9
		n-Butylbenzene	104-51-8		ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		n-Propylbenzene	103-65-1		ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		o-Xylene	95-47-6	871 ^b	ND	U	0.82	ND	U	1.5	ND	U	1	0.00083	J	0.82
		sec-Butylbenzene	135-98-8		ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		Styrene	100-42-5	—	ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		tert-Butylbenzene	98-06-6		ND	U	1.6	ND	U	3.1	ND	U	2.1	ND	U	1.6
		Tetrachloroethene	127-18-4		ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		Toluene	108-88-3	5230	0.00033	J	0.82	0.0021	J	1.5	0.00048	J	1	0.0046	J	0.82
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.82	ND	U	1.5	ND	U	1	ND	U	0.82
		trans-1,3-Dichloropropene	10061-02-6		ND	U	0.2	ND	U	0.38	ND	U	0.26	ND	U	0.21
		Trichloroethene	79-01-6		ND	U	5.1	ND	U	9.6	ND	U	6.5	ND	U	5.1
		Trichlorofluoromethane	75-69-4		ND	U	10	ND	U	19	ND	U	13	ND	U	10
		Vinyl chloride	75-01-4		ND	U	3.3	ND	U	6.1	ND	U	4.2	ND	U	3.3

				Well Location ID:	KA	FB-106V	3									
				Sample Date:	1'	1/12/2020		1.	1/12/2020		1.	1/12/2020)	1	1/12/2020	,
				Sample Depth (ft bgs)		270			271			280.5			290	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		25.1			25.1			14.6			21.8	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD									
TPH	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	22	ND	U	26	ND	U	25	ND	U	22
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	7.4	ND	U	8.9	ND	U	8.5	ND	U	7.6
		TPH-GRO (C6-C10)	TPH-GRO	100	ND	U	2.1	8.3		2.5	ND	U	2.3	ND	U	2.3
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6		ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	—	ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		1,1,2,2-Tetrachloroethane	79-34-5	—	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		1,1,2-Trichloroethane	79-00-5	—	ND	U	3.3	ND	U	3.3	ND	U	3.4	ND	U	3.9
		1,1-Dichloroethane	75-34-3	—	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		1,1-Dichloroethene	75-35-4	—	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		1,1-Dichloropropene	563-58-6	—	ND	U	0.42	ND	U	0.41	ND	U	0.42	ND	U	0.48
		1,2,3-Trichlorobenzene	87-61-6	—	ND	U	3.3	ND	U	3.3	ND	U	3.4	ND	U	3.9
		1,2,3-Trichloropropane	96-18-4	—	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		1,2,4-Trimethylbenzene	95-63-6	—	ND	U	5.2	0.032		5.1	0.0068		5.3	ND	U	6.1
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	10	ND	U	10	ND	U	11	ND	U	12
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.7	0.04		1.6	0.0027	J	1.7	ND	U	1.9
		1,2-Dichlorobenzene	95-50-1	—	ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		1,2-Dichloroethane	107-06-2	—	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		1,2-Dichloroethene	540-59-0		ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		1,2-Dichloropropane	78-87-5	—	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		1,3,5-Trimethylbenzene	108-67-8		ND	U	5.2	0.0063		5.1	0.0027	J	5.3	ND	U	6.1
		1,3-Dichlorobenzene	541-73-1	_	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		1,3-Dichloropropane	142-28-9	_	ND	U	0.42	ND	U	0.41	ND	U	0.42	ND	U	0.48
		1,4-Dichlorobenzene	106-46-7	_	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		2,2-Dichloropropane	594-20-7		ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		2-Butanone	78-93-3	_	0.35		13	14		670	ND	U	13	ND	U	16
		2-Chlorotoluene	95-49-8	<u> </u>	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		2-Hexanone	591-78-6	—	0.0083	J	13	0.31		13	ND	U	13	ND	U	16
		4-Chlorotoluene	106-43-4	<u> </u>	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		4-Isopropyltoluene	99-87-6		ND	U	3.3	ND	U	3.3	ND	U	3.4	ND	U	3.9
		4-Methyl-2-pentanone	108-10-1	<u> </u>	ND	U	13	0.3		13	ND	U	13	ND	U	16
		Acetone	67-64-1	<u> </u>	2.7	J	3900	55		7600	2	J	4000	ND	U	86
		Benzene	71-43-2	17.8	0.0016	J	0.42	0.33		21	0.034		0.42	ND	U	0.48
		Bromobenzene	108-86-1	—	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9

				Well Location ID:	KA	FB-106V	3	KA	FB-106V	3	KA	FB-106V	3	KA	FB-106V	3
				Sample Date:	1'	1/12/2020)	1 [.]	1/12/2020		1	1/12/2020)	11	1/12/2020)
				Sample Depth (ft bgs)		270			271			280.5			290	
				Sample Type:		REG			REG			REG			REG	
				Core Temperature (°C)		25.1			25.1			14.6			21.8	
				NMED Residential Soil		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5		ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
	(mg/kg)	Bromodichloromethane	75-27-4		ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		Bromoform	75-25-2	_	ND	U	5.3	ND	U	5.2	ND	U	5.4	ND	U	6.2
		Bromomethane	74-83-9	—	ND	U	3.3	ND	U	3.3	ND	U	3.4	ND	U	3.9
		Carbon disulfide	75-15-0	—	ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		Carbon tetrachloride	56-23-5	—	ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		Chlorobenzene	108-90-7	—	ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		Chloroethane	75-00-3	—	ND	U	6.6	ND	U	6.6	ND	U	6.7	ND	U	7.8
		Chloroform	67-66-3	—	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		Chloromethane	74-87-3	—	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		cis-1,2-Dichloroethene	156-59-2	—	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		cis-1,3-Dichloropropene	10061-01-5	—	ND	U	0.42	ND	U	0.41	ND	U	0.42	ND	U	0.48
		Dibromochloromethane	124-48-1	—	ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		Dibromomethane	74-95-3	—	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		Dichlorodifluoromethane	75-71-8		ND	U	6.6	ND	U	6.6	ND	U	6.7	ND	U	7.8
		Ethylbenzene	100-41-4	75.1	0.0005	J	0.83	0.053		0.82	0.012		0.84	ND	U	0.97
		Hexachloro-1,3-butadiene	87-68-3		ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		Isopropylbenzene	98-82-8		ND	U	5.2	0.0041	J	5.1	ND	U	5.3	ND	U	6.1
		m- & p-Xylenes	179601-23-1	871 ^b	0.0014	J	3.3	0.14		3.3	0.034		3.4	ND	U	3.9
		Methyl tert-butyl ether	1634-04-4		ND	U	6.6	ND	U	6.6	ND	U	6.7	ND	U	7.8
		Methylene chloride	75-09-2	—	ND	U	3.3	ND	U	3.3	ND	U	3.4	ND	U	3.9
		Naphthalene	91-20-3	—	ND	U	7	0.011		6.9	ND	U	7	ND	U	8.1
		n-Butylbenzene	104-51-8		ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		n-Propylbenzene	103-65-1		ND	U	1.7	0.0046	J	1.6	0.0014	J	1.7	ND	U	1.9
		o-Xylene	95-47-6	871 ^b	0.00063	J	0.83	0.067		0.82	0.018		0.84	ND	U	0.97
		sec-Butylbenzene	135-98-8		ND	U	1.7	0.0012	J	1.6	ND	U	1.7	ND	U	1.9
		Styrene	100-42-5	—	ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		tert-Butylbenzene	98-06-6	—	ND	U	1.7	ND	U	1.6	ND	U	1.7	ND	U	1.9
		Tetrachloroethene	127-18-4		ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		Toluene	108-88-3	5230	0.0066		0.83	0.89		42	0.11		0.84	0.00073	J	0.97
		trans-1,2-Dichloroethene	156-60-5		ND	U	0.83	ND	U	0.82	ND	U	0.84	ND	U	0.97
		trans-1,3-Dichloropropene	10061-02-6		ND	U	0.21	ND	U	0.2	ND	U	0.21	ND	U	0.24
		Trichloroethene	79-01-6	—	ND	U	5.2	ND	U	5.1	ND	U	5.3	ND	U	6.1
		Trichlorofluoromethane	75-69-4		ND	U	10	ND	U	10	ND	U	11	ND	U	12
		Vinyl chloride	75-01-4		ND	U	3.3	ND	U	3.3	ND	U	3.4	ND	U	3.9

0.00203

Table 5-3Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Soil

				Well Location ID:	KA	FB-106V	3	KA	FB-106V	3
				Sample Date:	1 [.]	1/12/2020		11	1/12/2020	
				Sample Depth (ft bgs)		300			300	
				Sample Type:		REG		Fiel	d Duplica	te
				Core Temperature (°C)		23.2			23.2	
				NMED Residential Soil		Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD
ТРН	Method SW8015M	Motor Oil (C20-C38)	MOIL	1000	ND	U	21	ND	U	22
	(mg/kg)	TPH-DRO (C10-C28)	TPH-DRO	1000	ND	U	7.3	ND	U	7.6
		TPH-GRO (C6-C10)	TPH-GRO	100	ND	U	2	ND	U	2.1
VOCs	Methods SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	_	ND	U	4.9	ND	U	5.1
	(mg/kg)	1,1,1-Trichloroethane	71-55-6	_	ND	U	4.9	ND	U	5.1
		1,1,2,2-Tetrachloroethane	79-34-5	_	ND	U	0.79	ND	U	0.82
		1,1,2-Trichloroethane	79-00-5	—	ND	U	3.2	ND	U	3.3
		1,1-Dichloroethane	75-34-3	_	ND	U	0.79	ND	U	0.82
		1,1-Dichloroethene	75-35-4	_	ND	U	1.6	ND	U	1.6
		1,1-Dichloropropene	563-58-6	_	ND	U	0.4	ND	U	0.41
		1,2,3-Trichlorobenzene	87-61-6	_	ND	U	3.2	ND	U	3.3
		1,2,3-Trichloropropane	96-18-4	_	ND	U	0.79	ND	U	0.82
		1,2,4-Trichlorobenzene	120-82-1	—	ND	U	1.6	ND	U	1.6
		1,2,4-Trimethylbenzene	95-63-6	—	ND	U	4.9	ND	U	5.1
		1,2-Dibromo-3-chloropropane	96-12-8	—	ND	U	9.9	ND	U	10
		1,2-Dibromoethane	106-93-4	0.672	ND	U	1.6	ND	U	1.6
		1,2-Dichlorobenzene	95-50-1	—	ND	U	4.9	ND	U	5.1
		1,2-Dichloroethane	107-06-2	—	ND	U	1.6	ND	U	1.6
		1,2-Dichloroethene	540-59-0	—	ND	U	1.6	ND	U	1.6
		1,2-Dichloropropane	78-87-5	—	ND	U	1.6	ND	U	1.6
		1,3,5-Trimethylbenzene	108-67-8	—	ND	U	4.9	ND	U	5.1
		1,3-Dichlorobenzene	541-73-1	—	ND	U	1.6	ND	U	1.6
		1,3-Dichloropropane	142-28-9		ND	U	0.4	ND	U	0.41
		1,4-Dichlorobenzene	106-46-7	—	ND	U	0.79	ND	U	0.82
		2,2-Dichloropropane	594-20-7	—	ND	U	1.6	ND	U	1.6
		2-Butanone	78-93-3		0.0046	J	13	ND	U	13
		2-Chlorotoluene	95-49-8	—	ND	U	1.6	ND	U	1.6
		2-Hexanone	591-78-6	_	ND	U	13	ND	U	13
		4-Chlorotoluene	106-43-4		ND	U	0.79	ND	U	0.82
		4-Isopropyltoluene	99-87-6		ND	U	3.2	ND	U	3.3
		4-Methyl-2-pentanone	108-10-1	_	ND	U	13	ND	U	13
		Acetone	67-64-1		ND	U	72	ND	U	69
		Benzene	71-43-2	17.8	ND	U	0.4	0.00042	J	0.41
		Bromobenzene	108-86-1	—	ND	U	1.6	ND	U	1.6

Table 5-3Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Soil

				Well Location ID:	KA	FB-106V	3	KA	FB-106V	3
				Sample Date:	11	1/12/2020		11	1/12/2020)
				Sample Depth (ft bgs)		300			300	
				Sample Type:		REG		Fiel	d Duplica	ate
				Core Temperature (°C)		23.2			23.2	
				NMED Residential Soil		Val			Val	
Parameter	Analytical Method	Analyte	CAS	Screening Level ^a	Result	Qual	LOD	Result	Qual	LOD
VOCs	Methods SW8260B	Bromochloromethane	74-97-5		ND	U	4.9	ND	U	5.1
	(mg/kg)	Bromodichloromethane	75-27-4	_	ND	U	4.9	ND	U	5.1
		Bromoform	75-25-2		ND	U	5	ND	U	5.2
		Bromomethane	74-83-9	_	ND	U	3.2	ND	U	3.3
		Carbon disulfide	75-15-0	_	ND	U	4.9	ND	U	5.1
		Carbon tetrachloride	56-23-5		ND	U	4.9	ND	U	5.1
		Chlorobenzene	108-90-7	_	ND	U	4.9	ND	U	5.1
		Chloroethane	75-00-3		ND	U	6.3	ND	U	6.6
		Chloroform	67-66-3	_	ND	U	0.79	ND	U	0.82
		Chloromethane	74-87-3		ND	U	1.6	ND	U	1.6
		cis-1,2-Dichloroethene	156-59-2		ND	U	0.79	ND	U	0.82
		cis-1,3-Dichloropropene	10061-01-5	_	ND	U	0.4	ND	U	0.41
		Dibromochloromethane	124-48-1		ND	U	4.9	ND	U	5.1
		Dibromomethane	74-95-3	_	ND	U	0.79	ND	U	0.82
		Dichlorodifluoromethane	75-71-8	_	ND	U	6.3	ND	U	6.6
		Ethylbenzene	100-41-4	75.1	ND	U	0.79	ND	U	0.82
		Hexachloro-1,3-butadiene	87-68-3		ND	U	4.9	ND	U	5.1
		Isopropylbenzene	98-82-8		ND	U	4.9	ND	U	5.1
		m- & p-Xylenes	179601-23-1	871 ^b	ND	U	3.2	ND	U	3.3
		Methyl tert-butyl ether	1634-04-4		ND	U	6.3	ND	U	6.6
		Methylene chloride	75-09-2		ND	U	3.2	ND	U	3.3
		Naphthalene	91-20-3		ND	U	6.6	ND	U	6.9
		n-Butylbenzene	104-51-8		ND	U	1.6	ND	U	1.6
		n-Propylbenzene	103-65-1		ND	U	1.6	ND	U	1.6
		o-Xylene	95-47-6	871 ^b	ND	U	0.79	ND	U	0.82
		sec-Butylbenzene	135-98-8	_	ND	U	1.6	ND	U	1.6
		Styrene	100-42-5		ND	U	0.79	ND	U	0.82
		tert-Butylbenzene	98-06-6		ND	U	1.6	ND	U	1.6
		Tetrachloroethene	127-18-4		ND	U	4.9	ND	U	5.1
		Toluene	108-88-3	5230	0.0013	J	0.79	0.002	J	0.82
		trans-1,2-Dichloroethene	156-60-5	_	ND	U	0.79	ND	Ŭ	0.82
		trans-1,3-Dichloropropene	10061-02-6		ND	U	0.2	ND	U	0.2
		Trichloroethene	79-01-6		ND	U	4.9	ND	U	5.1
		Trichlorofluoromethane	75-69-4		ND	U	9.9	ND	U	10
		Vinyl chloride	75-01-4	_	ND	U	3.2	ND	U	3.3

Table 5-3

Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Soil

^aNew Mexico Environment Department (NMED) Risk Assessment Guidance for Site Investigations and Remediation, Volume I Soil Screening Guidance for Human Health Risk Assessments, Revision 2, 6/19/19. Table 6-2 TPH Soil Screening Levels and Table A-1 NMED Soil Screening Levels. Only contaminants of potential concern are shown.

^bThe screening level for xylenes includes m-,p-, and-x xylenes. - = This analyte is not considered a contaminant of potential concern. °C = degrees Celsius AFB = Air Force Base BFF = Bulk Fuels Facility bgs = below ground surface CAS = chemical abstract service number DRO = diesel range organics ft = foot/feet GRO = gasoline range organics ID = identification LOD = limit of detection mg/Kg = milligram per kilogram MW = monitoring well ND = not detected REG = normal field sample TPH = total petroleum hydrocarbons Val Qual = validation qualifier VOC = volatile organic compound Shading = detected concentrations above the detection limit Val Quals based on independent data validation J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

This page intentionally left blank

Table 5-4Well Construction Details for Soil Vapor Monitoring Well KAFB-106V3

				Survey Data							Constr	uction Det	tails				
		State	Plane														
		Coordina	te System		Elevations												
		(NA	D83)		(NAVD88)												
							Bentoni	te Chips	10/20 Sil	ica Sand		Blank	Casing	Scr	een ^a	Su	ımp
					Top of	Measuring					Casing						
				Top of PVC	Concrete	Point					Inside						
	Installation			Casing	Elevation	Elevation	Тор	Bottom	Тор	Bottom	Diameter	Тор	Bottom	Тор	Bottom	Тор	Bottom
Well ID	Date	Northing (ft)	Easting (ft)	(ft amsl)	(ft amsl)	(ft amsl)	(ft bgs)	(ft bgs)	(ft bgs)	(ft bgs)	(in)	(ft bgs) ^b	(ft bgs)	(ft bgs)	(ft bgs)	(ft bgs)	(ft bgs)
KAFB-106V3-7	20-Nov-20	1473457.02	1541614.54	5346.56	5344.01	5346.95	2	4	4	9.1	0.722	-2.55	5	5	7	NA	NA
KAFB-106V3-15	7	1473457.26	1541614.37	5346.68			9.1	12	12	17	0.722	-2.67	13	13	15	NA	NA
KAFB-106V3-272	7	1473457.08	1541614.17	5346.49			235.2	262.7	262.7	273	2.864	-2.48	267	267	272	272	274

^a Screen is 0.010-inch slot.

^bNegative values are due to wells completed aboveground.

amsl = above mean sea level

bgs = below ground surface

ft = foot/feet

ID = identification

in = inch

MW = monitoring well

NA = not applicable

NAD83 = North American Datum of 1983

NAVD88 = North American Vertical Datum of 1988

PVC = polyvinyl chloride

This page intentionally left blank

 Table 5-5

 Well Construction Details for Groundwater Monitoring Wells

					Survey Data							Well Cons	struction Det	ails				
			Coordina	Plane ite System D83)		Elevations (NAVD88)				1								
								Bentoni	te Chips	10/20 Si	lica Sand		Blank	Casing	Scr	een ^a	Su	ımp
Well Identification KAFB-106248-453	DTW (ft bgs) 479.01	Installation Date 22-Mar-21	Northing (ft) 1474498.4	Easting (ft)	Top of PVC Casing (ft amsl) 5355.97	Top of Concrete (ft amsl) 5353.31	Measuring Point Elevation (ft amsl) 5356.34	Top (ft bgs) 445.6	Bottom (ft bgs) 450.6	Top (ft bgs) 450.6	Bottom (ft bgs) 499.8	Casing Inside Diameter (in) 3.786	Top ^b (ft bgs) -2.66	Bottom (ft bgs) 452.5	Top (ft bgs) 452.5	Bottom (ft bgs) 492.5	Top (ft bgs) 492.5	Bottom (ft bgs) 494.5
1011 D 100240 400	473.01		1474400.4	1040002.00	0000.07	0000.01	0000.04	440.0	400.0	400.0	400.0	0.700	2.00	402.0	402.0	452.0	402.0	-0-1.0
KAFB-106248-419	_		1474497.99	1543532.67	5355.98			378	415.8	415.8	445.6	3.786	-2.67	418.5	418.5	443.5	443.5	445.5
KAFB-106249-450	476.95	10-Feb-21	1473603.56	1542864.41	5352.67	5353.24	5353.27	443.1	448.2	448.2	492.1	3.786	0.57	450.1	450.1	490.1	490.1	492.1
KAFB-106249-416	_		1473603.71	1542864.91	5352.59			383.2	413.8	413.8	443.1	3.786	0.65	416.1	416.1	441.1	441.1	443.1
KAFB-106250-448	472.2	21-Feb-21	1473154.15	1542509.94	5349.13	5349.6	5349.55	440.7	445.6	445.6	489.7	3.786	0.47	447.7	447.7	487.7	487.7	489.7
KAFB-106250-414	_		1473154.64	1542509.81	5349.12			378.5	411.5	411.5	440.7	3.786	0.48	413.7	413.7	438.7	438.7	440.7
KAFB-106251-444	468.5	21-Jan-21	1472784.14	1541930.93	5347.84	5345.06	5348.06	436.7	441.6	441.6	496	3.786	-2.78	443.6	443.6	483.6	483.6	485.6
KAFB-106251-410	_		1472784.41	1541930.59	5347.81			378	407.2	407.2	436.7	3.786	-2.75	409.7	409.7	434.7	434.7	436.7
KAFB-106252-515 ^c	450.2	11-Mar-21	1478561.66	1544052.54	5325.05	5325.57	5325.57	504.8	509.9	509.9	538	3.786	0.52	515	515	525	NA	NA
KAFB-106252-425	_		1478561.98	1544052.73	5324.75			418	423	423	504.8	3.786	0.82	425	425	465	465	467
KAFB-106252-391	_		1478561.63	1544052.94	5324.91			358	388.4	388.4	418	3.786	0.66	390.5	390.5	415.5	415.5	417.5
KAFB-106S10-443	473.32	20-Dec-20	1473425.22	1541736.24	5348.41	5345.7	5348.73	436.2	440.8	440.8	497	3.786	-2.71	443	443	483	483	485
KAFB-106S10-409	-		1473424.81	1541736.29	5348.43			373.6	405.5	405.5	436.2	3.786	-2.73	409	409	434	434	436

Well Identification ^b Negative values are due to wells completed aboveground. ^c This well was completed as a piezometer. amsl = above mean sea level bgs = below ground surface DTW = depth to water at the time of well construction. ft = foot/feet ID = identification in = inch MW = monitoring well NA = not applicable NAD83 = North American Datum of 1983 NAVD88 = North American Vertical Datum of 1988 PVC = polyvinyl chloride

Table 5-6Water Tracking Table

Well Identification	Water Injected for Cleanout (gal)	Water Removed for Cleanout (gal)	Water Injected for Hydrostatic Head (gal)	Water Removed During Development (gal)
KAFB-106V3	N/A	N/A	N/A	N/A
KAFB-106S10	N/A	N/A	N/A	160
KAFB-106248	800	900	300	340
KAFB-106249	400	400	N/A	350
KAFB-106250	300	300	N/A	370
KAFB-106251	450	450	N/A	410
KAFB-106252	1800	2000	N/A	200

gal = gallons

MW = monitoring well

N/A = not applicable

This page intentionally left blank

Kirtland AFB BFF Investigation Report for Data Gap MW Installation KAFB-106248 to KAFB-106252 and KAFB-106S10 SWMUs ST-106/SS-111

 Table 5-7

 Initial Water Levels Versus Current Water Levels

Well Identification	Initial Measurement Date at Time of Drilling	Depth to Water (ft bgs)	Second Quarter 2021 Sampling Date	Depth to Water (ft bgs)
KAFB-106248-453	3/19/2021	479.01 ^a	5/12/2021	480.46
KAFB-106249-450	2/10/2021	476.95	5/12/2021	476.87
KAFB-106250-448	2/21/2021	472.20	5/12/2021	473.55
KAFB-106251-444	1/20/2021	468.50	5/12/2021	471.21
KAFB-106252-425	12/26/2020	450.20	5/12/2021	452.00
KAFB-106S10-443	12/16/2020	472.32	5/10/2021	471.57

^aThe depth to water in monitoring well KAFB-106248 was measured at 440.62 ft bgs. However, the well had water added to it at the time to control flowing sands. As such, the water level measurement for well KAFB-106248 was from KAFB-106019, located to the west of KAFB-106248, as reported for March 2021 to design the well.

bgs = below ground surface

EPA = U.S. Environmental Protection Agency

ft = foot/feet

MW = monitoring well

This page intentionally left blank

Kirtland AFB BFF Investigation Report for Data Gap MW Installation KAFB-106248 to KAFB-106252 and KAFB-106S10 SWMUs ST-106/SS-111

Table 6-1Soil Vapor Analytical Results

	We	ell Location ID:	KAFI	3-106V3·	·007	KAFE	3-106V3·	-007	KAFE	3-106V3	-015	KAFI	B-106V3	-272
	Fi	eld Sample ID:	SV	′3-007-2′	12	SV	′3-007-6′	12	SV	3-015-2 ⁻	12	SV	/3-272-2	12
		Sample Date:	4	/20/2021		4	/20/2021			/20/2021			/20/2021	
		Sample Type:		REG			d Duplica			REG			REG	
		NMED												
Analytical		Residential		Val			Val			Val			Val	
Method	Analyte	VISL ^a	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Method TO-15	1,1,2-Trichloro-1,2,2-trifluoroethane	1,040,000	3.3		0.76	3.6		0.79	7.9		0.73	0.41	J	0.64
(µg/m ³)	1,1-Dichloroethane	585	ND	U	1.5	ND	U	1.5	ND	U	1.4	ND	U	1.2
	1,2,4-Trichlorobenzene	69.5	ND	Ū	1.4	ND	Ū	1.5	ND	U	1.4	ND	Ū	1.2
	1,2,4-Trimethylbenzene	NS	26		0.76	39		0.79	17		0.73	37		0.64
	1,2-Dibromoethane	1.56	6.8		0.76	6.6		0.79	12		0.73	17		0.64
	1,2-Dichloroethane	36	ND	U	0.76	ND	U	0.79	ND	U	0.73	ND	U	0.64
	1,3,5-Trimethylbenzene	NS	29		0.76	28		0.79	13		0.73	13		0.64
	1,3-Butadiene	31.2	ND	U	1.4	ND	U	1.5	ND	U	1.4	ND	U	1.2
	1,4-Dioxane	187	ND	Ŭ	0.76	ND	U	0.79	ND	U	0.73	ND	U	0.64
	2-Butanone	174,000	14		1.4	11		1.5	6		1.4	62		1.2
	2-Hexanone	NS	ND	U	0.76	ND	U	0.79	ND	U	0.73	ND	U	0.64
	4-Methyl-2-pentanone	104,000	0.49	J	0.76	0.59	J	0.79	ND	Ŭ	0.73	3.1	J	0.64
	Acetone	1,080,000	24		12	32		12	10	J	12	330		10
	Benzene	120	260		0.76	210		0.79	160		0.73	200		0.64
	Bromodichloromethane	25.3	ND	U	0.76	ND	U	0.79	ND	U	0.73	ND	U	0.64
	Bromoform	851	ND	U	1.4	ND	U	1.5	ND	U	1.4	ND	Ŭ	1.2
	Carbon disulfide	24,300	1.7	J	2.4	ND	U	2.5	0.97	ل ار	2.3	2.6	J	2
	Carbon tetrachloride	156	0.78	J	0.76	0.76	J	0.79	1.4		0.73	0.28	J	0.64
	Chloroethane	348,000	ND	Ŭ	1.4	ND	Ŭ	1.5	ND	Ŭ	1.4	ND	Ŭ	1.2
	Chloroform	40.7	0.6	J	0.76	0.54		0.79	ND	U	0.73	ND	U	0.64
	Chloromethane	520	ND	Ŭ	1.4	ND	Ŭ	1.5	ND	U	1.4	0.38	J	1.2
	Cyclohexane	NS	1,200		15	1,300		16	2,800		29	64		1.3
	Dibromochloromethane	34.7	ND	U	0.76	ND	U	0.79	ND	U	0.73	ND	U	0.64
	Dichlorodifluoromethane	3,480	2.3		1.4	1.3		1.5	ND	U	1.4	1.6	J	1.2
	Ethanol	NS	32		3.7	33		3.8	24		3.6	28		3.1
	Ethyl acetate	2,430	ND	U	2.9	ND	U	3	16	J	2.8	ND	U	2.4
	Ethylbenzene	374	110		0.76	91		0.79	58		0.73	88		0.64
	Hexane	24,300	320		1.4	360		1.5	440		28	27		1.2
	Isopropyl alcohol	NS	5.3	J	2.8	1,600		29	37		2.7	160		2.4
	m- & p-Xylenes	3,480	190		1.5	170		1.6	120		1.5	250		1.3
	Methylene chloride	20,900	ND	U	1.4	ND	U	1.5	ND		1.4	ND	U	1.2
	Naphthalene	27.5	5.3		1.4	9.5		1.4	2.7		1.4	11		1.2
	n-Heptane	NS	160		1.4	180		1.5	320		1.4	89		1.2
	o-Xylene	3,480	120		0.76	100		0.79	56		0.73	71		0.64
	Propylene (propene)	NS	5.5	J	1.4	170	J	1.5	4		1.4	53		1.2
	Styrene	34,800	0.65	J	1.4	0.73	Ĵ	1.5	ND	U	1.4	0.44	J	1.2
	Tetrachloroethene	1,390	ND	Ŭ	0.76	ND	Ŭ	0.79	0.55	J	0.73	ND	Ŭ	0.64
	Tetrahydrofuran	NS	ND	U	0.76	ND	U	0.79	ND	U	0.73	0.26	J	0.64
	Toluene	174,000	840		7.6	700		7.9	420		15	930		6.4
	Trichloroethene	69.5	ND	U	0.76	ND	U	0.79	ND	U	0.73	ND	U	0.64
	Trichlorofluoromethane	24,300	1.3	J	1.4	1.1	J	1.5	0.98	J	1.4	0.84	J	1.2
	Vinyl chloride	55.9	ND	U	0.76	ND	U	0.79	ND	U	0.73	ND	U	0.64
	Xylenes, total	3,480	310		1.5	270		1.6	170		1.5	320		1.3

^a New Mexico Environment Department VISL Residential Soil Gas, dated 2017.
µg/m³ = microgram per cubic meter
ft = foot (feet)
ID = identification
LOD = limit of detection
MW = monitoring well
ND = not detected
NMED = New Mexico Environmental Department
NS = not specified
REG = normal field sample
Val Qual = validation qualifier
VISL = vapor intrusion screening level
VOC = volatile organic compound
Val Quals based on independent data validation
J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

-- = Validation qualifier not assigned.

Shading = detected concentrations above the detection limit

Bold/Shading = reported concentrations exceed the NMED Residential VISL

						Wel	Location ID:	KA	FB-10624	8-452	KA	FB-10624	8-452	KA	FB-10624	9-450
						Fiel	d Sample ID:	G١	N248-452	-212	G١	W248-452	2-612		GW249-2	11
							Sample Date:		4/5/202	1		4/5/202	1		2/24/202	1
							Sample Type:		REG		F	ield Dupli			REG	
						Sample [Depth (ft bgs)		493.3			493.3			488.1	
					Reference El				4857			4857			4857	
							Project									
				NMAC			Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	NMWQCC ^a	EPA MCL ^b	EPA RSL ^c	Leveld	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	106-93-4	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
TPH	Method SW8015M (µg/L)	TPH (C28-C40)	TPHC28C40	NS	NS	800	800	—			_			ND	U	91
		TPH-DRO (C10-C28)	TPH-DRO	NS	NS	1,300	1,300	ND	U	40	ND	U	40	460		91
		TPH-GRO (C6-C10)	TPH-GRO	NS	NS	550	550	54	J	91	58	J	90	69		40
VOCs	Method SW8260C (µg/L)	1,1,1,2-Tetrachloroethane	630-20-6	NS	NS	5.7	5.7	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,1,1-Trichloroethane	71-55-6	200	200	8,000	200	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,1,2,2-Tetrachloroethane	79-34-5	10	NS	0.76	10	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,1,2-Trichloroethane	79-00-5	5	5	2.8	5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,1-Dichloroethane	75-34-3	25	NS	28	25	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,1-Dichloroethene	75-35-4	7	7	280	7	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,1-Dichloropropene	563-58-6	NS	NS	NS	NS	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,2,3-Trichlorobenzene	87-61-6	NS	NS	7	7	ND	U	1.0	ND	U	1.0	ND	U	1.0
		1,2,3-Trichloropropane	96-18-4	NS	NS	0.0075	0.05 ^e	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,2,4-Trichlorobenzene	120-82-1	70	70	12	70	ND	U	1.0	ND	U	1.0	ND	U	1.0
		1,2,4-Trimethylbenzene	95-63-6	NS	NS	56	56	ND	U	2.0	ND	U	2.0	ND	U	2.0
		1,2-Dibromo-3-chloropropane	96-12-8	NS	0.2	0.0033	1 ^e	ND	U	1.0	ND	U	1.0	ND	U	1.0
		1,2-Dibromoethane	106-93-4	0.05	0.05	0.075	0.05	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,2-Dichlorobenzene	95-50-1	600	600	300	600	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,2-Dichloroethane	107-06-2	5	5	1.7	5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,2-Dichloropropane	78-87-5	5	5	8.5	5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,3,5-Trimethylbenzene	108-67-8	NS	NS	60	60	ND	U	1.0	ND	U	1.0	ND	U	1.0
		1,3-Dichlorobenzene	541-73-1	NS	NS	NS	NS	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,3-Dichloropropane	142-28-9	NS	NS	370	370	ND	U	0.50	ND	U	0.50	ND	U	0.50
		1,4-Dichlorobenzene	106-46-7	75	75	4.8	75	ND	U	0.50	ND	U	0.50	ND	U	0.50
		2,2-Dichloropropane	594-20-7	NS	NS	NS	NS	ND	U	0.50	ND	U	0.50	ND	U	0.50
		2-Butanone	78-93-3	NS	NS	5,600	5,600	ND	U	1.0	ND	U	1.0	ND	U	1.0
		2-Chlorotoluene	95-49-8	NS	NS	240	240	ND	U	0.50	ND	U	0.50	ND	U	0.50
		2-Hexanone	591-78-6	NS	NS	38	38	ND	U	1.0	ND	U	1.0	ND	U	1.0
		4-Chlorotoluene	106-43-4	NS	NS	250	250	ND	U	0.50	ND	U	0.50	ND	U	0.50
		4-Isopropyltoluene	99-87-6	NS	NS	NS	NS	ND	U	0.50	ND	U	0.50	ND	U	0.50

						Wel	I Location ID:	KA	FB-10624	8-452	KA	FB-10624	8-452	KA	FB-10624	9-450
						Fie	Id Sample ID:	G١	N248-452	-212	G١	N248-452	-612		GW249-2	11
							Sample Date:		4/5/202			4/5/202	1		2/24/202	.1
							Sample Type:		REG		F	ield Dupli	cate		REG	
						Sample I	Depth (ft bgs)		493.3			493.3			488.1	
					Reference El	evation Interv	val (ft AMSL):		4857			4857			4857	
							Project									í
				NMAC			Screening		Val			Val			Val	1
Parameter	Analytical Method	Analyte	CAS	NMWQCC ^a	EPA MCL ^b	EPA RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Method SW8260C (µg/L)	4-Methyl-2-pentanone	108-10-1	NS	NS	6,300	6,300	ND	U	1.0	ND	U	1.0	ND	U	1.0
		Acetone	67-64-1	NS	NS	14,000	14,000	ND	U	2.0	1.5	J	2.0	2.7	J	2.0
		Acrolein	107-02-8	NS	NS	0.042	5 ^e	ND	U	5.0	ND	U	5.0	ND	UJ	5.0
		Acrylonitrile	107-13-1	NS	NS	0.52	1 ^e	ND	U	1.0	ND	U	1.0	ND	U	1.0
		Benzene	71-43-2	5	5	4.6	5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Bromobenzene	108-86-1	NS	NS	62	62	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Bromochloromethane	74-97-5	NS	NS	83	83	ND	UJ	0.50	ND	UJ	0.50	ND	U	0.50
		Bromodichloromethane	75-27-4	NS	80	1.3	80	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Bromoform	75-25-2	NS	80	33	80	ND	U	2.0	ND	U	2.0	ND	U	2.0
		Bromomethane	74-83-9	NS	NS	7.5	7.5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Carbon disulfide	75-15-0	NS	NS	810	810	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Carbon tetrachloride	56-23-5	5	5	4.6	5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Chlorobenzene	108-90-7	NS	100	78	100	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Chloroethane	75-00-3	NS	NS	21,000	21,000	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Chloroform	67-66-3	100	80	2.2	80	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Chloromethane	74-87-3	NS	NS	190	190	ND	U	0.50	ND	U	0.50	ND	U	0.50
		cis-1,2-Dichloroethene	156-59-2	70	70	36	70	ND	U	0.50	ND	U	0.50	ND	U	0.50
		cis-1,3-Dichloropropene	10061-01-5	NS	NS	4.7	4.7	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Dibromochloromethane	124-48-1	NS	80 NO	8.7	80	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Dibromomethane	74-95-3 75-71-8	NS NS	NS NS	8.3 200	8.3 200	ND ND	U	0.50 0.50	ND ND	U U	0.50 0.50	ND ND	U UJ	0.50 0.50
		Dichlorodifluoromethane			700		700	ND ND	U U	0.50	ND ND	U	0.50	ND ND		0.50
		Ethylbenzene	100-41-4 87-68-3	700 NS	700 NS	15 1.4			U		ND ND	U			U	4.0
		Hexachloro-1,3-butadiene					4 ^e	ND	-	4.0		-	4.0	ND	-	
		Isopropylbenzene	98-82-8	NS	NS	450	450	ND	U	0.50	ND	U	0.50	ND	U	0.50
		m- & p-Xylenes	179601-23-1	NS 100	NS	NS 140	NS 100	ND	U	2.0	ND	U	2.0	ND	U	2.0
		Methyl tert-butyl ether	1634-04-4	100	NS	140	100	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Methylene chloride	75-09-2	5	5	110	5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Naphthalene	91-20-3	30 NC	NS	1.2	30	ND	U	2.0	ND	U	2.0	ND	U	2.0
		n-Butylbenzene	104-51-8	NS	NS	1,000	1,000	ND	U	0.50	ND	U	0.50	ND	U	0.50

						Wel	I Location ID:	KAI		8-452	KA	FB-10624	18-452	KA	FB-10624	9-450
			Field Sample ID: Sample Date: Sample Type: Sample Depth (ft bgs)						V248-452	2-212	G١	N248-452	2-612		GW249-2	<u>.</u> 11
							-		4/5/202	1		4/5/202	1		2/24/202	21
									REG		F	ield Dupli	cate		REG	
									493.3			493.3			488.1	
					Reference El				4857			4857			4857	-
							Project									
				NMAC			Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	NMWQCC ^a	EPA MCL ^b	EPA RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Method SW8260C (µg/L)	n-Propylbenzene	103-65-1	NS	NS	660	660	ND	U	0.50	ND	U	0.50	ND	U	0.50
		o-Xylene	95-47-6	NS	NS	190	190	ND	Ū	0.80	ND	U	0.80	ND	U	0.80
		sec-Butylbenzene	135-98-8	NS	NS	2,000	2,000	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Styrene	100-42-5	100	100	1,200	100	ND	U	0.50	ND	U	0.50	ND	U	0.50
		tert-Butylbenzene	98-06-6	NS	NS	690	690	ND	U	1.0	ND	U	1.0	ND	U	1.0
		Tetrachloroethene	127-18-4	5	5	110	5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Toluene	108-88-3	1,000	1,000	1,100	1,000	ND	U	0.50	ND	U	0.50	19		0.50
		trans-1,2-Dichloroethene	156-60-5	100	100	68	100	ND	U	0.50	ND	U	0.50	ND	U	0.50
		trans-1,3-Dichloropropene	10061-02-6	NS	NS	4.7	4.7	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Trichloroethene	79-01-6	5	5	4.9	5	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Trichlorofluoromethane	75-69-4	NS	NS	5,200	5,200	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Vinyl acetate	108-05-4	NS	NS	410	410	ND	U	2.0	ND	U	2.0	ND	U	2.0
		Vinyl chloride	75-01-4	2	2	0.19	2	ND	U	0.50	ND	U	0.50	ND	U	0.50
		Xylenes, total	1330-20-7	620	10,000	190	620	ND	U	2.8	ND	U	2.8	ND	U	2.8
Metals	Method SW6010C (mg/L)	Calcium	7440-70-2	NS	NS	NS	NS	43		0.15	44		0.15	47	J	0.15
		Iron, dissolved	7439-89-6	1.0	NS	14	1.0	ND	U	0.10	ND	U	0.10	0.12	J	100
		Magnesium	7439-95-4	NS	NS	NS	NS	6.3		0.075	6.2		0.075	7.1	J	0.075
		Manganese, dissolved	7439-96-5	0.2	NS	0.43	0.2	0.11		0.0052	0.10		0.0052	0.38	-	0.0052
		Potassium	7440-09-7	NS	NS	NS	NS	2.8		0.45	2.9		0.45	2.7	-	450
		Sodium	7440-23-5	NS	NS	NS	NS	29		0.50	29		0.50	26	J	0.5
	Method SW6020A (mg/L)	Arsenic	7440-38-2	0.01	0.01	0.00052	0.01	ND	U	0.0016	ND	U	0.0016	ND	U	1.6
		Lead	7439-92-1	0.015	0.015	0.015	0.015	0.00052		0.00025	0.00041	J	0.00025	0.00012	J	0.25
Anions	Method E300.0 (mg/L)	Bromide	24959-67-9	NS	NS	NS	NS	ND	U	2.0	ND	U	2.0	ND	U	2.0
		Chloride	16887-00-6	250	NS	NS	250	29		1.5	29		1.5	10	J-	1.5
		Sulfate	14808-79-8	600	NS	NS	600	42		4.5	42		4.5	28		4.5
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	NNN	10 ^f	10 ^f	NS	10 ^f	0.30		0.090	0.29		0.090	—	_	_
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO3)	ALK-B	NS	NS	NS	NS	ND	U	2.0	ND	U	2.0	160		6.0
		Alkalinity, carbonate (as CaCO3)	ALK-C	NS	NS	NS	NS	29		1.5	29		1.5	ND	U	6.0
		Alkalinity, total (as CaCO3)	ALK	NS	NS	NS	NS	42		4.5	42	-	4.5	160	-	6.0

						Wel	Location ID:	KA	FB-10624	9-450	KA	FB-10625	0-447	KAF	B-10625	1-443
					GW249-6	11		GW250-2	11	(GW251-2 ⁻	11				
							Sample Date:		2/24/202	1		3/4/202	1		2/23/202	1
							Sample Type:	F	ield Dupli	cate		REG			REG	
						Sample [Depth (ft bgs)		488.1			486			481.6	
					Reference El	evation Interv			4857			4857			4857	
							Project									
				NMAC			Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	CAS	NMWQCC ^a	EPA MCL ^b	EPA RSL ^c	Leveld	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	106-93-4	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	0.010	J	0.019
TPH	Method SW8015M (µg/L)	TPH (C28-C40)	TPHC28C40	NS	NS	800	800	ND	U	92	8200		480	ND	U	110
	(µg, _)	TPH-DRO (C10-C28)	TPH-DRO	NS	NS	1,300	1,300	480		92	21,000		480	210		110
		TPH-GRO (C6-C10)	TPH-GRO	NS	NS	550	550	79		40	3,900	J+	40	ND	U	40
VOCs	Method SW8260C (µg/L)	1,1,1,2-Tetrachloroethane	630-20-6	NS	NS	5.7	5.7	ND	U	0.50	ND	U	0.5	ND	U	0.5
	······································	1,1,1-Trichloroethane	71-55-6	200	200	8,000	200	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,1,2,2-Tetrachloroethane	79-34-5	10	NS	0.76	10	ND	U	0.50	ND	UJ	0.5	ND	U	0.5
		1,1,2-Trichloroethane	79-00-5	5	5	2.8	5	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,1-Dichloroethane	75-34-3	25	NS	28	25	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,1-Dichloroethene	75-35-4	7	7	280	7	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,1-Dichloropropene	563-58-6	NS	NS	NS	NS	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,2,3-Trichlorobenzene	87-61-6	NS	NS	7	7	ND	U	1.0	ND	U	1	ND	U	1
		1,2,3-Trichloropropane	96-18-4	NS	NS	0.0075	0.05 ^e	ND	U	0.50	ND	UJ	0.5	ND	U	0.5
		1,2,4-Trichlorobenzene	120-82-1	70	70	12	70	ND	U	1.0	ND	U	1	ND	U	1
		1,2,4-Trimethylbenzene	95-63-6	NS	NS	56	56	ND	U	2.0	1.2	J	2	ND	U	2
		1,2-Dibromo-3-chloropropane	96-12-8	NS	0.2	0.0033	1 ^e	ND	U	1.0	ND	U	1	ND	U	1
		1,2-Dibromoethane	106-93-4	0.05	0.05	0.075	0.05	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,2-Dichlorobenzene	95-50-1	600	600	300	600	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,2-Dichloroethane	107-06-2	5	5	1.7	5	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,2-Dichloropropane	78-87-5	5	5	8.5	5	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,3,5-Trimethylbenzene	108-67-8	NS	NS	60	60	ND	U	1.0	ND	U	1	ND	U	1
		1,3-Dichlorobenzene	541-73-1	NS	NS	NS	NS	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,3-Dichloropropane	142-28-9	NS	NS	370	370	ND	U	0.50	ND	U	0.5	ND	U	0.5
		1,4-Dichlorobenzene	106-46-7	75	75	4.8	75	ND	U	0.50	ND	U	0.5	ND	U	0.5
		2,2-Dichloropropane	594-20-7	NS	NS	NS	NS	ND	U	0.50	ND	U	0.5	ND	U	0.5
		2-Butanone	78-93-3	NS	NS	5,600	5,600	ND	U	1.0	14		1	0.31	J	1
		2-Chlorotoluene	95-49-8	NS	NS	240	240	ND	U	0.50	ND	U	0.5	ND	U	0.5
		2-Hexanone	591-78-6	NS	NS	38	38	ND	U	1.0	ND	UJ	1	ND	U	1
		4-Chlorotoluene	106-43-4	NS	NS	250	250	ND	U	0.50	ND	U	0.5	ND	U	0.5
		4-Isopropyltoluene	99-87-6	NS	NS	NS	NS	ND	U	0.50	14		0.5	ND	U	0.5

						Wel	Location ID:	KA	FB-10624	9-450	KA	FB-10625	0-447	KAI	-B-10625	1-443
						Fie	d Sample ID:		GW249-6	11		GW250-2	11	(GW251-2′	11
						;	Sample Date:		2/24/202	1		3/4/202	1		2/23/202	1
							Sample Type:	F	ield Duplio	cate		REG			REG	
						Sample [Depth (ft bgs)		488.1			486			481.6	
					Reference El	evation Interv	/al (ft AMSL):		4857			4857			4857	
							Project									i
				NMAC			Screening		Val			Val			Val	1
Parameter	Analytical Method	Analyte	CAS	NMWQCC ^a	EPA MCL ^b	EPA RSL [°]	Leveld	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
VOCs	Method SW8260C (µg/L)	4-Methyl-2-pentanone	108-10-1	NS	NS	6,300	6,300	ND	U	1.0	15		1	ND	U	1
		Acetone	67-64-1	NS	NS	14,000	14,000	2.9	J	2.0	88		2	5.3	J	2
		Acrolein	107-02-8	NS	NS	0.042	5 ^e	ND	UJ	5.0	ND	U	5	ND	UJ	5
		Acrylonitrile	107-13-1	NS	NS	0.52	1 ^e	ND	U	1.0	ND	U	1	ND	U	1
		Benzene	71-43-2	5	5	4.6	5	ND	U	0.50	8.1		0.5	ND	U	0.5
		Bromobenzene	108-86-1	NS	NS	62	62	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Bromochloromethane	74-97-5	NS	NS	83	83	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Bromodichloromethane	75-27-4	NS	80	1.3	80	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Bromoform	75-25-2	NS	80	33	80	ND	U	2.0	ND	U	2	ND	U	2
		Bromomethane	74-83-9	NS	NS	7.5	7.5	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Carbon disulfide	75-15-0	NS	NS	810	810	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Carbon tetrachloride	56-23-5	5	5	4.6	5	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Chlorobenzene	108-90-7	NS	100	78	100	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Chloroethane	75-00-3	NS	NS	21,000	21,000	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Chloroform	67-66-3	100	80	2.2	80	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Chloromethane	74-87-3	NS	NS	190	190	ND	U	0.50	ND	U	0.5	ND	U	0.5
		cis-1,2-Dichloroethene	156-59-2	70	70	36	70	ND	U	0.50	ND	U	0.5	ND	U	0.5
		cis-1,3-Dichloropropene	10061-01-5	NS	NS	4.7	4.7	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Dibromochloromethane	124-48-1	NS	80	8.7	80	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Dibromomethane	74-95-3	NS	NS	8.3	8.3	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Dichlorodifluoromethane	75-71-8	NS	NS	200	200	ND	UJ	0.50	ND	UJ	0.5	ND	UJ	0.5
		Ethylbenzene	100-41-4	700	700	15	700	ND	U	0.80	1.6		0.8	ND	U	0.8
		Hexachloro-1,3-butadiene	87-68-3	NS	NS	1.4	4 ^e	ND	U	4.0	ND	U	4	ND	U	4
		Isopropylbenzene	98-82-8	NS	NS	450	450	ND	U	0.50	12		0.5	ND	U	0.5
		m- & p-Xylenes	179601-23-1	NS	NS	NS	NS	ND	U	2.0	ND	U	2	ND	U	2
		Methyl tert-butyl ether	1634-04-4	100	NS	140	100	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Methylene chloride	75-09-2	5	5	110	5	ND	U	0.50	ND	U	0.5	ND	U	0.5
		Naphthalene	91-20-3	30	NS	1.2	30	ND	U	2.0	2.9	J	2	ND	U	2
		n-Butylbenzene	104-51-8	NS	NS	1,000	1,000	ND	U	0.50	0.23	J	0.5	ND	U	0.5

Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Groundwater

				Well Location ID:					KAFB-106249-450			KAFB-106250-447			KAFB-106251-443		
				Field Sample ID:				GW249-611			GW250-211			(11		
				Sample Date:				2/24/2021			3/4/2021				21		
				Sample Type:							REG			REG			
					Sample Depth (ft bgs)					488.1			486				
				Reference Elevation Interval (ft AMSL):				4857		4857			4857				
							Project										
				NMAC			Screening		Val			Val			Val		
Parameter	Analytical Method	Analyte	CAS	NMWQCC ^a	EPA MCL ^b	EPA RSL ^c	Leveld	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	
VOCs	Method SW8260C (µg/L)	n-Propylbenzene	103-65-1	NS	NS	660	660	ND	U	0.50	0.87	J	0.5	ND	U	0.5	
		o-Xylene	95-47-6	NS	NS	190	190	ND	U	0.80	3		0.8	ND	U	0.8	
		sec-Butylbenzene	135-98-8	NS	NS	2,000	2,000	ND	U	0.50	1.1	J	0.5	ND	U	0.5	
		Styrene	100-42-5	100	100	1,200	100	ND	U	0.50	ND	U	0.5	ND	U	0.5	
		tert-Butylbenzene	98-06-6	NS	NS	690	690	ND	U	1.0	ND	UJ	1	ND	U	1	
		Tetrachloroethene	127-18-4	5	5	110	5	ND	U	0.50	ND	U	0.5	ND	U	0.5	
		Toluene	108-88-3	1,000	1,000	1,100	1,000	18		0.50	0.52	J	0.5	ND	U	0.5	
		trans-1,2-Dichloroethene	156-60-5	100	100	68	100	ND	U	0.50	ND	U	0.5	ND	U	0.5	
		trans-1,3-Dichloropropene	10061-02-6	NS	NS	4.7	4.7	ND	U	0.50	ND	U	0.5	ND	U	0.5	
		Trichloroethene	79-01-6	5	5	4.9	5	ND	U	0.50	ND	U	0.5	ND	U	0.5	
		Trichlorofluoromethane	75-69-4	NS	NS	5,200	5,200	ND	U	0.50	ND	U	0.5	ND	U	0.5	
		Vinyl acetate	108-05-4	NS	NS	410	410	ND	U	2.0	ND	U	2	ND	U	2	
		Vinyl chloride	75-01-4	2	2	0.19	2	ND	U	0.50	ND	U	0.5	ND	U	0.5	
		Xylenes, total	1330-20-7	620	10,000	190	620	ND	U	2.8	3	J	2.8	ND	U	2.8	
Metals	Method SW6010C (mg/L)	Calcium	7440-70-2	NS	NS	NS	NS	47		0.15	75	J	0.15	61		0.15	
		Iron, dissolved	7439-89-6	1.0	NS	14	1.0	0.11	J	100	0.96		100	ND	U	100	
		Magnesium	7439-95-4	NS	NS	NS	NS	7.1		0.075	13	J	0.075	9.7		0.075	
		Manganese, dissolved	7439-96-5	0.2	NS	0.43	0.2	0.39		0.0052	2.4	J	0.0052	0.41		0.0052	
		Potassium	7440-09-7	NS	NS	NS	NS	2.8		450	3.7		450	3.5		450	
		Sodium	7440-23-5	NS	NS	NS	NS	26		0.5	31	J	0.5	30		0.5	
	Method SW6020A (mg/L)	Arsenic	7440-38-2	0.01	0.01	0.00052	0.01	ND	U	1.6	0.0015	J	1.6	0.00095	J	1.6	
		Lead	7439-92-1	0.015	0.015	0.015	0.015	0.000099	J	0.25	0.00053		0.25	0.000086	J	0.25	
Anions	Method E300.0 (mg/L)	Bromide	24959-67-9	NS	NS	NS	NS	ND	U	2.0	ND	U	2	ND	U	2	
		Chloride	16887-00-6	250	NS	NS	250	9.8	J-	1.5	12		1.5	11		1.5	
		Sulfate	14808-79-8	600	NS	NS	600	27		4.5	6	J+	4.5	29		4.5	
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	NNN	10 ^f	10 ^f	NS	10 ^f	—		_	—			—		—	
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO3)	ALK-B	NS	NS	NS	NS	160		6.0	270		6	220		6	
		Alkalinity, carbonate (as CaCO3)	ALK-C	NS	NS	NS	NS	ND	U	6.0	ND	U	6	ND	U	6	
		Alkalinity, total (as CaCO3)	ALK	NS	NS	NS	NS	160		6.0	270	J-	6	220	J-	6	

Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Groundwater

						Wel	KA	KAFB-106252-425			KAFB-106S10-443			
						Fie	GW252-425-211			GWS10-204				
							Sample Date:		3/23/202	21		12/30/202	20	
						ę	Sample Type:		REG			REG	-	
						Sample I	Depth (ft bgs)		463			483		
					Reference El	evation Interv	val (ft AMSL):		4857			4857		
							Project						[
				NMAC			Screening		Val			Val	ł	
Parameter	Analytical Method	Analyte	CAS	NMWQCC^a	EPA MCL ^b	EPA RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	106-93-4	0.05	0.05	0.075	0.05	ND	U	0.019	15		1.9	
TPH	Method SW8015M (µg/L)	TPH (C28-C40)	TPHC28C40	NS	NS	800	800	_	_	_	ND	U	440	
	(13.)	TPH-DRO (C10-C28)	TPH-DRO	NS	NS	1,300	1,300	ND	U	90	23,000		740	
		TPH-GRO (C6-C10)	TPH-GRO	NS	NS	550	550	ND	U	40	61,000		2000	
VOCs	Method SW8260C (µg/L)	1,1,1,2-Tetrachloroethane	630-20-6	NS	NS	5.7	5.7	ND	U	0.5	ND	U	2.5	
	(p. g, =)	1,1,1-Trichloroethane	71-55-6	200	200	8,000	200	ND	U	0.5	ND	U	2.5	
		1,1,2,2-Tetrachloroethane	79-34-5	10	NS	0.76	10	ND	U	0.5	5.2		2.5	
		1,1,2-Trichloroethane	79-00-5	5	5	2.8	5	ND	U	0.5	ND	U	2.5	
		1,1-Dichloroethane	75-34-3	25	NS	28	25	ND	U	0.5	ND	U	2.5	
		1,1-Dichloroethene	75-35-4	7	7	280	7	ND	U	0.5	ND	U	2.5	
		1,1-Dichloropropene	563-58-6	NS	NS	NS	NS	ND	U	0.5	ND	U	2.5	
		1,2,3-Trichlorobenzene	87-61-6	NS	NS	7	7	ND	U	1	ND	U	5	
		1,2,3-Trichloropropane	96-18-4	NS	NS	0.0075	0.05 ^e	ND	U	0.5	1.2	J	2.5	
		1,2,4-Trichlorobenzene	120-82-1	70	70	12	70	ND	U	1	ND	U	5	
		1,2,4-Trimethylbenzene	95-63-6	NS	NS	56	56	ND	U	2	280		10	
		1,2-Dibromo-3-chloropropane	96-12-8	NS	0.2	0.0033	1 ^e	ND	U	1	ND	U	5	
		1,2-Dibromoethane	106-93-4	0.05	0.05	0.075	0.05	ND	U	0.5	140		2.5	
		1,2-Dichlorobenzene	95-50-1	600	600	300	600	ND	U	0.5	ND	U	2.5	
		1,2-Dichloroethane	107-06-2	5	5	1.7	5	ND	U	0.5	ND	U	2.5	
		1,2-Dichloropropane	78-87-5	5	5	8.5	5	ND	U	0.5	ND	U	2.5	
		1,3,5-Trimethylbenzene	108-67-8	NS	NS	60	60	ND	U	1	82		5	
		1,3-Dichlorobenzene	541-73-1	NS	NS	NS	NS	ND	U	0.5	ND	U	2.5	
		1,3-Dichloropropane	142-28-9	NS	NS	370	370	ND	U	0.5	ND	U	2.5	
		1,4-Dichlorobenzene	106-46-7	75	75	4.8	75	ND	U	0.5	ND	U	2.5	
		2,2-Dichloropropane	594-20-7	NS	NS	NS	NS	ND	U	0.5	ND	U	2.5	
		2-Butanone	78-93-3	NS	NS	5,600	5,600	ND	UJ	1	57		5	
		2-Chlorotoluene	95-49-8	NS	NS	240	240	ND	U	0.5	ND	U	2.5	
		2-Hexanone	591-78-6	NS	NS	38	38	ND	UJ	1	31	J	5	
		4-Chlorotoluene	106-43-4	NS	NS	250	250	ND	U	0.5	ND	U	2.5	
		4-Isopropyltoluene	99-87-6	NS	NS	NS	NS	ND	U	0.5	5.1	J	2.5	

Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Groundwater

						Wel	KAFB-106252-425			KAFB-106S10-443					
				Field Sample ID:								GWS10-204			
							Sample Date:		3/23/202	21		12/30/202	20		
							Sample Type:		REG			REG			
						Sample I	Depth (ft bgs)		463			483			
					Reference El	evation Interv	val (ft AMSL):		4857			4857			
							Project								
				NMAC			Screening		Val			Val			
Parameter	Analytical Method	Analyte	CAS	NMWQCC^a	EPA MCL ^b	EPA RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD		
VOCs	Method SW8260C (µg/L)	4-Methyl-2-pentanone	108-10-1	NS	NS	6,300	6,300	ND	UJ	1	13	J	5		
		Acetone	67-64-1	NS	NS	14,000	14,000	ND	U	2	410		10		
		Acrolein	107-02-8	NS	NS	0.042	5 ^e	ND	U	5	ND	U	25		
		Acrylonitrile	107-13-1	NS	NS	0.52	1 ^e	ND	UJ	1	ND	U	5		
		Benzene	71-43-2	5	5	4.6	5	ND	U	0.5	8,400		25		
		Bromobenzene	108-86-1	NS	NS	62	62	ND	U	0.5	ND	U	2.5		
		Bromochloromethane	74-97-5	NS	NS	83	83	ND	U	0.5	ND	U	2.5		
		Bromodichloromethane	75-27-4	NS	80	1.3	80	ND	U	0.5	ND	U	2.5		
		Bromoform	75-25-2	NS	80	33	80	ND	U	2	ND	U	10		
		Bromomethane	74-83-9	NS	NS	7.5	7.5	ND	U	0.5	ND	U	2.5		
		Carbon disulfide	75-15-0	NS	NS	810	810	ND	U	0.5	ND	U	2.5		
		Carbon tetrachloride	56-23-5	5	5	4.6	5	ND	U	0.5	ND	U	2.5		
		Chlorobenzene	108-90-7	NS	100	78	100	ND	U	0.5	ND	U	2.5		
		Chloroethane	75-00-3	NS	NS	21,000	21,000	ND	U	0.5	ND	U	2.5		
		Chloroform	67-66-3	100	80	2.2	80	ND	U	0.5	ND	U	2.5		
		Chloromethane	74-87-3	NS	NS	190	190	ND	U	0.5	ND	U	2.5		
		cis-1,2-Dichloroethene	156-59-2	70	70	36	70	ND	U	0.5	ND	U	2.5		
		cis-1,3-Dichloropropene	10061-01-5	NS	NS	4.7	4.7	ND	U	0.5	ND	U	2.5		
		Dibromochloromethane	124-48-1	NS	80	8.7	80	ND	U	0.5	ND	U	2.5		
		Dibromomethane	74-95-3	NS	NS	8.3	8.3	ND	U	0.5	ND	U	2.5		
		Dichlorodifluoromethane	75-71-8	NS	NS	200	200	ND	U	0.5	ND	U	2.5		
		Ethylbenzene	100-41-4	700	700	15	700	ND	U	0.8	850		4		
		Hexachloro-1,3-butadiene	87-68-3	NS	NS	1.4	4 ^e	ND	U	4	ND	U	20		
		Isopropylbenzene	98-82-8	NS	NS	450	450	ND	U	0.5	53		2.5		
		m- & p-Xylenes	179601-23-1	NS	NS	NS	NS	ND	U	2	2,700		10		
		Methyl tert-butyl ether	1634-04-4	100	NS	140	100	ND	U	0.5	ND	U	2.5		
		Methylene chloride	75-09-2	5	5	110	5	ND	U	0.5	ND	U	2.5		
		Naphthalene	91-20-3	30	NS	1.2	30	ND	U	2	160		10		
		n-Butylbenzene	104-51-8	NS	NS	1,000	1,000	ND	U	0.5	5	J	2.5		

Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Groundwater

				Well Location ID:					KAFB-106252-425			KAFB-106S10-443			
				Field Sample ID:								GWS10-204			
				Sample Date: Sample Type: Sample Depth (ft bgs) Reference Elevation Interval (ft AMSL):					3/23/202	!1)20			
						:	Sample Type:		REG		REG				
						Sample I	Depth (ft bgs)		463			483			
					Reference El	evation Interv	val (ft AMSL):		4857			4857	-		
							Project						1		
				NMAC			Screening		Val			Val			
Parameter	Analytical Method	Analyte	CAS	NMWQCC ^a	EPA MCL ^b	EPA RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD		
VOCs	Method SW8260C (µg/L)	n-Propylbenzene	103-65-1	NS	NS	660	660	ND	U	0.5	45		2.5		
		o-Xylene	95-47-6	NS	NS	190	190	ND	U	0.8	1,100		4		
		sec-Butylbenzene	135-98-8	NS	NS	2,000	2,000	ND	U	0.5	8	J	2.5		
		Styrene	100-42-5	100	100	1,200	100	ND	U	0.5	ND	U	2.5		
		tert-Butylbenzene	98-06-6	NS	NS	690	690	ND	U	1	ND	U	5		
		Tetrachloroethene	127-18-4	5	5	110	5	ND	U	0.5	ND	U	2.5		
		Toluene	108-88-3	1,000	1,000	1,100	1,000	ND	U	0.5	16,000		250		
		trans-1,2-Dichloroethene	156-60-5	100	100	68	100	ND	U	0.5	ND	U	2.5		
		trans-1,3-Dichloropropene	10061-02-6	NS	NS	4.7	4.7	ND	U	0.5	ND	U	2.5		
		Trichloroethene	79-01-6	5	5	4.9	5	ND	U	0.5	ND	U	2.5		
		Trichlorofluoromethane	75-69-4	NS	NS	5,200	5,200	ND	U	0.5	ND	U	2.5		
		Vinyl acetate	108-05-4	NS	NS	410	410	ND	U	2	ND	U	10		
		Vinyl chloride	75-01-4	2	2	0.19	2	ND	U	0.5	ND	U	2.5		
		Xylenes, total	1330-20-7	620	10,000	190	620	ND	U	2.8	3,800		14		
Metals	Method SW6010C (mg/L)	Calcium	7440-70-2	NS	NS	NS	NS	61		0.15	49		0.15		
		Iron, dissolved	7439-89-6	1.0	NS	14	1.0	ND	U	0.1	0.046	J	0.1		
		Magnesium	7439-95-4	NS	NS	NS	NS	8.2		0.075	8.2		0.075		
		Manganese, dissolved	7439-96-5	0.2	NS	0.43	0.2	0.074		0.0052	0.6		0.0052		
		Potassium	7440-09-7	NS	NS	NS	NS	3.6		0.45	3.2		0.45		
		Sodium	7440-23-5	NS	NS	NS	NS	28		0.5	26		0.5		
	Method SW6020A (mg/L)	Arsenic	7440-38-2	0.01	0.01	0.00052	0.01	ND	U	0.0016	0.00085	J	0.0016		
		Lead	7439-92-1	0.015	0.015	0.015	0.015	0.00011	J	0.00025	ND	U	0.00025		
Anions	Method E300.0 (mg/L)	Bromide	24959-67-9	NS	NS	NS	NS	ND	U	2	ND	U	2		
		Chloride	16887-00-6	250	NS	NS	250	67		15	15		1.5		
		Sulfate	14808-79-8	600	NS	NS	600	61		4.5	14		4.5		
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	NNN	10 ^f	10 ^f	NS	10 ^f	2.1		0.45	ND	U	0.09		
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO3)	ALK-B	NS	NS	NS	NS	91		6	180		6		
		Alkalinity, carbonate (as CaCO3)	ALK-C	NS	NS	NS	NS	ND	U	6	ND		6		
		Alkalinity, total (as CaCO3)	ALK	NS	NS	NS	NS	91		6	180	J	6		

Analytical Results for Total Petroleum Hydrocarbons and Volatile Organic Compounds in Groundwater

^a New Mexico WQCC numeric standards per the NMAC Title 20.6.2.3101A, Standards for Ground Water of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC 2018). For metals, the NMWQCC numeric standard applies to dissolved metals. ^b EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40CFR Part 141, 143 (May 2018).

^c EPA Region 6 RSL for Tapwater (May 2021) for hazard index = 1.0 for noncarcinogens and a 10-5 cancer risk level for carcinogens.

^d The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) New Mexico WQCC numeric standard or (2) EPA MCL. If no New Mexico WQCC standard or MCL exists for any analyte, then the project screening level will be the EPA RSL.

^e The project screening level has been raised to the laboratory limit of detection.

^f Based on the geochemical equilibrium of the site groundwater and previous site data analyses, nitrate/nitrite results represent nitrate concentrations.

 $\mu g/L = microgram per liter$ AFB = Air Force Base AMSL = above mean sea level bqs = below ground surface CFR = Code of Federal Regulations EPA = U.S. Environmental Protection Agency ft = foot (feet)ID = identification LOD = limit of detection MCL = maximum contaminant level mg/L = milligrams per liter MW = monitoring well ND = not detected NMAC = New Mexico Administrative Code WQCC = Water Quality Control Commission NS = not specified REG = normal field sample RSL = regional screening level Val Qual = validation gualifier VOC = volatile organic compound Val Quals based on independent data validation J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated. J+ = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated biased high. J- = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated biased low.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

-- = Validation qualifier not assigned.

Shading = detected concentrations above the detection limit

Bold/Shading = reported concentrations exceed the project screening level

APPENDICES

APPENDICES

A Regulatory Correspondence and Cross-Walk	Table
--	-------

- A-1 Regulatory Correspondence
- A-2 Cross-Walk Table between the RCRA Permit Requirements and the Investigation Report
- B Field Methods
- C Daily Quality Control Reports
- D Lithologic Logs
- E Core Temperature Logs
- F Core Photography
- G Investigation-Derived Waste
- H Photoionization Detector Calibration Logs
- I Geophysical Information
 - I-1 Calibration Report
 - I-2 Geophysical Logs
 - I-3 Logging Report
- J Well Surveys
- K Well Development Documentation
- L Groundwater Purge and Sample Collection Logs
- M Soil Vapor Calibration and Purge Logs
- N Laboratory and Quality Evaluation Reports
 - N-1 Data Quality Evaluation Report
 - N-2 Level 2 Soil Analytical Reports and Excel Data File
 - N-3 Level 2 Soil Vapor Analytical Report and Excel Data File
 - N-4 Level 2 Groundwater Analytical Reports and Excel Data File

APPENDIX A

REGULATORY CORRESPONDENCE AND CROSS-WALK TABLE

APPENDIX A-1

REGULATORY CORRESPONDENCE

Michelle Lujan Grisham Governor

> Howie C. Morales Lt. Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313 Phone (505) 476-6000 Fax (505) 476-6030 <u>www.env.nm.gov</u>

James C. Kenney Cabinet Secretary

Jennifer J. Pruett Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

May 24, 2021

Colonel David S. Miller Base Commander 377 ABW/CC 2000 Wyoming Blvd SE Kirtland AFB, NM 87117 Lt. Colonel Wayne J. Acosta Civil Engineer Office 377 Civil engineer Division 2050 Wyoming Blvd SE, Suite 116 Kirtland AFB, NM 87117

RE: APPROVAL – REQUEST FOR EXTENSION TO SUBMIT THE DATA GAP MONITORING WELL INSTALLATION-INVESTIGATION REPORT FOR WELLS KAFB-106248 to KAFB-106252 BULK FUELS FACILITY SOLID WASTE MANAGEMENT UNITS ST-106 AND SS-111 KIRTLAND AIR FORCE BASE, NEW MEXICO EPA ID# NM6213820974 HWB-KAFB-19-015

Dear Colonel Miller and Lt. Colonel Acosta:

The New Mexico Environment Department (NMED) received the Kirtland Air Force Base (Permittee) letter requesting an extension of time to submit the *Data Gap Monitoring Well Installation-Investigation Report for wells KAFB-106248 to KAFB-106252* (Report), dated May 6, 2021. The Report iss required by the July 9, 2020 Approval with Modifications for the *Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252*. The Permittee requests an extension of time for submittal of the Report due to delays in completing field work due to inclement weather, drilling equipment failure, and equipment maintenance. NMED hereby approves the Permittee's request for an extension; the Report must be submitted to NMED for review no later than **October 12, 2021**, as requested. Col. Miller and Lt. Col. Acosta May 24, 2021 Page 2 of 2

If you have any questions, please contact me at (505) 476-6035.

Sincerely,

Digitally signed by Kevin Pierard Date: 2021.05.24 09:38:09 -06'00'

Kevin M. Pierard, Chief Hazardous Waste Bureau

cc: B. Wear, NMED HWB L. Andress, NMED HWB S. Kottkamp, KAFB K. Lynnes, KAFB C. Cash, KAFB D. Agnew, ABCWUA A. Tafoya, VA

File: KAFB 2021 Bulk Fuels Facility Spill and Reading

Michelle Lujan Grisham Governor

> Howie C. Morales Lt. Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313 Phone (505) 476-6000 Fax (505) 476-6030 <u>www.env.nm.gov</u>

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

THE WIN MERT DEPARTMENT

James C. Kenney Cabinet Secretary

Jennifer J. Pruett Deputy Secretary

July 14, 2020

Colonel David S. Miller Base Commander 377 ABW/CC 2000 Wyoming Blvd SE Kirtland AFB, NM 87117 Lt. Colonel Wayne J. Acosta Civil Engineer Office 377 Civil engineer Division 2050 Wyoming Blvd SE, Suite 116 Kirtland AFB, NM 87117

RE: APPROVAL WITH MODIFICATIONS WORK PLAN FOR DATA GAP MONITORING WELL INSTALLATION KAFB-106248 to KAFB-106252 BULK FUELS FACILITY SOLID WASTE MANAGEMENT UNITS ST-106 AND SS-111 KIRTLAND AIR FORCE BASE, NEW MEXICO EPA ID# NM6213820974 HWB-KAFB-19-015

Dear Colonel Miller and Lt. Colonel Acosta:

The New Mexico Environment Department (NMED) is in receipt of the Kirtland Air Force Base (Permittee or KAFB) *Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252* (Work Plan), dated December 2019. NMED has reviewed the Work Plan and hereby issues this Approval with Modifications.

The attached comments include direction to expedite the characterization of the source area contaminant migration pathway, correct deficiencies in the Work Plan, and provide specific information regarding the sampling of newly installed groundwater monitoring wells. NMED comments are presented in Attachments I and II. NMED and KAFB staff met on May 28, 2020 to discuss relocating one or two of the wells closer to the source area, the associated changes to

Col. Miller and Lt. Col. Acosta July 14, 2020 Page 2 of 2

the scope of the project, and additional NMED comments and questions. NMED sent a list to KAFB describing the changes in scope of work via electronic mail on June 1, 2020.

Please submit replacement pages and proposed borehole locations to NMED no later than **September 15, 2020**. The Permittee shall ensure that all copies of the Work Plan are updated with the NMED-approved replacement pages and that contractors are issued copies of the updated Work Plan so that investigation activities are conducted according to the modified scope provided in this Approval with Modifications letter. The Permittee is advised that if field work is not performed appropriately due to incorrect direction given to field staff, it may result in the Permittee being required to repeat or conduct additional work.

Please submit an investigation report summarizing the results of the implementation of this Work Plan no later than **June 15, 2021**. The report must address all of the comments included in this Approval with Modifications. The report must be submitted to NMED in the form of two hard copies and one electronic copy.

This approval is based on the information presented in the document as it relates to the objectives of the work identified by NMED at the time of review. Approval of this document does not constitute agreement with all information, or every statement presented in the document.

Should you have any questions or wish to meet with us to discuss these comments, please contact me at (505) 476-6035.

Sincerely,

Kevin M. Pierard, Chief Hazardous Waste Bureau

Attachments I and II

cc: S. Stringer, Director NMED RPD D. Cobrain, NMED HWB B. Wear, NMED HWB R. Murphy, NMED HWB L. King EPA Region 6 (6LCRRC) S. Kottkamp, KAFB K. Lynnes, KAFB

File: KAFB 2020 Bulk Fuels Facility Spill and Reading

Attachment I

,

•

APPROVAL WITH MODIFICATIONS COMMENTS:

1. Address contaminant migration pathway data gaps beneath the source area.

NMED Comment: Data gaps remain from the source zone characterization previously performed under the Permittee's *Work Plan for Vadose Zone Coring, Vapor Monitoring, and Water Supply Sampling Bulk Fuels Facility, Solid Waste Management Unit (SWMU) ST-106/SS-111, Kirtland Air Force Base, New Mexico, Revision R1, dated December 2017 and approved with conditions by NMED on February 23, 2018. The results of the investigation were presented in the <i>Source Zone Characterization Report for the Bulk Fuels Facility Solid Waste Management Unit ST-106/SS-111,* received by NMED on October 30, 2019. This Report is currently under NMED review. The review in progress indicates that the migration pathway has not been adequately characterized beneath the source area.

In order to understand the migration of contaminants through the vadose zone beneath the former fuel offloading rack (FFOR), an understanding of the stratigraphy approximately 250-300 feet below ground surface (ft bgs) is essential. The source area contaminants descend essentially vertically from the surface to a depth of approximately 250-350 ft bgs where a distinct clay layer is present. The clay layer is easily identified in drill cores and on geophysical logs. The thickness, lateral continuity, and geometry of this clay layer changes across the site. Directly below the FFOR the clay occurs as a single layer at approximately 275-300 ft bgs (lower clay). East-southeast of the FFOR the clay occurs as a single layer at approximately 250 ft bgs (upper clay). A vertical offset can be identified in the clay layer directly below the FFOR that likely creates a preferential pathway to vertical migration of contaminants. Once contaminants reach the 250-300 foot depth range they appear to migrate predominantly downdip (to the east-southeast) on the lower clay layer and then generally vertically to the water table. Three other data sets support this interpretation of the contaminant migration pathway: the observed lateral offset of elevated volatile organic compound (VOC) concentrations with depth; soil vapor extraction system rebound data; and Pneulog total volatile petroleum hydrocarbons (TVPH) soil gas data. All three data sets show contaminant migration to be predominantly vertical beneath the FFOR to a depth in the 250-300 foot range with a shift in the pathway to the east-southeast before continuing on a vertical downward path to the water table.

As stated in NMED's November 4, 2019 letter, "NMED met with the Permittee on September 26, 2019 to discuss the potential to utilize some of the proposed wells for multiple purposes to address other data gaps, the most important being the further characterization of the source area migration pathway through the vadose zone east of the former location of the bulk fuels loading racks. The Permittee agreed to evaluate the potential..." Therefore, the Permittee is instructed to relocate one or two of the proposed monitoring wells (KAFB-106250 and KAFB-106251) nearer to source area, as shown in Attachment II. In order to reduce cost and accelerate work, borehole(s) may be drilled with air rotary casing hammer techniques (ARCH) to a depth of approximately 230 ft bgs, just above the top of the clay described above. The boreholes must then be continuously cored to the total depth of the borehole and sampled for total petroleum hydrocarbons (TPH) gasoline range organics (GRO) and diesel range organics (DRO) Extended using United States Environmental Protection Agency (EPA) Method 8015 (modified). The total depth must be 10 feet below any field screening evidence of contamination (e.g., photoionization detector (PID) readings greater than 10 parts per million volume (ppmv)) to obtain a consistent detailed vertical profile of the migration pathway and to determine the vertical extent of contamination in the source area. A sample for TPH GRO and DRO Extended must be collected at the total depth of the borehole(s). The borehole(s) must also be geophysically logged. See Attachment II for NMED's proposed location for source area migration pathway boreholes.

The Permittee must provide NMED email notification at certain stages of the drilling process. These stages include but may not be limited to:

- a) initiation and cessation of ARCH drilling,
- b) initiation of sonic drilling,
- c) upon reaching a depth of 300 ft bgs,
- d) upon reaching the water table, and
- e) upon reaching total well depth.

The Permittee's notification to NMED that the driller has reached a depth of 300 ft bgs must include the actual depth bgs and thickness of the clay layer, if it is encountered. If the clay layer is not encountered then the objective of the well will have been achieved, that is, to identify the possible gap in the clay layer located 250 and 300 ft bgs as described above.

If the clay layer is encountered, the Permittee, in consultation with NMED, must make a determination about whether it is the lower or upper clay. If it is determined that the driller has encountered the lower clay, the driller should stop at 300 ft bgs or just below the bottom of the clay and the Permittee must partially backfill the borehole with a bentonite seal and sand. The bentonite must be emplaced with a tremie pipe to approximately 2 ft below the top of the clay followed by one foot of sand to prevent bentonite from entering the well screen. The borehole must then be completed as a soil vapor monitoring well (SVMW) with the lower end of the screen located across the top of the clay layer. The SVMW must be constructed with a 1 foot sump and a 2 foot screen of an appropriate slot size. A SVMW design must be submitted to NMED for review with the Work Plan replacement pages.

If it is determined that the driller has encountered the upper clay only, the driller should advance the borehole to total depth below the water table and the Permittee must complete the well as a dual screen ground water monitoring well as proposed in the Work Plan. Col. Miller and Lt. Col. Acosta July 14, 2020 Attachment I, Page 3 of 15

If the first borehole is not successful in locating the contamination migration pathway (i.e., lower clay has been encountered) then a second borehole location should be selected based on the findings of the first borehole. The proposed second borehole location must be submitted by the Permittee to NMED for approval via electronic mail and approved prior to initiation of drilling.

If the first borehole is successful in locating the contamination migration pathway then the Permittee, in consultation with NMED, must make a determination if a second borehole location should be selected to refine the migration pathway or if the borehole should be used to meet the objectives outlined in the Work Plan. See comments below for further detail.

Upon completion of drilling the first borehole in the source area, the Permittee must provide NMED a copy of the lithologic log(s) by email. After reviewing the lithologic logs, NMED will provide direction for well installation at that location and direction on drilling a second borehole in the source area.

NMED may require the installation of additional groundwater monitoring wells, if the five wells installed pursuant to this Work Plan do not sufficiently address the data gaps.

2. Section 6.0 Monitoring and Sampling, page 6-1, line 28

Permittee Statement: "Beginning in 2016 passive sampling techniques were implemented at select GWM [ground water monitoring] well locations. The transition to passive sampling for select GWM well locations was formally approved by NMED on May 31, 2017 (NMED, 2017. A further passive sampling evaluation was performed in Q4 2017 (Section 3.7.7 of KAFB, 2018b). This evaluation demonstrated that analytical results from passive sampling techniques and analytical results from low-flow sampling techniques are generally comparable between the two sampling methods, with no consistent bias identified (i.e., neither method has consistently resulted in higher or lower concentrations)."

NMED Comment: NMED's May 31, 2017 approval letter approved the change to the use of passive diffusion bags and dual membrane samplers for certain groundwater monitoring wells located north of Ridgecrest Drive in residential areas. NMED did not approve the use of passive sampling south of Ridgecrest Drive, particularly in areas with elevated petroleum hydrocarbon contamination. The passive sampling demonstration evaluation performed in Q4 [fourth quarter] 2017 and presented in the *Quarterly Monitoring Report October-December 2017 and Annual Report for 2017*, dated March 2018, was not reviewed or approved by NMED Hazardous Waste Bureau (HWB).

The Quarterly Monitoring Report-October-December 2018 and Annual Report for 2018, dated March 2019, states "Field parameters [i.e., turbidity, temperature, dissolved oxygen,

specific conductivity, pH, and oxidation reduction potential] were not collected from wells that were sampled using passive sampling methods due to the unreliable field parameter data associated with this technology."

Additionally, an email to NMED from KAFB, dated February 28, 2020, provided data from this evaluation. The data indicates that source area monitoring well KAFB-106053 does not produce "high quality and representative sampling that was highly comparable to low-flow sampling," as indicated in the text of the email. Low-flow sampling results indicated a benzene concentration of 15,000 μ g/L with duplicate results of 16,000 μ g/L, while the passive sampling results for this same well indicated a benzene concentration of 3,700 μ g/L with duplicate a benzene concentration of 3,600 μ g/L. This demonstrates an order of magnitude difference between the sampling methods for this well located in the source area.

3. Section 4.0, Scope of Activities, page 4-1

NMED Comment: The Permittee must revise Section 4.0 of the Work Plan along with corresponding Figures and Tables to incorporate the modifications required by NMED to characterize the source area migration pathway. See individual comments on Section 4.0 revisions below. The Permittee must submit the revised Section 4.0 and corresponding Figures and Tables as replacement pages.

4. Section 4.0, Scope of Activities, page 4-1, line 6

Permittee Statement: "...well locations proposed in this Work Plan are shown on Figure 2-1 and Figure 2-2."

NMED Comment: The Permittee must relocate one or two of the proposed monitoring wells (KAFB-106250 and KAFB-106251) to locations in the source area to determine the source area migration pathway. Propose two new locations within the area identified in Attachment 2. Include a primary location to be drilled first and a secondary location to be drilled should the first borehole not successfully locate the migration pathway.

5. Section 4.0, Scope of Activities, page 4-1, line 9 and Figure 4-1, Proposed Construction Diagram for Groundwater Monitoring Well with Contingency Well and Figure 4-2, Proposed Construction Diagram for Groundwater Monitoring Well KAFB-10624

Permittee Statement: "Four of the five proposed GWM wells (KAFB-106249 through KAFB-106252) will be constructed with the same design employed by the Work Plan for Data Gap Monitoring Well Installation (Section 3.1.1 of [Work Plan for Data Gap Well Installation, 2017]) as shown on the construction diagram (Figure 4-1)."

NMED Comment: All groundwater monitoring wells must be constructed utilizing an appropriate well casing diameter (e.g., four-inch inside diameter) to accommodate

Col. Miller and Lt. Col. Acosta July 14, 2020 Attachment I, Page 5 of 15

equipment, such as low-flow pumps, which can effectively purge wells for active sampling.

6. Section 4.0, Scope of Activities, page 4-2, lines 1 through 16

Permittee Statement: "KAFB-106250 is proposed to be installed in the parking lot of the Air National Guard (ANG) adjacent to the existing well KAFB-106046. This location will help to bound both the EDB [ethylene dibromide] and benzene plumes in this area...KAFB-106251 is also proposed for installation on ANG property, adjacent to the boundary with the BFF [Bulk Fuels Facility]... However, water table wells are needed closer to the source area to more accurately delineate the EDB and benzene plumes in this area.."

NMED Comment: According to Figures 2-1, Proposed Monitoring Well Locations and Q2 [second quarter] 2019 EDB Plume Map, and Figure 2-2, Proposed Monitoring Well Locations and Q2 2019 Benzene Plume Map, wells KAFB-106245 and KAFB-106247 do not have submerged well screens and neither EDB nor benzene were detected in the second quarter of 2019 (Q2 2019). These wells provide delineation of the plumes to the east and east-southeast of the source area; therefore, proposed wells KAFB-106250 and KAFB-106251 are good candidates to be moved to characterize the source area migration pathway.

7. Section 5.0, Scope of Activities, page 4-1

NMED Comment: Please revise Section 5.0 of the Work Plan along with corresponding Figures and Tables to incorporate the modifications required by NMED to characterize the source area migration pathway. See individual comments on Section 5.0 revisions below. The Permittee must submit the revised Section 5.0 and corresponding Figures and Tables as replacement pages.

8. Section 5.0, Scope of Activities, page 4-1

NMED Comment: The Permittee must incorporate / reference the relevant scopes of work from the Vadose Zone Coring, Vapor Monitoring, and Water Supply Sampling Bulk Fuels Facility, Solid Waste Management Unit (SWMU) ST-106/SS-111, Kirtland Air Force Base, New Mexico, Revision R1, dated December 2017, and approved with conditions by NMED on February 23, 2018 (VZ Work Plan), including, but not limited to, the following:

a) Drilling Approach and Methodology as outlined in Section 3.1.1.1, page 3-2 of the VZ Work Plan: "....borings can be cored continuously from ground surface to total depth, these borings will be over-reamed via air rotary casing hammer (ARCH) technique to the nominal 10-inch diameter OR borings can be accomplished using a combination of ARCH drilling to the designated coring depth, followed by sonic drilling [or other continuous core methodology] to obtain undisturbed cores from the designated coring intervals. Upon achieving the top of the designated coring interval depth, the ARCH rig will be moved off each location while leaving the casing downhole, and the sonic [or other continuous core] rigs will be positioned at the cased holes to core the prescribed designated coring intervals and then subsequently reamed with a sufficient size bit with the ARCH drilling rig to provide a large enough borehole for well construction."

- b) Core temperatures must be monitored as outlined on page 3-2 in Section 3.1.1.1, page 3-2 of the VZ Work Plan: "Heating during continuous core collection can impact contaminant, geochemical and microbial properties and adversely affect sample representativeness. In addition to advancing the borehole to the designated coring depth with the ARCH rig, to minimize the heating potential, heating of the sonic drilling core barrels in the unsaturated zone can be controlled by any one or combination of the following:
 - i. Advancing shorter sampling runs (5-10 feet versus 20 feet)
 - ii. Allowing the core barrel to cool (or pre-cooling the core barrel) before tripping back into the borehole
 - iii. Changing the vibration level and rotation speed
 - iv. Injecting small quantities of potable water between the override casing and the core barrel without compromising sample integrity as described in ASTM International D6914/D6914M-16.
 - v. Temperature inside the core will be monitored when returned to the surface to ensure that heating of the core barrel is not impacting sample selection or integrity. Background soil vapor temperatures in the vadose zone have historically averaged from 20 to 22 degrees Celsius (°C). Average groundwater temperatures at the site are 19°C. Any core heating over 20°C will require mitigation steps as outlined above. If water is injected, the bottom few inches of the core intervals that are possibly in contact with water accumulating in the bottom of borehole will be discarded prior to collection of samples. Sonic core barrels in the saturated zone are naturally cooled by the presence of formation water; however, similar steps will be implemented as described above to ensure sample representativeness."
- c) Field Screening for hydrocarbons must be conducted as outlined in Section 3.1.1.3, page 3-3 of the VZ WP, with depths modified as follows: When advancing the borehole to the designated coring interval with ARCH, all cuttings must be logged and PID measurements collected at a minimum of every 10 feet as described in Section 3.2.10 of the VZ WP. Within the designated coring interval, PID readings must be collected every 5 ft. Additional measurements will be collected if qualitative data (e.g., staining, odor, etc.) indicate possible LNAPL. All PID readings shall be recorded on borehole logs.
- d) Laboratory Analyses for Selected Core Samples as outlined in Section 3.1.1.4, page 3-4 of the VZ WP, and modified as follows: Samples for laboratory analyses shall be

collected every 10 ft, additional samples shall be selected based on elevated PID measurements (augmented by lithologic and qualitative data) and sampled for TPH GRO/DRO Extended by EPA Method 8015 (modified) from 230 ft bgs to the total depth of the boring(s), to obtain a consistent detailed vertical profile of the migration pathway.

9. Section 5.1.2 Drilling of Groundwater Monitoring Wells, page 5-2, line 2

Permittee Statement: "All five new monitoring nested wells will be installed via air rotary casing hammer technology with casing advancement."

NMED Comment: The two designated boreholes to be used for the investigation of the source area migration pathway must be continuously cored from 230 ft bgs to total depth. This will provide undisturbed cores for more accurate lithologic logging, field screening, and soil sampling. This can be accomplished using a combination of ARCH drilling to the designated coring depth, followed by sonic or other continuous core drilling method to obtain undisturbed cores from the designated coring intervals.

10. Section 5.1.2.2 Photoionization Detector [PID] and Headspace Screening, page 5-2, line 32

Permittee Statement: "PIDs will be used for breathing zone monitoring during drilling and sampling activities, as well as for field screening of hydrocarbons in soil cuttings during drilling. This instrument monitors volatile organic compounds using a PID with a 9.8-electronvolt (eV), 10.6-eV, or 11.7-eV UV lamp."

NMED Comment: The Permittee must use either a 9.5 eV or 9.8 eV UV lamp for field screening samples to avoid fouling of the lamp due to dust, moisture, or high concentrations of petroleum vapors. If evidence of lamp fouling is observed during use of a PID with a 9.8 eV lamp, the Permittee must switch to a 9.5 eV UV lamp to obtain the most accurate PID readings possible. The Permittee must have an additional PID with the lower lamp strength readily available. Reliable PID readings will result in a consistent detailed vertical profile of the migration pathway. Failure to obtain reliable readings in the potential migration pathway may result in having to drill another boring to obtain accurate readings.

11. Section 5.1.2.2 Photoionization Detector and Headspace Screening, page 5-2, line 37

Permittee Statement: "Record PID measurements at a minimum of every 25 ft of drill cuttings down to 450-ft depth, and then every 10 ft of drill cuttings to total depth following the process below..."

NMED Comment: For boreholes that will be continuously cored, the Permittee must record PID sample measurement, at a minimum, every 10 ft from ground surface to the start of Col. Miller and Lt. Col. Acosta July 14, 2020 Attachment I, Page 8 of 15

coring and every 5 ft from the start of coring to the total depth of the borehole to obtain a detailed vertical profile of the migration pathway.

12. Section 5.1.3 Construction of Groundwater Monitoring Wells, page5-3, line 21

Permittee Statement: "The GWM nested wells will each be constructed using 3-inch diameter Schedule 80 polyvinyl chloride (PVC) casing..."

NMED Comment: The Permittee must construct all wells with well casing of sufficient diameter such that they can be sampled via active sampling techniques (e.g.: four-inch inside diameter well casing to accommodate pumps). See also Comment 5.

13. Geophysical logging of source area boreholes

NMED Comment: The Permittee must add a section to the Work Plan proposing to geophysically log all source area migration pathway investigation bore holes with a dual induction geophysical logging tool. The Permittee must specify approximate depths of interrogation for the tool they propose to use. The tool must be calibrated and operated according to American Society for Testing and Materials (ASTM) standards for geophysical logging and the operation manual for the specific model of logging tool. In the report summarizing the results of the investigation the Permittee must provide shop calibration and daily field calibration data. An electronic copy of raw and processed data must be provided in Excel table format. A visual presentation of the log curve must be presented on a single page in a continuous format rather than as several separate pages. The geophysical log(s) for each well must be displayed with the lithologic log for comparison purposes and a discussion of the results must be included in the main body of the investigation report. Wells that are to be or will be geophysically logged must be designed with PVC centralizers rather than steel centralizers.

14. Section 5.1.3.2 Well Development, page 5-4

NMED Comment:

The Permittee must measure and record the parameters for pH, temperature, conductivity, and turbidity, as shown on the field form presented in Appendix B, Field Forms.

The Permittee must collect groundwater samples within 10 days after well development in accordance with Section 6.5.17.3 of the Permit. Samples must be analyzed in accordance with Table 6-1, Groundwater Monitoring Requirements for Data Gap Wells.

Col. Miller and Lt. Col. Acosta July 14, 2020 Attachment I, Page 9 of 15

15. Section 5.1.3.2 Well Development, page 5-4, line 34

Permittee Statement: "The new wells (KAFB-106248 through KAFB-106252) were designed for passive sampling (Section 6), and the 0.010-inch slot size should minimize formation fines in these wells."

NMED Comment: The new wells must be designed for active sampling techniques. The new wells must be sampled using active sampling (e.g., low-flow sampling) for a minimum of eight consecutive quarters to establish baseline concentrations in order to establish the precision criteria for passive sampling methods for the newly installed wells. While the approved work plans for data gap well installation and vadose zone coring included passive sampling of newly installed wells, the NMED administrative record does not contain documentation that the use of passive sampling south of Ridgecrest Drive, particularly in areas of elevated contaminant concentrations, has been evaluated or approved by NMED.

16. Section 6.0 Monitoring and Sampling, page 6-1

NMED Comment: The Permittee must revise Section 6.0 of the Work Plan along with corresponding figures and tables to incorporate the modifications required by NMED to characterize the source area migration pathway. See individual comments on Section 6.0 revisions below. The Permittee must submit the revised Section 6.0 and corresponding figures and tables as replacement pages.

17. Section 6.0 Monitoring and Sampling, page 6-1, line 11

Permittee Statement: "All newly installed wells will be sampled for four consecutive quarters to establish baseline concentrations for the parameters listed in Table 6-1."

NMED Comment: The Permittee must collect groundwater samples from all newly installed wells within 10 days after well development in accordance with Section 6.5.17.3 of the Permit, at the next quarterly sampling event, and quarterly thereafter for eight consecutive quarters via active sampling methods (e.g., low-flow) to establish baseline concentrations. These data will be used to establish precision criteria for passive sampling methods for the newly installed wells. Groundwater samples must be analyzed for analytes presented in Table 6-1, Groundwater Monitoring Sampling Requirements for Data Gap Wells, of the Work Plan.

18. Section 6.0 Monitoring and Sampling, page 6-1, line 35

Permittee Statement: "Groundwater sampling will be performed via passive sampling techniques for all new GWM wells covered in this Work Plan, barring any environmental

factors that would preclude the ability to sample with this technology (e.g., significant and continuous LNAPL thickness in the well)."

NMED Comment: Given the concerns stated above, the Permittee must not use passive sampling in areas with elevated petroleum hydrocarbon contamination (i.e., in the vicinity of the source area).

19. Section 6.2 Preparation for Groundwater Well Sampling, page 6-3, line 2

Permittee Statement: "All wells covered in this Work Plan will be sampled via passive sampling technology and, therefore, well purging will not be required in association with sampling"

NMED Comment: The Permittee must add active sampling (e.g., low-flow) to relevant portions of Section 6.0. See the preceding comments regarding passive sampling.

20. Section 6.2.1 Collection of Groundwater Samples from Monitoring Wells Using Passive Sampling Techniques, page 6-3, line 19

Permittee Statement: "The procedures below will be followed for passive sampling."

NMED Comment: As stated previously, active sampling techniques are required. Please include a section describing the procedures for active sampling in the modified Section 6.0 replacement pages and remove the description for passive sampling.

21. Section 6.3 Analytical Requirements and Quality Control, page 6-4, line 31

NMED Comment: The Permittee must revise Section 6.3 of the Work Plan along with the relevant figures and tables to include the additional sampling required for the modified scopes of work in the modified Section 6.0 replacement pages.

22. Section 6.3 Analytical Requirements and Quality Control, page 6-4, line 31

NMED Comment: The Permittee must include a data validation section of the Report which describes the data validation process outlined in this Section 6.3 of the Work Plan. Data validation shall be conducted in accordance with Permit Section 6.5.18.

23. Section 6.5.2 Hazardous Water Investigation-Derived Waste, page 6-6, line 30

Permittee Statement: "No hazardous/potentially hazardous [investigation-derived waste] IDW is anticipated to be generated from the activities outlined in this Work Plan."

Col. Miller and Lt. Col. Acosta July 14, 2020 Attachment I, Page 11 of 15

NMED Comment: This statement must be revised in the modified Section 6.0 replacement pages. The modified scope of work requires drilling and well development activities in the source area which may generate potentially hazardous IDW. Provide a description of the proposed management of hazardous IDW. Alternately, propose to dispose of purge / development water in the on-site groundwater treatment system that treats groundwater removed from recovery wells located north of Ridgecrest Drive.

24. Section 7 Project Schedule, page 7-1, line 1

NMED Comment: The Permittee must revise Section 7.0 of the Work Plan along with corresponding figures and tables to incorporate the modifications required by NMED to characterize the source area migration pathway. See individual comments on Section 7.0 revisions below. The Permittee must submit the revised Section 7.0 section as replacement pages.

25. Table 6-1, Groundwater Monitoring Sampling Requirements for Data Gap Wells

NMED Comment: Baseline sampling of newly installed wells must include quarterly sampling for GRO, DRO, and volatile organic compounds. The sampling frequency and analytical suite will be re-evaluated after the initial post-development sampling plus eight quarters of baseline sampling.

26. Table 6-3, Summary of Investigation-Derived Waste Sampling

NMED Comment: Under the portion of the table titled "Water Investigation-Derived Waste from Drilling", the Permittee indicates that post development water will be characterized by a sample taken from "the bailer at end of development". The Permittee is directed to take a composite sample of water from all containers of development water from each well. The contaminant concentrations in the development water may be higher or lower at the start of well development than at the end of development. A composite sample will provide a more accurate representation of contaminant concentrations in the IDW.

27. Appendix B, Field Forms

NMED Comment: The Borehole/Well Construction Log must include well details for all wells to be installed in a single borehole. The example field form shows only one well while the scope of work proposes two wells per borehole. The field form must include well details for installing two wells in each borehole.

28. Appendix C, Eurofins Lancaster Laboratories Environmental [Limited Liability Company] LLC Method Reporting Limits and Screening Criteria

NMED Comment: The Permittee must add a table which presents relevant Method Reporting Limits for soil analyses for the modified scope of work outlined in this Approval with Modifications letter.

29. Appendix C, Eurofins Lancaster Laboratories Environmental LLC Method Reporting Limits and Screening Criteria

NMED Comment: The Permittee must ensure that the limit of quantitation (LOQ) is less than the project screening levels. If this cannot be achieved by the laboratory due to the dilution of samples or other reason, the new LOQ, and all data qualifiers must be reported. Data tables in the investigation report must present the final limit of detection (LOD), LOQ, sample results, and all laboratory data qualifiers for the analytical results. No revision to Work Plan required.

SPECIFIC COMMENTS:

30. Section 2.1, Background Information, page 2-1, line 5

NMED Comment: The Permittee must include a more complete site history in the investigation report. The background information / site history must include a comprehensive summary of the subsurface field investigations that have contributed to the understanding of the site conceptual model and hydrogeology. The Report must also include a more detailed discussion of current water use and the influence of water supply wells on the hydrology and dissolved phase contaminant migration at the site. Discuss the impact these factors may have on projected future use of the water supply wells.

31. Section 2, Background Information, page 2-1, line 34

Permittee Statement: "Appendix A-1...illustrates groundwater elevations from 2011 through 2018 along two transects through the [ethylene dibromide] EDB plume. These time series graphs illustrate that the most pronounced increases in groundwater elevation are in the northern area of the site."

NMED Comment: Appendix A-1, Water Level Hydrographs, does not clearly illustrate this. It is difficult to ascertain trends with the bar graphs presented. Significant differences between the southern and northern portions of the site are not readily apparent. In future documents the Permittee must present data trends in an easy to interpret format. In addition, on Figure L-2-1, Groundwater Elevation Cross Section, three drinking water supply wells are shown on the figure but are not identified in the legend. Other figures had to be

Col. Miller and Lt. Col. Acosta July 14, 2020 Attachment I, Page 13 of 15

consulted to identify these wells. In future documents the Permittee must include all pertinent symbols in the legends of figures. No revision is necessary.

32. Section 2, Background Information, page 2-1, line 45 and page 2-2, line1

Permittee Statement: "Appendix A-1 includes compiled potentiometric surface maps, EDB plume maps, and benzene plume maps at the 4,857 reference elevation interval (REI)..."

NMED Comment: In the investigation report the Permittee must add a brief explanation of REI's at the site including the depth intervals they represent in both words and numbers (e.g., "the 4,857 REI represents wells screened in the shallow zone at depths ranging from approximately X ft bgs to X ft bgs.") and include a figure / table for visual clarification of this term.

33. Section 2.2, Initial Data Gap Groundwater Wells and Vadose Zone Coring Activities, page 2-2, line 38

Permittee Statement: "The Source Zone Characterization Report...describes the complete suite of analyses performed to characterize LNAPL in the soil cores. The report also describes the conclusions of the LNAPL analyses."

NMED Comment: The Source Zone Characterization Report is currently in review by NMED and has not yet been approved. In future documents the Permittee must refrain from referencing documents that have not been approved by NMED, as it could be misleading to stakeholders reviewing documents. If referencing such documents is necessary, the Permittee must add a statement stating the official status of the referenced document (e.g., "currently in review by NMED".)

34. Section 3.0, Site Conditions, page 3-1, line 14

Permittee Statement: "The groundwater elevation graphs shown in Appendix A-1, illustrate that the operation of the Ridgecrest wellfield has a significant influence on the groundwater gradient at SWMUs ST-106/SS-111. Measurements from 2010 to 2015 indicated a north–northeast-oriented hydraulic gradient toward the Ridgecrest wellfield (Section 7.6.1.2 of KAFB, 2018a). However, with changes in Water Authority and Kirtland AFB pumping practices, the hydraulic gradient no longer has a consistent orientation each quarter. As described in the Q2 2018 report (Section 5.4.4.1 of KAFB, 2018c), the observed rise in groundwater levels across the plume area has occurred at the same time as a continual decrease in groundwater extraction at the Ridgecrest wellfield."

NMED Comment: Appendix A-1 does not clearly depict this. See Comments 35 and 36.

Col. Miller and Lt. Col. Acosta July 14, 2020 Attachment I, Page 14 of 15

35. Section 3.0, Site Conditions, page 3-1, line 41

Permittee Statement: "Currently, these exceedances of EDB and benzene cannot be accurately bounded because GWM wells with non-detect concentrations of EDB and benzene to the southeast have submerged well screens."

NMED Comment: According to Figures 2-1, Proposed Monitoring Well Locations and Q2 2019 EDB Plume Map, and Figure 2-2, Proposed Monitoring Well Locations and Q2 2019 Benzene Plume Map, the southeast boundaries of both the benzene and EDB plumes are bounded by groundwater monitoring wells KAFB-106245 and KAFB-106247, neither of which have submerged well screens. According to these figures it appears that the southern and southwestern boundaries of these plumes are not bounded by any wells which do not have submerged well screens. Proposed groundwater monitoring well KAFB-106252 will close the southern data gap, however, additional wells may need to be installed in the future to delineate the southwestern edge of these plumes. No response required.

36. Section 6.4 Reporting, page 6-5, line 25

Permittee Statement: "Information and data collected during any quarter from drilling, installation, sampling, and gauging activities performed on the newly added monitoring wells will be submitted in SWMUs ST-106/SS-111 Quarterly Monitoring Reports."

NMED Comment: In accordance with Section 6.2.2.1.2, Site Investigations, Investigation Reports, and Section 6.2.4.3, Reporting Requirements, Investigation Reports of the KAFB Resource Conservation and Recovery Act (RCRA) Permit the information and data collected from all investigation activities related to this Work Plan must be submitted to NMED as a separate stand-alone Investigation Report.

37. Section 8.0 References, page 8-2, line 1

Permittee Statement: The Permittee cites, "KAFB, 2019c. *Source Zone Characterization Report Bulk Fuels Facility, SWMUs ST-106/SS-111.* Prepared by EA Engineering, Science, and Technology, Inc., PBC for USACE Albuquerque District under USACE Contract No. W912DR-12-D-006. November."

NMED Comment: The Permittee is reminded not to include references for documents that have not been approved by NMED.

Col. Miller and Lt. Col. Acosta July 14, 2020 Attachment I, Page 15 of 15

38. Appendix A-2 HISTORICAL GROUNDWATER PLUME MAPS

NMED Comment: The Permittee is reminded that all appendices must have properly numbered pages, tables, and figures. For example, the figure numbers presented in Appendix A-2 include five Figure 3-3's, three Figure 3-6's, two Figure 3-7's, three Figure 3-9's, and two Figure 3-10's. There is no Figure 3-1, Figure 3-2, Figure 3-4, Figure 3-5, or Figure 3-8. In all future submittals all figures, tables, and pages must be renumbered sequentially for the specific appendices they are placed in and include cross-references to corresponding tables and figures in referenced documents.

e

Attachment II

-

. T

July 14, 20

Col. Miller and Lt. Col. Acosta

Attachment II, Page 1 of 1

Figure 1: Site map of KAFB Bulk Fuels Facility. The blue polygon represents the area proposed by NMED for relocating boreholes KAFB-106250 and KAFB-106251. Aerial imagery from Google Earth Pro, 2018.

Michelle Lujan Grisham Governor

> Howle C. Morales Lt. Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313 Phone (505) 476-6000 Fax (505) 476-6030 <u>www.env.nm.gov</u>

James C. Kenney Cabinet Secretary

Jennifer J. Pruett Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

November 4, 2019

Colonel David S. Miller Base Commander 377 ABW/CC 2000 Wyoming Blvd SE Kirtland AFB, NM 87117

Lt. Colonel Wayne J. Acosta Civil Engineer Office 377 Civil Engineering Division 2050 Wyoming Blvd SE, Suite 116 Kirtland AFB, NM 87117

RE: REQUIREMENT TO SUBMIT WELL INSTALLATION WORK PLAN KIRTLAND AIR FORCE BASE, NEW MEXICO EPA ID # NM9570024423 HWB-KAFB-BFF-MISC

Dear Colonel Miller and Colonel Acosta:

The New Mexico Environment Department (NMED), during the August 2019 Kirtland Air Force Base (Facility) Bulk Fuels Facility Technical Working Group Meeting, was informed by the U.S. Air Force (Permittee) that the Permittee was proposing to install five new monitoring wells in order to support and refine its vadose zone modeling effort.

NMED met with the Permittee on September 26, 2019 to discuss the potential to utilize some of the proposed wells for multiple purposes to address other data gaps, the most important being the further characterization of the source area migration pathway through the vadose zone east of the former location of the bulk fuels loading racks. The Permittee agreed to evaluate the potential and to provide NMED with a date for submittal of the work plan in late October.

In a conference call on October 29, 2019 between the Permittee and NMED, the parties agreed to a work plan submittal date in late December prior to the Christmas holiday.

•

Col. Miller and Lt. Col. Acosta November 4, 2019 Page 2

As discussed in the conference call, the Permittee must submit a work plan to install a minimum of five wells to NMED for approval no later than **December 20, 2019**. The work plan must include the requirements for a work plan as described in the Facility's RCRA Permit section 6.2.4.2 and a proposed schedule for completion of field activities and submittal of a report summarizing the well installation activities and data collection.

If you have any questions regarding this letter, please contact Ben Wear at (505) 476-6041.

Sincerely,

Dave Cobrain Program Manager Hazardous Waste Bureau

cc: B. Wear, NMED HWB R. Murphy, NMED HWB M. Suzuki, NMED HWB L. King, EPA Region 6 (6LCRRC) S. Clark, KAFB

File: KAFB 2019 and Reading

Bockisch, Bernard

From:	KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <sheen.kottkamp.1@us.af.mil></sheen.kottkamp.1@us.af.mil>
Sent:	Monday, November 16, 2020 4:43 PM
То:	Bockisch, Bernard
Subject:	FW: Follow up on Friday's call on source area drilling

Bernie, see below. Sheen

From: Andress, Lane, NMENV <Lane.Andress@state.nm.us>
Sent: Monday, November 16, 2020 4:28 PM
To: Moayyad, Behnaum CIV USARMY CESPA (USA) <Behnaum.Moayyad@usace.army.mil>; KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW
<sheen.kottkamp.1@us.af.mil>; Cobrain, Dave, NMENV <dave.cobrain@state.nm.us>
Subject: [Non-DoD Source] RE: Follow up on Friday's call on source area drilling

Mr. Moayyad and Mr. Kottkamp,

NMED has reviewed the proposed construction diagram for KAFB-106V3. NMED approves the construction diagram with the following conditions:

- 1. Complete the soil vapor wells utilizing a well screen with a 0.01 slot size. The use of 10/20 sand is best, however the 12/20 sand will be sufficient.
- 2. The boring may be backfilled with filter pack sand to 281 ft bgs followed by carefully placed bentonite utilizing a tremie pipe. Ensure proper hydration of the bentonite to form a good seal.

NMED has review the lithologic log for the placement of the shallow soil vapor points and notes the following:

- 1. There was no geologic logging from 0-8 ft bgs, it is uncertain where the shallowest vapor point from 5-7 ft bgs will be, it could be placed in either topsoil or backfill.
- 2. The shallow vapor point from 13-15 ft bgs is being place in a clay.

It is not clear to NMED what the value of the data obtained from these two shallow soil points would be.

Please contact me if you have any questions or concerns,

Thank you, Lane

Lane Andress, P.G. NMED - Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 From: Moayyad, Behnaum CIV USARMY CESPA (USA) <<u>Behnaum.Moayyad@usace.army.mil</u>>
Sent: Monday, November 16, 2020 12:44 PM
To: Andress, Lane, NMENV <<u>Lane.Andress@state.nm.us</u>>; KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <<u>sheen.kottkamp.1@us.af.mil</u>>; Cobrain, Dave, NMENV <<u>dave.cobrain@state.nm.us</u>>; KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <<u>sheen.kottkamp.1@us.af.mil</u>>; Cobrain, Dave, NMENV <<u>dave.cobrain@state.nm.us</u>>; KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <<u>sheen.kottkamp.1@us.af.mil</u>>; Cobrain, Dave, NMENV <<u>dave.cobrain@state.nm.us</u>>; KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <<u>sheen.kottkamp.1@us.af.mil</u>>; Cobrain, Dave, NMENV <<u>dave.cobrain@state.nm.us</u>>
Subject: [EXT] RE: Follow up on Friday's call on source area drilling
Importance: High

Mr. Cobrain and Ms. Andress,

Please see attached proposed construction diagram for KAFB-106V3 provided on behalf of the Air Force. Construction can begin tomorrow with your concurrence.

Please note that a 1-ft sump is not currently available and would have to be cut and threaded to size. A 2-ft sump has been substituted to prevent field delays.

Thank you, Ben Moayyad USACE-Albuquerque Mobile: (505) 639-3195

From: Andress, Lane, NMENV <<u>Lane.Andress@state.nm.us</u>>
Sent: Monday, November 16, 2020 8:30 AM
To: KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <<u>sheen.kottkamp.1@us.af.mil</u>>; Moayyad, Behnaum CIV USARMY CESPA (USA)
<<u>Behnaum.Moayyad@usace.army.mil</u>>; Cobrain, Dave, NMENV <<u>dave.cobrain@state.nm.us</u>>
Cc: Andress, Lane, NMENV <<u>Lane.Andress@state.nm.us</u>>
Subject: [Non-DoD Source] Follow up on Friday's call on source area drilling

Sheen and Ben, Just to follow up:

First of all, thank you both for your working with us on this, it is much appreciated.

This current boring will be completed as KAFB-106V3, a soil vapor monitoring well screened across the clay, as described in NMED's approval with modifications letter, to be able to check for LNAPL accumulation on top of the clay in this location. This well will be constructed of 3" PVC casing to accommodate the geophysical logging tools and be constructed with 5 ft screen (vs the 2 ft in NMED's letter) with the screen from 266-271 ft bgs and the sump from 271 to 272 ft bgs. This well will also include a shallow soil vapor monitoring well to 25 ft bgs. KAFB will send NMED a construction diagram for approval.

KAFB-106V3 will be geophysically logged with gamma neutron and dual induction.

Attached is a map with the updated step out location for the utility clearance. Thank you for assisting with this Sheen.

Please let me know if you have any questions or concerns.

Lane

Lane Andress, P.G. NMED - Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6313 Office: 505-476-6059

Bockisch, Bernard

From:	KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <sheen.kottkamp.1@us.af.mil></sheen.kottkamp.1@us.af.mil>
Sent:	Tuesday, December 8, 2020 8:45 AM
То:	Behnaum.Moayyad (Behnaum.Moayyad@usace.army.mil); Phaneuf, Mark J SPA; Phil Lovato; Dreeland, Linda E CIV USARMY CESPA (USA); Bockisch, Bernard; Rachel Hobbs, PG, PMP
Subject:	FW: Response to your request for a summary of the step-out boring issue
Attachments:	Justification for Well KAFB-106S10A_V2_12-4-20.pdf

FYSA and file. Sheen

From: Pierard, Kevin, NMENV <Kevin.Pierard@state.nm.us>
Sent: Monday, December 7, 2020 5:09 PM
To: LYNNES, KATHRYN D HQE USAF AFGSC 377 MSG/SAF/IEE <kathryn.lynnes@us.af.mil>
Cc: SEGURA, CHRISTOPHER G GS-14 USAF AFCEC/CZO <christopher.segura.2@us.af.mil>; KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW
<sheen.kottkamp.1@us.af.mil>; GILLESPIE, JOHN L GS-14 USAF HAF AFCEC/CZTE <john.gillespie.3@us.af.mil>; Stapleton, Mark <Mark.Stapleton@noblis.org>; Stringer, Stephanie, NMENV <Stephanie.Stringer@state.nm.us>
Subject: [Non-DoD Source] RE: Response to your request for a summary of the step-out boring issue

Kate – Thank you for expanding upon your verbal request to abandon boring KAFB-106S10 rather than completing it as a monitoring well. We have considered your request and continue to believe completion of the well at this location would be appropriate and beneficial. I have attached the rationale for this decision. Please let us know if you have any questions.

From: LYNNES, KATHRYN D HQE USAF AFGSC 377 MSG/SAF/IEE <<u>kathryn.lynnes@us.af.mil</u>> Sent: Thursday, December 3, 2020 2:46 PM To: Pierard, Kevin, NMENV <<u>Kevin.Pierard@state.nm.us</u>> Cc: SEGURA, CHRISTOPHER G GS-14 USAF AFCEC/CZO <<u>christopher.segura.2@us.af.mil</u>>; KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <<u>sheen.kottkamp.1@us.af.mil</u>>; GILLESPIE, JOHN L GS-14 USAF HAF AFCEC/CZTE <<u>iohn.gillespie.3@us.af.mil</u>>; Stapleton, Mark <<u>Mark.Stapleton@noblis.org</u>>; Stringer, Stephanie, NMENV <<u>Stephanie.Stringer@state.nm.us</u>>

Subject: [EXT] Response to your request for a summary of the step-out boring issue

Hi Kevin:

As we discussed during our 01 December 2020 conference call, the Air Force is proposing to abandon the KAFB-106S10 step-out boring rather than completing it as a monitoring well. A summary of the rationale for this change is provided below.

According to the approved work plan, Work Plan For Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 and KAFB-106S10 Bulk Fuels Facility, Solid Waste Management Units ST-106/SS-111 dated September 2020, the primary objective of the source area part of this effort was to identify the single point of discontinuity where the LNAPL from the fuel leak migrated down to the water table. This would be achieved by identifying the single point where no upper or lower clay units exist and, based on Figure 5.1 in the approved work plan, would be declared the migration pathway.

The work plan identified an initial boring location and allowed for a step-out boring if a discontinuity was not found. The initial boring location encountered a significant clay layer, which was not expected based upon both NMED's and the Air Force's review of the available logs. As result NMED and the Air Force held a conference call on 13 November 2020 to select a step-out boring location. The Air Force's subject matter expert(s) indicated during the 13 November 20 conference call with NMED that the step-out location that had the greatest chance of identifying the point of discontinuity was west of the proposed coring location KAFB-106V3 (see attached Tech Memo). NMED instead directed the Air Force to drill the step-out boring KAFB-106S10 in the location shown on the attached figure. Unfortunately, the KAFB-106S10 step-out boring also encountered significant clay at both the upper and lower units and failed to achieve its overall objective. In other words, neither location identified the LNAPL migration pathway to the aquifer.

An additional monitoring well at this location will provide no additional resolution to the nature and extent of contamination at this site. KAFB already has a significant number of monitoring points surrounding the KAFB-106V3 coring location as well as KAFB-106S10 step-out location (see Figures 2.2 and 2.3 of the approved work plan). The BFF monitoring network in this area is comprised of 35 monitoring wells. Seventeen of those wells have submerged screens, which are available to monitor the dissolved phase plume in the source area. Eighteen monitoring wells that have screens extending above the water table which are available for both LNAPL monitoring and dissolved phase plume monitoring. In addition, the KAFB-106S10 step out location is in close proximity to KAFB-106154-484 which is not a submerged point.

Lastly, of the 35 groundwater monitoring wells, seven were coring locations that were completed as groundwater monitoring wells that were used to determine submerged saturated residual concentrations on-base. The addition of the saturated matrix coring sampling at the KAFB-106S10 step-out location will provide valuable information for conceptual site model and the overall mass determination for the Corrective Measure Evaluation (CME).

Finally, the Air Force posits that upon the completion of the coring at KFB-106S10 step-out and the installation of the five additional data gap monitoring wells at the approved target locations, that the sufficient data exist in multiple horizons both on base and off that the nature and extent of contamination has been satisfied. Any additional modifications or drilling requests will delay the completion of RFI Phase 2 project completion by several more years.

With the abundance of monitoring wells and coring locations in the immediate subject area, the USAF does not believe that an additional groundwater monitoring well at the KAFB-106S10 step-out location is necessary and will provide no additional illumination on the nature and extent of contamination in the source area. The Air Force requests that upon the completion of the KAFB-106S10, given its redundant nature, that the well casings not be installed and the well borehole be properly abandoned. Given the time sensitive nature of this request (coring of KAFB-106S10 step-out is scheduled to be completed by Monday 7 December 20), we would like to receive your concurrence on this request by COB on 7 December 20.

Thank you for taking the time to meet with us and to work collaboratively to resolving this friction point. We hope that additional meetings and conversations can be conducted like this in the future to minimize and reduce the time to get the CME phase of project.

Regards,

Kate

Kathryn (Kate) Lynnes Senior Advisor, SAF/IEE Bulk Fuels Facility Remediation 2000 Wyoming Blvd. SE Kirtland AFB, NM 87117 Office: 505-846-8703

Brandon, Alan

From:	Moayyad, Behnaum CIV USARMY CESPA (USA) <behnaum.moayyad@usace.army.mil></behnaum.moayyad@usace.army.mil>
Sent:	Monday, November 16, 2020 9:43 AM
То:	Bockisch, Bernard; Brandon, Alan; Sheen Kottkamp; Ryan Wortman (ryan.wortman.3 @us.af.mil); Mark Stapleton; Rod Reeve (Rodneyr@ageiss-inc.com); Bryan Banks (jesse.banks@us.af.mil); RENAGHAN, BRIAN J GS-13 USAF AFMC AFCEC/CZRX (brian.renaghan@us.af.mil); Cordova, Amy Elizabeth CIV USARMY CESPA (USA); Phaneuf, Mark J CIV USARMY CESPA (USA); Earthman, Matthew A CIV USARMY CESPA (USA)
Subject:	FW: Follow up on Friday's call on source area drilling
Attachments:	NMED proposed location as discussed in meeting.pdf

See slightly revised step-out location from NMED, per the call on Friday.

Thanks, Ben Moayyad USACE-Albuquerque

1

From: Andress, Lane, NMENV <Lane.Andress@state.nm.us> Sent: Monday, November 16, 2020 8:30 AM To: KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <sheen.kottkamp.1@us.af.mil>; Moayyad, Behnaum CIV USARMY CESPA (USA) <Behnaum.Moayyad@usace.army.mil>; Cobrain, Dave, NMENV <dave.cobrain@state.nm.us> Cc: Andress, Lane, NMENV <Lane.Andress@state.nm.us> Subject: [Non-DoD Source] Follow up on Friday's call on source area drilling

Sheen and Ben, Just to follow up:

First of all, thank you both for your working with us on this, it is much appreciated.

This current boring will be completed as KAFB-106V3, a soil vapor monitoring well screened across the clay, as described in NMED's approval with modifications letter, to be able to check for LNAPL accumulation on top of the clay in this location. This well will be constructed of 3" PVC casing to accommodate the geophysical logging tools and be constructed with 5 ft screen (vs the 2 ft in NMED's letter) with the screen from 266-271 ft bgs and the sump from 271 to 272 ft bgs. This well will also include a shallow soil vapor monitoring well to 25 ft bgs. KAFB will send NMED a construction diagram for approval.

2

KAFB-106V3 will be geophysically logged with gamma neutron and dual induction.

Attached is a map with the updated step out location for the utility clearance. Thank you for assisting with this Sheen.

Please let me know if you have any questions or concerns.

Lane

Lane Andress, P.G. NMED - Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6313 Office: 505-476-6059

3

Bockisch, Bernard

From:	KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <sheen.kottkamp.1@us.af.mil></sheen.kottkamp.1@us.af.mil>
Sent:	Monday, November 16, 2020 12:08 PM
То:	Moayyad, Behnaum CIV USARMY CESPA (USA); Phaneuf, Mark J CIV USARMY CESPA (USA); Dreeland, Linda E CIV USARMY CESPA (USA); Lovato, Phillip J CIV USARMY CESPA (USA); Bockisch, Bernard; Rachel Hobbs, PG, PMP
Cc:	LYNNES, KATHRYN D HQE USAF AFGSC 377 MSG/SAF/IEE; SEGURA, CHRISTOPHER G GS-14 USAF AFCEC/CZO; WORTMAN, RYAN J GS-13 USAF AFCEC AFCEC/CZO; Stapleton, Mark
Subject:	FW: Follow up on Friday's call on source area drilling
Attachments:	NMED proposed location as discussed in meeting.pdf

FYSA and file. Sheen

From: Andress, Lane, NMENV <Lane.Andress@state.nm.us>
Sent: Monday, November 16, 2020 8:30 AM
To: KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <sheen.kottkamp.1@us.af.mil>; Moayyad, Behnaum CIV USARMY CESPA (USA)
<Behnaum.Moayyad@usace.army.mil>; Cobrain, Dave, NMENV <dave.cobrain@state.nm.us>
Cc: Andress, Lane, NMENV <Lane.Andress@state.nm.us>
Subject: [Non-DoD Source] Follow up on Friday's call on source area drilling

Sheen and Ben, Just to follow up:

First of all, thank you both for your working with us on this, it is much appreciated.

This current boring will be completed as KAFB-106V3, a soil vapor monitoring well screened across the clay, as described in NMED's approval with modifications letter, to be able to check for LNAPL accumulation on top of the clay in this location. This well will be constructed of 3" PVC casing to accommodate the geophysical logging tools and be constructed with 5 ft screen (vs the 2 ft in NMED's letter) with the screen from 266-271 ft bgs and the sump from 271 to 272 ft bgs. This well will also include a shallow soil vapor monitoring well to 25 ft bgs. KAFB will send NMED a construction diagram for approval.

KAFB-106V3 will be geophysically logged with gamma neutron and dual induction.

Attached is a map with the updated step out location for the utility clearance. Thank you for assisting with this Sheen.

Please let me know if you have any questions or concerns.

Lane

Lane Andress, P.G. NMED - Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6313 Office: 505-476-6059

Legend Proposed Water Table Wells NMED Polygon Kirtland Air Force Base Installation Area X X Bulk Fuels Facility Area Source Area Structures Electric Pole Oil/Water Seperator Proposed Water Table Well KAFB-106S10 or Soil Vapor Well KAFB-106V3 - Water Main Water Service Line - Fuel Line Sewer Line Proposed Second Step-out option --- Communications Line Electric Underground Propo d Step-out Location Kirtland Air Force Base NMED Required Site Location **Revised Location** Imagery Source: National Agricultural Imagery Program June 2014 Revision Date: 9/21/2020 for KAFB-106S10 N 50 100 Feet 1 inch = 42 feet Projection: NAD83 State Plane New Mexico Central FIPS3002 Feet COLUMN TWO IS NOT COLUMN 2 COLUMN 2 COLUMN PROPOSED MONITORING WELL LOCATIONS

NMED proposed location as discussed in 11/13/2020 meeting with Air Force

Proviment Dath: M-Withland (2020) Consiste (BEE now well also (NiaDomitEisum Denseed Malle Dia Domit Hillities and

From: Cobrain, Dave, NMENV <dave.cobrain@state.nm.us> Sent: Monday, June 1, 2020 5:25 PM To: KOTTKAMP, SHEEN T GS-13 USAF AFCEC AFCEC/CZOW <sheen.kottkamp.1@us.af.mil>; LYNNES, KATHRYN D HQE USAF AFGSC 377 MSG/SAF/IEE <kathryn.lynnes@us.af.mil> Cc: Pierard, Kevin, NMENV <Kevin.Pierard@state.nm.us>; Murphy, Robert, NMENV <Robert.Murphy@state.nm.us>; Andress, Lane, NMENV <Lane.Andress@state.nm.us>; Wear, Benjamin, NMENV <Benjamin.Wear@state.nm.us> Subject: [Non-DoD Source] data gap well installation scope

Sheen/Kate,

The scope below should help you evaluate any contract adjustments or issues. Please distribute to the appropriate people. We've modified the requirements for sampling from the previous coring conducted over the past couple of years to focus on what we need to meet the objective for the one or maybe two borings at the location we discussed. The other well installations will remain as proposed in the work plan as contract limitations based on the changes may allow. Please get back to us next week on a timeframe for the field work and for providing replacement pages for the work plan. Please call if you want to discuss this further.

Thanks.

Dave

Dave Cobrain

New Mexico Environment Department

Hazardous Waste Bureau

2905 Rodeo Park Drive East Bldg 1

Appendix A

Santa Fe, NM 87505-6313

Main Office Phone 505-476-6000

Direct Line 505-476-6055

Fax 505-476-6030

* Drill one borehole closer to source area with potential for a second if the objective is not achieved with first borehole

* If second borehole is necessary due to encountering clay at approximately 300 feet bgs, complete the first borehole as a SVMW at the depth of the clay

- * Drill at the migration pathway location with ARCH or sonic rig to 230 feet bgs. Drill the other wells with ARCH as proposed in the work plan to TD.
- * Drill with sonic rig in order to collect continuous core from depth of 230 feet bgs to TD at the migration pathway location.
- * Cool core barrel when collecting continuous core
- * Field screening
 - * Log cuttings and collect PID readings every 20 feet from ground surface to 230 feet bgs
 - * Log core and collect samples for lab analysis and PID readings every 5 feet from 230 feet bgs to TD
- * Lab samples
 - * Collect samples for lab analyses every 5 feet from 230 feet bgs to TD; TPH GRO and DRO extended
- * GWMW's must be designed to allow for active sampling methods rather than passive sampling

APPENDIX A-2

CROSS-WALK TABLE BETWEEN THE RCRA PERMIT REQUIREMENTS AND THE INVESTIGATION REPORT

Appendix A-2 Cross-Walk Table Between the RCRA Permit and Investigation Report for Data Gap Monitoring Well Installation

RCRA Permit Part	Permit Requirement	Reference Location in Investigation Report for Data Ga
Part 6	Corrective Action	Section 1 Introduction
Part 6.2.2.1	Site Investigations	Section 1 Introduction
Part 6.2.4.2	Investigation Work Plans	Section 1 Introduction
Part 6.2.4.3	Investigation Reports	Section 1 Introduction
Part 6.5.2	Documentation of Field Activities	Section 4 - Scope of Activities, Appendix B - Field Methods, Appendix C Appendix D - Lithologic Logs, Appendix E -Core Temperature Logs, App K - Well Development Documentation, Appendix L - Groundwater Purg Soil Vapor Calibration and Purge Logs.
Part 6.5.3	Decontamination Procedures	Appendix B - Field Methods
Part 6.5.4	Field Equipment Calibration Procedures	Appendix B - Field Methods, Appendix H - PID calibration logs, Append and Appendix M - Soil Vapor Calibration and Purge Logs.
Part 6.5.5	Sample Handling, Shipping, and Custody Requirements	Appendix B - Field Methods
Part 6.5.5.1	Sample Handling	Appendix B - Field Methods
Part 6.5.5.2	Sample Shipment Procedures	Appendix B - Field Methods
Part 6.5.5.3	Sample Custody	Appendix B - Field Methods
Part 6.5.5.4	Sample Labels	Appendix B - Field Methods
Part 6.5.7	Collection and Management of Investigation Derived Waste	Appendix G - Investigation Derived Waste
Part 6.5.8	Surveying Sample, Well, and Site Feature Locations	Section 5.5.6 Monitoring Well Surveying and Appendix I Well Surveys
Part 6.5.9	Requirements for Exploratory and Well Installation Borings and Exploratory Excavations	Section 5.2 Exploratory Drilling
Part 6.5.10	Requirements for Geophysical Surveys	Section 5.3 Geophysical Logging and Appendix I Geophysics
Part 6.5.11	Requirements for Deep Subsurface Soil, Rock, and Sediment Sampling	Section 5.2.1 Field Screening and Soil Sampling and Section 6.1 Soil S
Part 6.5.13	Field Screening of Soil, Rock, and Sediment Samples	Section 5.2.1 Field Screening and Soil Sampling, Section 5.8 Subsurface Sample Field Screening Results
Part 6.5.14	Field Quality Control for Soil, Rock, and Sediment Sampling	Appendix B - Field Methods
Part 6.5.15	Logging of Soil, Rock, and Sediment Samples	Section 5.2.2 Borehole Logging and Appendix D - Lithologic Logs
Part 6.5.16	Requirements for Soil-Vapor Monitoring	Section 6.4 Subsurface Vapor Sampling
Part 6.5.17	Technical Requirements for Groundwater Investigations	Section 5.5 Monitoring Well Construction and Boring Abandonment
Part 6.5.17.2	Groundwater Levels	Section 5.7 Groundwater Conditions
Part 6.5.17.3	Groundwater Sampling	Appendix B Field Methods
Part 6.5.17.4	Well Purging	Appendix B Field Methods
Part 6.5.17.5	Groundwater Sample Collection	Appendix B Field Methods
Part 6.5.17.6	Field QC for Groundwater Sampling	Appendix B Field Methods

ap N	<i>l</i> onitoring	Well	Installation
------	--------------------	------	--------------

x C - Daily Quality Control Reports, Appendix F - Core Photography, Appendix urge and Sample Logs, and Appendix M -

ndix I-1 - Geophysics Calibration Report,

Sampling

face Air Conditions, and Section 6.2

October 2021

Appendix A-2 Cross-Walk Table Between the RCRA Permit and Investigation Report for Data Gap Monitoring Well Installation

RCRA Permit Part	Permit Requirement	Reference Location in Investigation Report for Data Ga
Part 6.5.17.10	Groundwater Monitoring Well Construction Requirements	Section 5.5 Monitoring Well Construction and Boring Abandonment
Part 6.5.17.10.1	Drilling Methods	Section 4 Scope of Activities and Section 5.2 Exploratory Drilling Investig
Part 6.5.17.10.2	Monitoring Wells and Piezometers Construction	Section 5.5 Monitoring Well Construction and Boring Abandonment
Part 6.5.17.10.3	Well and Piezometer Construction Materials	Section 5.5 Monitoring Well Construction and Boring Abandonment
Part 6.5.17.10.4	Design and Construction of Screens and Filter Packs	Section 5.5 Monitoring Well Construction and Boring Abandonment
Part 6.5.17.10.5	Design and Construction of Annular Seals	Section 5.5 Monitoring Well Construction and Boring Abandonment
Part 6.5.17.10.6	Well and Piezometer Development Methods	Section 5.5 Monitoring Well Construction and Boring Abandonment and Documentation
Part 6.5.17.10.7	Surface Completion Methods	Section 5.5 Monitoring Well Construction and Boring Abandonment
Part 6.5.17.10.10	Well and Piezometer Construction Diagrams, Logs, and Boring Logs	Appendix D Lithologic Logs
Part 6.5.18	Laboratory Analyses Requirements for all Environmental Media	Section 6.1 Soil Sampling, Section 6.4 Subsurface Sampling, and Secti Analytical Results
Part 6.5.18.1	Laboratory QA/QC Requirements	Section 6.3.3 Source Area Soil Laboratory Analytical Data Review and L Laboratory Anayltical Data Review and Usability, and Section 6.5.2 Anal
Part 6.5.18.2	Laboratory Deliverables	Appendix N-2 - Level 2 Soil Analytical Reports and Excel Data File, App and Excel Data File, and Appendix N-4 - Groundwater Analytical Report
Part 6.5.18.3	Review of Field and Laboratory QC Data for all Media	Appendix N-1 Data Quality Evaluation Report

MW = monitoring well

QA = quality assurance

QC = quality control

RCRA = Resource Conservation and Recovery Act

Gap Monitoring Well Installation

stigation

nd Appendix J Well Development

ection 6.6 Groundwater Sampling

d Usability, Section 6.4.2 Soil Vapor nalytical Data Quality and Data Usability.

ppendix N-3 Soil Vapor Analytical Report ports and Excel Data File

October 2021

Date	Reviewer		Document Title (version)	Contract/TO Number	
			Source Zone Characterization Report for the Bulk Fuels Facility		
17-Aug-20	NMED HWB NMED NOD Comment		Solid Waste Management Units ST-106/SS-111	EPA ID# NM9570024423	Reference
ltem	Number	Page	Comment	Response	
16					Cross sections
16	7		 7. Executive Summary, page ES-1 Permittee Statement: "LNAPL saturation in vadose zone samples was highest in the source area and none of the samples were found to contain mobile LNAPL. This demonstrates that there is no drainage of LNAPL that could cause continued LNAPL head in the source area that would be required to drive migration." NMED Comment: Report revision required. Analysis of multiple geophysical and lithologic logs at the site indicate it is likely that a discontinuous clay layer in the source area may have altered the pathway for the migration of fuels related contamination to groundwater. This potential migration pathway is likely to contain hydrocarbon saturated soils that, while not mobile under current conditions, would likely serve as a significant source of dissolved phase petroleum hydrocarbon contamination as groundwater levels continue to rise and come into contact with them. The lithologic cross sections and the discussion of the site hydrogeology presented in the Report do not address this issue. Revise the Report to address this possibility by identifying the top and bottom surfaces of both the upper and lower clay units beneath the site using cross sections and isopach maps. 	The Air Force agrees that there is residual source fuel in the saturated zone as well as in the vadose zone above the capillary fringe. Each monitoring well is gauged on a quarterly basis and minor amounts of LNAPL are observed in only a few wells that are located within the boundary of benzene effective solubilities (see Figure 5-7). In addition, LNAPL mobility analysis performed on samples collected above and below the clay in the vadose all indicated that the residual LNAPL is no longer mobile. Creating cross sections and a site-wide clay isopach map was beyond the scope of this investigation and not included in the approved work plan. Additional information regarding the clay pathway will also be included in the forthcoming Data Gap Report. The Air Force agrees that it is important to understand the historic LNAPL migration pathway to the extent necessary to support the Corrective Measures Evaluation. The Air Force will summarize the data concerning the historic LNAPL migration pathway in an updated Conceptual Site Model in the RFI Phase II once the investigation phase of	Cross sections of the cross se this report inclu and the potent LNAPL will be site data collec II report.
23	13b	8	 13. Section 5.1 Subsurface Lithology, page 5-1 Permittee Statement: "The subsurface in the area of the Source Zone Characterization project is shown on a west-to-east transect (A-A') and a north-to-south transect (B-B') (Figures 5-1 and 5-2)." NMED Comments: Report revision required. b. Figures 5-1 and 5-2 contain errors. Please revise the report to correct the following errors: The X-axis on Figure 5-2 should read "1,474,500" rather than "1,475,500" The inset aerial photograph in the Key incorrectly shows the scale of the page of the photograph in the Key incorrectly shows the scale of the photograph in the context of the photograph. 	the RCRA process has been completed. Cross sections were removed from the revised report. Updated cross sections that will include the data from this investigation as well as the recently installed data gap wells (Including wells KAFB-106S10 and KAFB-106V3) will be presented in the upcoming Data Gap report submittal.	Cross sections of the cross se this report inclu and the potent LNAPL will be site data collec II report.
24	13c	8	 axes as 2:1 while the scale of the photograph is shown as 1:1 13. Section 5.1 Subsurface Lithology, page 5-1 Permittee Statement: "The subsurface in the area of the Source Zone Characterization project is shown on a west-to-east transect (A-A') and a north-to-south transect (B-B') (Figures 5-1 and 5-2)." NMED Comments: Report revision required. c. The Permittee must include copies of the field lithologic logs and well completion diagrams as an appendix to the Report. 	Cross sections were removed from the revised report. Updated cross sections that will include the data from this investigation as well as the recently installed data gap wells (Including wells KAFB-106S10 and KAFB-106V3) will be presented in the upcoming Data Gap report submittal.	Cross sections of the cross se this report inclu and the potent LNAPL will be site data collect II report.
57	35a		 35. 5.3 Light Non-Aqueous Phase Liquid and Fuel Hydrocarbon Spatial Distribution, page 5-9 Permittee Statement: "The lack of significant soil vapor hydrocarbon results directly above these shallow clay units laterally from the source area suggests that LNAPL maintained a near vertical migration pathway through higher permeable areas around, as well as through, the clays. This indicates that LNAPL migration was dominated by gravity drainage rather than horizontal migration along low permeability (i.e., clay or silt) zones." a. NMED Comment: Report revision required. The Permittee makes a comparison of a physical process (gravity drainage) relative to horizontal migration. It is not clear how gravity drainage, migration direction, and permeability relate to one another in this example or why gravity drainage is considered the dominant factor for LNAPL migration. Revise the statement for clarity. 	The model and the associated discussion were removed from the report. However, as discussed above, gravity was the force that caused the fuel to move downwards through the vadose zone through higher permeability units (sands/gravels). Lower permeability units (clays/silts) likely caused lateral migration of the fuel in the subsurface, but the investigation did not uncover direct evidence of this. For example, the lower clay layer in KAFB-106S9 (the closest well to the release area) was observed from 270 to 283 ft bgs. Heated headspace concentrations at 269, 280, and 289 ft bgs (above, within, and below the lower clay) were less than 10 ppmv. If lateral migration occurred along the lower clay unit identified in KAFB-106S9, it did not migrate as far east as the well location. Additional information regarding the lower clay unit will be presented in the upcoming Data Gap report that will include information for wells KAFB-106S10 and KAFB-106V3 that are located closer to the release area.	S

ce Location in Investigation Report for Data Gap Monitoring Well Installation

ons can be found as Figures 5-2 through 5-4. A discussion sections and clay layers can be found in Section 5.4. While ncluded additional data regarding the presence of LNAPL ential historic LNAPL pathways, the nature and extent of the be more fully described based on the most representative llected to date. This data will be presented in the RFI Phase

ons can be found as Figures 5-2 through 5-4. A discussion sections and clay layers can be found in Section 5.4. While included additional data regarding the presence of LNAPL ential historic LNAPL pathways, the nature and extent of the be more fully described based on the most representative llected to date. This data will be presented in the RFI Phase

ons can be found as Figures 5-2 through 5-4. A discussion sections and clay layers can be found in Section 5.4. While included additional data regarding the presence of LNAPL ential historic LNAPL pathways, the nature and extent of the be more fully described based on the most representative llected to date. This data will be presented in the RFI Phase

regarding the lower clay unit is presented in the Executive nd Sections 4.0, 4.1, 5.2.1.1, 5.3, 5.4, 5.5.1, and 7.0.

Date	Reviewer		Document Title (version)	cterization Report Response to Comments Cross-Walk Ta Contract/TO Number	
			Source Zone Characterization Report for the Bulk Fuels Facility		
17-Auq-20	NMED HWB		Solid Waste Management Units ST-106/SS-111	EPA ID# NM9570024423	
U	NMED NOD		¥		Reference
	Comment				
ltem	Number	Page	Comment	Response	
58	35b		35. 5.3 Light Non-Aqueous Phase Liquid and Fuel Hydrocarbon Spatial	The model and the associated discussion were removed from the	Cross sections
			Distribution, page 5-9	report. However, information on the depositional environment can be	of the cross se
			Permittee Statement: "The lack of significant soil vapor hydrocarbon results	found in Section 2.1. Bed thickness can be found in the lithologic logs.	this report incl
			directly above these shallow clay units laterally from the source area suggests	Sufficient samples to distinguish physical and interstitial properties	and the potent
			that LNAPL maintained a near vertical migration pathway through higher	between the two clay layers were not collected from the borings. This,	LNAPL will be
			permeable areas around, as well as through, the clays. This indicates that LNAPL migration was dominated by gravity drainage rather than horizontal	and the assessment of the clay bed geometry, was not one of the objectives of the approved work plan. The lateral continuity of the clay	site data colleo Il report.
			migration along low permeability (i.e., clay or silt) zones."	beds will be provided in cross sections in the upcoming Data Gap	ii report.
			Inigration along low permeability (i.e., day of sit) zones.	Report. These cross sections will include additional information	
			b. NMED Comment: Report revision required. In the discussion of downward		
			migration of the contaminant plume the Permittee refers to shallow clay layers		
			and deeper clay layers but provides no information on the different		
			characteristics of the shallow versus deep clay layers to support the		
			conclusions presented in the discussion. The Permittee must differentiate		
			between the shallow and deeper clay layers by including in the discussion, at		
			a minimum, information on the depositional environment, bed geometry and		
67	44	21	thickness, lateral continuity, and physical and interstitial properties. 44. Section 7 Summary and Conclusions, page 7-1	Creating an updated cross section with information presented in this	Cross sections
07	44	21	Permittee Statement: "The source zone characterization included coring at	report was not part of the scope in the approved work plan. In addition,	of the cross sections
			11 locations to assess the horizontal and vertical extent of LNAPL at the	the cross section has been removed from the revised report. The Air	this report incl
			Site the collection of over 3,600 linear ft of core, chemical analysis of 87 soil		and the potent
			samples, UV fluorescence of 30 cores" Soil core samples were collected to	report with other historical information/cross sections. Updated cross	LNAPL will be
			obtain contaminant concentration and soil and LNAPL properties data."	sections that will include the data from this investigation as well as the	site data colle
				recently installed data gap wells (Including wells KAFB-106S10 and	II report.
			NMED Comment: Report revision required. Please provide the results of	KAFB-106V3) will be presented in the upcoming Data Gap Report	
			these data on cross sections or fence diagrams so that a direct comparison	submittal.	
			can be made of the lithology and the locations of samples, LNAPL, and UV detections found through field screening and laboratory analyses.		
78	55	24	55. Section 7 Summary and Conclusions, page 7-3	As discussed in comment 21, the model and the associated discussion	Information re
10	00	21	Permittee Statement: "The clays do not appear to have significantly affected		Summary and
			lateral migration of the LNAPL. LNAPL migration was primarily by gravity	The following text was removed, "The clays do not appear to have	j =
			drainage rather than horizontal migration along low permeability (i.e., clay or	significantly affected lateral migration of the LNAPL." As previously	
			silt) zones."	discussed in comments 56 and 57 if lateral migration occurred, it is	
				bounded on the east by KAFB-106S9, Additional information regarding	
			NMED Comment: Report revision required. The conclusion that clays do not		
			appear to have significantly affected lateral migration of the LNAPL minimizes the importance of the impact of the clays at the site. The vapor and LNAPL	that are located closer to the release area.	
			plumes depicted in Figures 5-8 through 5-14 indicate that the clay layer at		
			approximately 265 ft bgs caused lateral migration of the contaminant plume.		
			The statement must be revised for clarity.		
82	59a	25	59. Figure 5-1 Cross Section A-A' and 5-2, Cross Section B-B' NMED	Cross sections were removed from the revised report. Updated cross	Cross sections
			Comment: Report revision required.	sections that will include the data from this investigation as well as the	the cross secti
			a. Figures 5-1 and 5-2 are not true cross sections or fence diagrams. They	recently installed data gap wells (Including wells KAFB-106S10 and	this report inclu
				KAFB-106V3) will be presented in the upcoming Data Gap report	and the potent
			the wells used to create the figures are offset too far from the transects to	submittal.	LNAPL will be
			accurately depict subsurface geology. Please revise Figure 5-1 and 5-2 with		site data collec
			more reasonable cross section lines. The Permittee must also depict the		II report.
	1	1	actual elevation/depth to water on the figure.	1	

Albuquerque District. September.

ce Location in Investigation Report for Data Gap Monitoring Well Installation

ons can be found as Figures 5-2 through 5-4. A discussion sections and clay layers can be found in Section 5.4. While included additional data regarding the presence of LNAPL ential historic LNAPL pathways, the nature and extent of the be more fully described based on the most representative llected to date. This data will be presented in the RFI Phase

ons can be found as Figures 5-2 through 5-4. A discussion sections and clay layers can be found in Section 5.4. While ncluded additional data regarding the presence of LNAPL ential historic LNAPL pathways, the nature and extent of the be more fully described based on the most representative llected to date. This data will be presented in the RFI Phase

regarding the lower clay unit is presented in the Executive nd Sections 4.0, 4.1, 5.2.1.1, 5.3, 5.4, 5.5.1, and 7.0.

ons can be found as Figures 5-2 through 5-4. A discussion of actions and clay layers can be found in Section 5.4. While included additional data regarding the presence of LNAPL ential historic LNAPL pathways, the nature and extent of the be more fully described based on the most representative lected to date. This data will be presented in the RFI Phase

APPENDIX B

FIELD METHODS

CONTENTS

APPENDIX B:	: DRILLING AND BOREHOLE LOGGING	B-1
B-1.1	Drilling Equipment	B-1
B-1.2	Decontamination Procedures	B-1
B-1.3	Core Handling	B-1
B-1.4	Lithologic Logging	B-2
B-1.5	Field Screening for Volatile Organic Compounds	B-2
B-1.6	Geophysical Logging	B-3
B-1.7	Well Development	B-3
	B-1.7.1 Equipment	B-3
	B-1.7.2 Well Development Methods	B-3
B-1.8	Well Survey	B-4
B-1.9	Sampling	B-4
	B-1.9.1 Sample Handling, Shipping, and Custody	B-5
	B-1.9.2 Soil Sampling	B-5
	B-1.9.3 Soil Vapor Sampling	B-6
B-1.10	Groundwater Sampling	B-6
	B-1.10.1 Equipment	B-7
	B-1.10.2 Field Parameter Measurements	B-7
	B-1.10.3 Liquid Levels	B-7
	B-1.10.4 Low Flow Groundwater Sampling	B-7
B-1.11	Investigation Derived Waste Management and Disposal	B-8
B-1.12	Documentation	B-9
B-1.13	Waste Disposal	B-9
B-1.14	References	B-10

LIST OF ACRONYMS AND ABBREVIATIONS

% < ±	Percent less than plus or minus
AFB ARCH ASTM	Air Force Base Air Rotary Casing Hammer American Society for Testing and Materials
bgs	below ground surface
су	cubic yard
ft	foot/feet
IDW	investigation-derived waste
LNAPL	light non-aqueous phase liquid
NMED No.	New Mexico Environment Department Number
ppmv PID	parts per million by volume photoionization detector
RCRA	Resource Conservation and Recovery Act
RCRA TPH	Resource Conservation and Recovery Act Total Petroleum Hydrocarbons

APPENDIX B: DRILLING AND BOREHOLE LOGGING

Drilling, and logging activities were conducted in accordance with Parts 6.5.9, 6.5.17.10.1, and 6.5.15 of the Resource Conservation Recovery Act (RCRA) Hazardous Waste Treatment Facility Operating Permit Number (No.) NM9570024423 (RCRA Permit) (NMED, 2010) and the Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 (Kirtland Air Force Base [AFB], 2020), approved by NMED with modifications in July 2020 (NMED, 2020).

B-1.1 Drilling Equipment

Groundwater monitoring wells, KAFB-106248 through KAFB-106252, were installed using air rotary casing hammer (ARCH) drilling technology. Boreholes were advanced using 13 3/8-inch casing to approximately 200 feet below ground surface (ft bgs), depending on site conditions; thereafter, 11 3/4-inch casing was advanced to the total depth of the borehole.

Source area characterization wells, KAFB-106S10 and KAFB-106V3, were drilled using a combination of ARCH and sonic drilling technologies. Boreholes were initially advanced using ARCH and 11 3/4-inch casing to a depth of approximately 230 ft bgs. The sonic rig was used to continuously core to total depth with 6-inch or 8-inch casing and a 4-inch core barrel. After reaching total depth, the ARCH rig was used to pull the 11 3/4-inch casing and advance 13 3/8-inch casing to approximately 200 ft bgs. The borehole was then advanced by ARCH to total depth with 11 3/4-inch casing. The total depth of the borehole was 10 ft below any field screening evidence of contamination (e.g., photoionization detector [PID] readings greater than 10 parts per million by volume [ppmv]).

B-1.2 Decontamination Procedures

Prior to drilling each well, drilling equipment including the ARCH and sonic drilling rigs, drive casing, drill rods, core barrels, and all other downhole drilling and sampling equipment were decontaminated using a hot pressure washer with a Liquinox® wash and freshwater rinse, in accordance with Part 6.5.3 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

B-1.3 Core Handling

During sonic coring, temperature controls were implemented to maintain the data quality for light nonaqueous phase liquid (LNAPL) and volatile organic compounds analytical results. Temperature inside the sample core was monitored when returned to the surface to ensure that heating of the sonic core barrel was not impacting sample selection or integrity. To minimize heating of the sonic core barrels to greater than 20 degrees Celsius while drilling in the unsaturated zone, core barrels were cooled with dry ice immediately prior to deployment downhole. The pre-deployment temperatures were monitored using a FLUKE 59 MAX+IR thermometer.

If, while coring, the samples exceeded this temperature then remedial efforts including cooling the core barrel with dry ice, limiting the coring run length, changing the vibration and rotation speed of the coring, adding minimal amounts of water were implemented. Cores collected from sonic drilling were extruded into plastic core sleeves at 1- to 2-ft increments over the selected coring interval. Coring intervals varied during drilling primarily to minimize core temperatures to prevent loss of volatile organic constituents. However, other downhole conditions required varying the coring intervals (typically due to caving).

Immediately following submittal of the core from the driller to the field geologist for logging, a thermometer was inserted to the middle of the core for the most accurate reading. The temperature of each core was measured with a National Institutes of Standards and Technology Traceable[®] digital thermometer. Temperature data were recorded on the core sleeves and field forms. Following temperature collection, core sleeves were labeled with the well number, temperature, and the interval of the individual sleeve. The core boxes were labeled with coring run interval and the core sleeve interval.

Due to the ability of LNAPL to fluoresce in the presence of ultraviolet (UV) light, a UV flashlight was used to screen for its presence. Following collection, soil cores were placed within a darkened workspace and screened for the presence of areas that may fluoresce. During screening, a UV light (Spectronics Optimax 365 UVA Inspection Flashlight) was shown on the core sample. Following UV screening, the results were annotated on the core sleeve ("NO UV") before photographing.

Individual cores were placed in a standard core box to allow for efficient cataloging, storage, and assist with core photography. Photography of the core was performed using an on-site, high resolution digital camera (Nikon Coolpix B500). Each photograph was logged on a field form, noting the borehole number, depth, and date. Core photographs with the core run interval annotated are presented in Appendix F of the report.

A box truck was also used to provide a mobile workspace. The box truck allowed for a darkened workspace to perform UV screening as well as a place for core photography, lithologic logging, and sample preparation.

B-1.4 Lithologic Logging

Lithologic logging was conducted in accordance with Part 6.5.15 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

During drilling, each boring was fully described on a boring log form in accordance with American Society for Testing and Materials (ASTM) International D5434 or D2488 by an experienced geologist. Lithology was logged from cyclone cuttings during ARCH drilling at a minimum of 5-ft intervals. Core from sonic drilling was collected in a 4-inch diameter core barrel and extruded into two plastic core sleeves for 5-ft core runs.

B-1.5 Field Screening for Volatile Organic Compounds

Field screening was conducted in accordance with Part 6.5.13 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

A PID with a 9.8-electron volt UV lamp was used to screen for the presence of volatile organic compounds (VOCs) in soil cuttings and sonic cores collected during drilling. Results of field screening at the corresponding depths were recorded on the Boring Log Forms in ppmv for total VOCs. The PID was calibrated in accordance with the requirements of Part 6.5.4 of the RCRA Permit (NMED, 2010). During use, the PID was bump tested daily and calibrated weekly and when the results of the daily bump test fell outside of the accepted range.

For field screening for boreholes drilled using only ARCH technology, PID measurements were recorded at a minimum of 10-ft intervals down to total depth. PID headspace measurements were taken from soil cuttings collected from the cyclone during ARCH drilling a representative portion of the soil cuttings placed in a clean, dedicated (e.g., single sample) 1-gallon press-and-seal plastic storage bag.

For boreholes drilled using a combination of ARCH and sonic coring technology, PID measurements were recorded at a minimum of 10-ft intervals from ground surface to the start of coring and every 5-ft from the start of coring to total depth. During coring, immediately upon retrieval of the 5ft sonic core, Immediately upon retrieval, a representative portion of the core placed in a clean, dedicated (e.g., single sample) 1-gallon press-and-seal plastic storage bag prior to sealing the core sleeve. The cuttings were vigorously agitated for at least 15 seconds and then allowed a minimum of 10 minutes for VOCs to adequately volatilize.

During cold weather, the cuttings were warmed to room temperature before taking the headspace measurement. The cuttings were re-agitated and the PID sampling probe was quickly inserted. The maximum meter response, which typically occurred within the first 2-5 seconds, was recorded on the boring log.

B-1.6 Geophysical Logging

Geophysical logging was conducted in accordance with Part 6.5.10 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

Upon completion of wells KAFB-106S10 and KAFB-106V3, geophysical logging was performed. The wells were logged with Dual Induction, Gamma Ray, and Neutron down-hole logging tools. Logging was performed to the total depth of each well. Each run was performed twice to assess reproducibility. The tools were calibrated and operated according to ASTM International standards for geophysical logging and the operation manual of the specific tool utilized.

B-1.7 Well Development

Well development was conducted in accordance with Part 6.5.17.10.6 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020). Well development was performed by surging and bailing after a minimum of 4 days following well completion. Further development by pumping was performed at KAFB-106248 and KAFB-106252.

B-1.7.1 Equipment

Equipment used for well development included a swabber, bailer, pump, YSI multiparameter meter, HACH 2100Q Turbidimeter, Imhoff cone, and a water level meter. Equipment was decontaminated prior to use at each well using Liquinox® or Alconox® and a freshwater rinse.

The YSI multiparameter meter was calibrated in accordance with the manufacturer's instructions weekly, and bump tested daily as required by Part 6.5.4 of the RCRA Permit (NMED, 2010). If the results of the bump test fell outside of the accepted range, the instrument was calibrated. The turbidimeter was calibrated at the beginning of development and bump tested daily. If the results of the bump test fell outside of the accepted range, the instrument was calibrated.

B-1.7.2 Well Development Methods

Well development was conducted as follows:

• Initial development consisted of swabbing and bailing until little or no sediment entered the well (approximately 2–6 hours). Development and purge water was contained in a temporary tank, tote, or drum.

- A bailer fitted with a toggle valve was lowered into the well and used to gently surge the screen interval to remove any sand, silt, and debris accumulated in the well. When the bailer was brought to the surface, an Imhoff cone was used to collect water from the first bailer run to evaluate the amount of silt and sediment in the water. This process was repeated after each cycle of surging development. Wells were bailed until the discharge water contained less than 2 milliliters of sediment per 1 liter of water, as measured using an Imhoff cone.
- Additional development was completed by pumping. The pump was positioned just above the bottom of the screen and set to a rate between 0.5 and 3 gallons per minute. Pumping continued until water returned was less than 10 nephelometric turbidity units, total water volume exceeded the volume of water added during the drilling process, and monitored parameters were stabilized for four consecutive readings,
- A minimum of five casing volumes of water were purged from each well to develop the filter pack. Additional volume was purged during development to equal the volume of water added during the drilling process.
- At the completion of well development, an aliquot was collected in the Imhoff cone and immediately photographed to document the final turbidity.
- Initial groundwater samples were collected within 10 days after well development, in accordance with Section 6.5.17.3 of the RCRA Permit (NMED, 2010).

The site geologist monitored field parameters including pH, temperature, turbidity, and specific conductance with the multiparameter meter and turbidimeter, and recorded the results and other pertinent information on a Field Record of Well Development Form that can be found in Appendix J.

B-1.8 Well Survey

Land survey activities were conducted after well installation activities were complete, in accordance with the requirements of Part 6.5.8 of the RCRA Permit (NMED, 2010) and the approved Work Plan for (Kirtland AFB, 2020).

The surveys were conducted at locations on Kirtland AFB, adjacent National Guard property, and residential neighborhoods within a city of Albuquerque right-of-way, as required. Surveys were performed by a New Mexico licensed surveyor to 0.01-ft accuracy. The surveys were tied into the existing well network survey in at least two points plus a benchmark.

The surveys established northings, eastings, and elevations at all locations. Daily reports consisted of a tabulation of the location, identification, coordinates, and elevations of each point surveyed that day.

B-1.9 Sampling

Investigation soil boring, initial soil vapor, and initial groundwater samples were collected in accordance with the requirements in Part 6.5.1.1, 6.5.16, and 6.5.17.5 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

B-1.9.1 Sample Handling, Shipping, and Custody

Sample handling, shipping, custody, and labeling was conducted in accordance with the requirements of Part 6.5.5.1, 6.5.5.2, and 6.5.5.3, 6.5.5.4 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

Sample packaging and shipping requirements were designed to maintain sample integrity from the time a sample was collected until it was received at the analytical laboratory. All chain-of-custody forms, sample labels, custody seals, and other sample documents were completed. The following specific procedures for packaging and shipping of environmental samples were followed:

- 1. Sample labels were completed with indelible ink and attached to the sample bottle. For soil vapor samples, Summa canister labels, which were affixed to each canister, were filled out.
- 2. Soil and groundwater samples were shipped in coolers. In preparation for shipping the drain plug, if present, was taped shut so that no fluids (i.e., melted ice) could drain out of the cooler during shipment. Two large plastic bags were used as liners for the cooler. Ice was placed into the interior liner.
- 3. Containers for soil and groundwater samples were placed in bubble wrap at the discretion of the shipper, into press-and-seal plastic storage bags, and onto the ice. Summa canisters were wrapped in bubble wrap and placed in cardboard boxes.
- 4. A temperature blank was added into each cooler.
- 5. The liner was taped close, and additional packing material was added if needed.
- 6. A copy of the chain-of-custody form was taped to the inside of the cooler for soil and groundwater samples. The soil vapor sample chain-of-custody was placed inside of each cardboard box.
- 7. The cooler was closed, custody seals were affixed, and the cooler was taped shut.
- 8. Each cooler of soil and groundwater samples was shipped via an overnight carrier. A copy of the shipping bill was retained with the field records and sent electronically to the Project Chemist.

B-1.9.2 Soil Sampling

Soil sampling was conducted in accordance with the requirements in Parts 6.5.11, and 6.5.14 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

Forty-two samples for laboratory analysis were collected every 10 ft during sonic drilling throughout the continuously cored interval (approximately 230 ft bgs to total depth). Additional samples for laboratory analyses were selected based on elevated PID measurements (augmented by lithologic and qualitative data).

Soil samples were collected at a minimum of every 10 feet of the soil interval that was sampled using sonic coring in accordance with the approved Work Plan (Kirtland AFB, 2020). Soil samples were collected in laboratory-provided containers immediately after the core sleeves were opened for photographic documentation. Soil sampling for VOCs and gasoline-range organics was performed by

pushing the En Core® sampler into the soil within the opened core sleeve. When the core device became full, the cap sealed the soil sample in the En Core® sampler void of headspace. Additionally, 4-oz jars were filled with soil for moisture and diesel-range organic analyses. Soil samples were stored on ice and shipped to the analytical laboratory on ice under chain of custody documentation.

B-1.9.3 Soil Vapor Sampling

Soil vapor sampling was conducted in accordance with the requirements in Part 6.5.16 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

B-1.9.3.1 Equipment

Soil vapor samples were collected in Summa canisters, each with a unique pressure gauge. A sample train consisting of 0.5-inch fluorinated ethylene propylene tubing and a four-way stainless steel Swagelok cross equipped with quick connects was used in conjunction with a Horiba Mexa-584L emissions analyzer and a Gast rotary vane pump to purge the well, measure field parameters, and collect the soil vapor sample. The Horiba Mexa-584L was calibrated in accordance with the manufacturer's instructions daily before sampling and bump tested halfway through the day. If the results of the bump test fell outside of the accepted range, the instrument was calibrated. In addition, the instrument was recalibrated if readings began to drift, based on the professional judgement of the sampling team.

A digital manometer was used to gauge pressure in the well and a PID was used to ensure a safe working environment. The digital manometer does not require field calibration. The Swagelok fittings and tubing assembly underwent a pressure test at the beginning, middle, and end of each day by sealing the assembly, using the pump to apply a vacuum, and using the digital manometer to measure the vacuum pressure over a 10-minute period to confirm that there was no leakage in the assembly.

B-1.9.3.2 Methods

Upon removing the well cap, the well head was connected to the sample train via a quick connect port. The manometer was added to the system to gauge the initial well pressure and then removed. The well was then be purged of a pre-calculated vapor volume based upon the well dimensions; a flow control valve fitted to the rotary vane pump controlled the purge flow rate. The initial pressure of the Summa canister was recorded.

Once the purge was complete, the field parameters, carbon dioxide, oxygen, and total hydrocarbons, were measured by the Horiba and the manometer was used to read the post-purge pressure. Field parameters were recorded on field data sheets and a photograph of the Horiba measurement screen was taken for documentation. A sample was collected by connecting the Summa canister to the system and filling it to a vacuum pressure between 0 and -5 inches of mercury. The final pressure of the Summa canister was recorded on a field form, and the sample was shipped to a laboratory for analysis.

B-1.10 Groundwater Sampling

Liquid levels were measured, and wells were purged and sampled in accordance with the requirements of Parts 6.5.17.2 through 6.5.17.6 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020).

Wells were allowed to recover a minimum of 24 hours following development before gauging, or any applicable water sampling. Initial sampling of each well occurred within 10 days after development. Depth to groundwater and LNAPL, if present, were measured following well development. All wells were sampled using the low flow sampling technique.

B-1.10.1 Equipment

Low flow sampling was conducted using a portable Bennett pump. Interface probes, PIDs, multiparameter meters with a flow-through cell attached, and turbidimeters were also used during low-flow sampling.

B-1.10.2 Field Parameter Measurements

Field parameters were collected in accordance with the requirements in Part 6.2.2.1 of the RCRA Permit (NMED, 2010).

B-1.10.2.1 Field Parameter Measurements Using a Flow-Through Cell

Field parameters were measured using a flow-through cell. The multiparameter meter probe was placed into the flow-through cell. Purge water entered the cell through the bottom and exited through the top into the required container to be held in the appropriate investigation-derived waste (IDW) yard. The multiparameter meter displayed instantaneous measurements that updated as the chemistry of the water flowing through the cell changed. Data was recorded on a field form at the frequency required for the activity.

B-1.10.3 Liquid Levels

Liquid levels were measured in accordance with the requirements in Part 6.5.17.2 of the RCRA Permit (NMED, 2010) and the approved Work Plan (Kirtland AFB, 2020) using an oil-water interface probe of appropriate length based on historical water levels. The interface probe was deployed in the well, and depth to LNAPL (if applicable) and water was measured to the individual well's measuring reference point, the top of the well vault, using a straight edge placed across the vault. The interface probe was decontaminated prior to use.

B-1.10.4 Low Flow Groundwater Sampling

Monitoring wells were sampled following field parameter stabilization in accordance with an approved variance to the purge completion requirements in Part 6.5.17.4 of the RCRA Permit (NMED, 2010). Sampling was conducted as follows:

- Dedicated tubing and a decontaminated pump were used to sample each well. The pump intake was set approximately 2 ft above the bottom of the screened interval.
- Purging began at a rate of approximately 0.5 liter per minute and was increased or decreased to maintain the water level in the well. The flow rate did not exceed 1 liter per minute or fall below 0.1 liter per minute during the stabilization and sampling periods.
- The following field parameters were monitoring during purging: dissolved oxygen, pH, oxygen reduction potential, turbidity, specific conductivity, and temperature.
- The water level was monitored continuously during purging to ensure it did not exceed a distance of 25 percent (%) of the length of the saturated screened interval.

Purging was considered complete when the groundwater quality parameters stabilized for three consecutive readings to within $\pm 10\%$ for specific conductivity, dissolved oxygen, temperature, and turbidity (only required when the nephelometric turbidity units are greater than 10) and ± 0.5 standard units for pH. Groundwater quality measurements were made at a minimum of 5-minute intervals and recorded on a Well Purge and Sampling Log.

Upon stabilization of groundwater quality parameters, groundwater samples were collected and handled in accordance with Part 6.5.5 of the RCRA Permit (NMED, 2010). The required sampling containers were filled and placed on ice pending shipping. The samples were submitted for laboratory analysis of the constituents specified in the approved Work Plan (Kirtland AFB, 2020). Six groundwater samples were collected for this investigation.

B-1.11 Investigation Derived Waste Management and Disposal

The IDW was managed and disposed of in accordance with Part 6.5.7 of the RCRA Permit (NMED, 2010 and the approved Work Plan (Kirtland AFB, 2020). The generated IDW was properly contained, handled, labeled, transported, and placed in IDW storage areas prior to the end of each shift. The waste material was then sampled for characterization to determine the disposal method.

All waste was placed in appropriate containers, in good condition, at the point of origin. Waste containers were selected, in advanced, based on the anticipated waste type and volume as part of the investigation pre-planning activities. All waste containers were inspected prior to use to ensure they were good usable condition.

All waste containers were properly labeled immediately upon receiving waste. Labels, once placed on the container, were 100% covered with clear tape to help protect it from the elements. All non-hazardous waste containers received a green "Non-Hazardous Waste" label. All containers containing known or suspected hazardous waste were properly labeled per State and Federal RCRA waste requirements.

Non-hazardous liquids were placed in blue, polyethylene, open-top 55 to 65-gallon capacity drums. The drums had matching polyethylene covers with lock rings to seal the container. Drums were filled to a <u>maximum</u> capacity of 80%. During this investigation, non-hazardous liquid waste placed in either 55-gallon (gal) steel drums, 280-gal totes, 2500-gal, or 3,000-gal poly tanks.

Hazardous or suspected hazardous liquids were generated from well development activities. These liquids were placed in UN-approved, steel, open-top, 55-gallon drums. Drums had a matching steel cover with a moisture seal and a lock ring that securely sealed the lid to the container. The lock rings were installed with the bolt rings downward once installed and properly secured.

Non-hazardous drill cuttings were placed in either 16-cubic yard (cy) or 20-cy roll off bins that were double-lined with 10-mil plastic sheeting. The 20-cy roll off bins were open top with a heavy, flexible "tarp" cover and the 16-cy bins had hard-top lids with an attached, sliding solid top with integrated tie-down straps.

Non-hazardous and hazardous waste generated during the investigation were held in designated, on-Base, storage yards. Non-hazardous waste was placed at the Zia Park IDW yard located just south of the main EA Field Office. Hazardous waste was stored in a designated, RCRA less than (<) 90-day accumulation area per State/Federal RCRA regulations. At Kirtland AFB, the BFF project has two designated RCRA 90-day accumulation areas:

- 1) BFF <90-Day Accumulation Area: Used strictly for BFF GWM liquid hazardous or potentially hazardous waste.
- 2) Zia Park Temporary <90-Day Accumulation Area: Used for drilling-related liquid and solid (soil) potentially hazardous or hazardous waste.

The drilling and GWM liquid/solid waste was not kept at the point of origin for either on-Base or off-Base drilling locations. Soil roll-off bins were temporarily held at a secured drill site and covered at the end of each shift and there was sufficient site security during non-work hours. Drill sites within Kirtland AFB were considered secure locations. Security services were in place at the off-Base site locations during non-working hours.

All drummed waste was placed on wooden pallets that were available in the Zia Park temporary <90-day accumulation area. Soil roll-off bins with dry soil were placed directly on the ground. Bins with non-hazardous soils with free liquids in the bin were placed on poly sheeting with bermed edges to act as secondary containment. All hazardous liquid waste in the held in the BFF<90-day accumulation area was placed on secondary containment pallets. The pallets were of sufficient volume to hold at least one drum of liquid. Drums were properly positioned on the containment pallet so that no part of the drum was hanging over the edge.

B-1.12 Documentation

All IDW was tracked from the point of generation to disposal and reported in the investigation report. The Project Waste Coordinator was responsible for tracking all non-hazardous and hazardous waste generated on the project and worked with the groundwater treatment system (GWTS) engineers and operator to document all IDW processed through the GWTS.

B-1.13 Waste Disposal

Routine non-hazardous liquids, such as GWM purge and well development water, was disposed on-Base at the GWTS provided the water meets GWTS waste acceptance criteria WAC. Water that did not meet GWTS criteria were disposed at an off-Base permitted facility.

Hazardous liquids were transported off-Base and disposed of at a permitted facility.

Non-hazardous solids (soil), typically drill cuttings are disposed at the Kirtland AFB construction & demolition landfill. Each roll off bin was independently sampled for characterization. Generated disposal request packages were reviewed and approved by Kirtland AFB.

Off-Base disposal of non-hazardous solids was performed for wastes including saturated drill cuttings and heavy drilling mud. Heavy drilling mud and saturated cuttings were disposed at a permitted facility.

Liquid hazardous waste held in the RCRA <90-day accumulation areas were disposed at permitted hazardous waste facility licensed to accept liquids or liquids with solids with benzene (D018) and LNAPL waste.

B-1.14 References

- Kirtland AFB. 2020. Work Plan for Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252, Bulk Fuels Facility, SWMUs ST-106/SS-111. Prepared by Sundance Consulting, Inc., for Kirtland AFB under USACE–Albuquerque District Contract No. W912PP-17-C-0028. September.
- NMED. 2010. Hazardous Waste Treatment Facility Operating Permit, EPA ID No. NM9570024423, issued to U.S. Air Force for the Open Detonation Unit Located at Kirtland Air Force Base, Bernalillo County, New Mexico, by the NMED Hazardous Waste Bureau. July.

APPENDIX C

DATA QUALITY CONTROL REPORTS

Sundance Consulting, Inc.

Daily Field Activity Log

DATE: 10/9/2020 PROJECT NAME/NO .: US01-030

ONSITE PERSONNEL ORGANIZATION NAME Sundance Hobbs Racho, 11/23/2020 SUMMARY OF DAILY ACTIVITIES

Trailer delivery FENC. Install 10/9

WORK PERFORMED Discussee Fencina at trailer. 0900 Scotts Incate ted Mobile minito audown yard 2815 's finished contractor yard, escorted 345 at yara SCOSSA Jootts arrive enre 0900 tom avantities errands 0930 run signed Scotts yard to IDW etuned linn paperwork. Site 2020 Rachel Alolls Name Stophen Neuriman

Signature

Daily Field Activity Log

DATE: 10.15.20

KAFB BFF /US01-030 PROJECT NAME/NO .:_

	ONSITE PERSONNEL
NAME	ORGANIZATION
Rache	Hobbs Sundance
LERO	
DAL	
	SUMMARY OF DAILY ACTIVITIES
10.15	POTHOLING & UTILITY CLEARANCE
4 +	WORK PERFORMED
0700	ARRIVE OUTSIDE BEF TO MEET HIGH MESA
	CONSUL TING
0705	MEET UP OOREHEAD AND D. FIELDER ENTER BFF
	PERFORM SAFETY TAILGATE, SIGN TAILGATE & JSA
	AT LOCTATION 251, OBSERVE HMCG LOOK FOR METAL UTILITIES AT KAEB-106 251
600F	METAL UTILITIES AT KAFB-106 251 F WHITE ARRIVED DISCUSSED LOCATION OF
2825	VTILITIES AT KAFB-106249 \$ KAFB-106250
0020	OBSERVED COMPLETE HOLE AT KAFB-106251
0930	HMCG BACKFILLED HOLE AND REPLACED STAKE
1000	ARRIVED AT KAFB - 106250. MANY CARS IN
1000	RARKING LOT. WENT TO KAFB-106249 WHERE
	PARKING SPOTS WELE BLOCKED OFF
1045	MARK , OCATION - LOCATION IS 4.5 FEET FROM
1072	AND PREVIOUSLY UNKNOWN LINE THAT WAS NOT
	MARKED ON DIG PERMIT, CALL B. NYDOSKE TO
	DISCUSS REQUIREMENTS FOR MOVING LOCATION
1050	BEGIN TO CUT ASPHALT AT 106250 RGH
1240	TALK W/ J. GONZALEZ. AGREE TO JUST DO
	POTHOLING TODAY. COLD PATCH 16" HOLES AND
	RETURN LATER TO DO ASPHALT CUTTING
1240	HUMG STOPPED DO TO AIR GUN OVERHEATING
1325	COMPLETED EXCANATION AT KAFB -106249
1330	BACKFILLED HOLE W/ BOTTINGS AND COLD-PATCHED
	THEHOLE
1400	ARRIVED AT KAFB-106251- TRUCK IN WAY, HAVE TO
	FIND OWNER AND HAVE HIM MOVE, HMCG, BIO BRE
1430	
	Λιριορ

Rachel Hobbs

Name

Justin Litch

Reviewed By

Kachel Holels Signature

11/09/2020

Reviewed Date

Sundance Consulting, Inc.

Daily Field Activity Log Continuation Page

Page 2 of 2

DATE: 10/15/20

PROJECT NAME/NO .: USOI -030

	WORK PERFORMED
1545	COMPLETE POTHOLING AT KAFB-106251 BACKFILU AT 251 AND PATCH CLEANUP/DEMOB
1545 1600 1620	BACKFILU AT 251 AND PATCH
1620	CLEANUP /DEMOB
<i>p</i> • • • • • •	
·	
	× 0
	6 10
	4 161
1	
1	

Rachel Hobbs Name Justin Fitch

Reviewed By

<u>Rachel Hobels</u> Signature

Reviewed Date

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project -- 62735DM02 Daily Quality Control Report -- Non-Construction

	DATE: 11/7/20
WEATHER: <u>Claudy</u> , windy, t	H: 68° WELL ID: N/A
I. ONSITE PERSONNEL (including subconti	tractors and government employees)
lame	Organization
B. Backisch	EA - Site Manager/Supervisor
M. Mevey	EA - Site Health and Safetly Office
Forreat chattin	
Masa Miller) Gascade
John Alexander	/
OPERATING EQUIPMENT	
government employee	collected, deviations from plans, converstations with the public and es, and problems encountered and remedies applied) e, decon pad, organized lay fixed fuel line on drilling
	pr
	fr
	Ju -
WORK PERFORMED (Indicate time, and d	description of work performed by prime and/or subcontractors)
	description of work performed by prime and/or subcontractors)
030 M. M-Vey on	site at lay down yard.
1030 M. Maryon	

Reviewed by:

DQCR Page 1 of 2

Reviewed date: 11-19-2020

1

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project -- 62735DM02 Daily Quality Control Report - Non-Construction

DATE: 11/7/20 4. WORK PERFORMED (Continued) reat 500 6 ling to + 4 -5400 frel + 40 1: +60 1715 na ya Sonit Jona poart items willa cci mabever. 1725 ARL 1730

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mile Mive.

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: __________

Appendix C Data Quality Control Records

Date Lops Drilling Proj -Kirtland AFB Bulk Fuels Facility Vadose Zone Coring -- 62735DM02 Daily Quality Control Report - Non-Construction ROLE: SSHO DATE: 11/8/20 WELL ID: KAFB-106IN2 KAFB-106V3 WEATHER: Junny, Windy, H: 65-1. ONSITE PERSONNEL (including subcontractors and government employees) Name Organization EA - Site Manager/Supervisor B. Bockisch EA - Site Health and Safetly Office M. MEVey Forrent Chattin Lassale Mason Miller Liste Je Cierde John Alexander EA Dylan Jahmeerk Josh Messenger EA 2. OPERATING EQUIPMENT ARCH rig, air compressor, fork lift 3. DAILY SUMMARY (include QC samples collected, deviations from planning documents, converstations with the the public and governmental employees, and problems encountered and remedies applied) Moved ARCH rig, pipe, and Support equipment to the BFF. Rig set up at First drilling location, but there was a problem with Evel System. Wugger will sall the driller in the morning and will likely some to the site to repair the drilling and commence. before 4. WORK PERFORMED (Indicate location, time, and description of work performed by prime and/or subcontractors) M. Mary, Casside on site at the long Jown yourd. 0645 Loading pipe and drilling support equipment For the AREH rig to take to the BFF. 0730 Mobeyvipment, pipe, and ARCH rig to the BFF. DQCR Page 1 of 2

Reviewed date: H-19-2020 October 2021

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project -- 62735DM02 Daily Quality Control Report -- Non-Construction

	DATE: 11/8/2>
4. WORK P	ERFORMED (Continued)
_	Begin setting up rig and drilling oupport
	equipment at first drilling location in the
	BEF
0800	Sonia pipe and support equipment arrives at
	BFF. Unload and stage pipe and equipment in
-	gravel area north of first drilling location.
1042	Finished unloading sonis pipe and equipmen
	finished transporting and valoading ARCH
	pipe and drilling equipment to BFF.
1320	Finished setting up ARCH rig, hummer, air
	Lompressor, systeme, suttings bin, traffic
1340	contral, etc. in proparation to drill.
1070	Drilling rig keeps Jying Forcest will
1418	Calling Wagner to come work on the rig.
	Something wrong with the fue (system.
1502	Wagner kinnet some out today, will call
	Forrest in the morning. Head over to
	lay down yourd to fintoh screwing pipe
	together.
1730	M. MEVey, Suscide des sites
-	Λ
	that
	V
/	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

KV 2 Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 11-19-2020

Appendix C Data Quality Control Records

October 2021

Daily Field Activity Log

812020 PROJECT NAME/NO .: DATE:

-B US01030 13

ONSITE PERSONNEL

NAME Justin FACH	ORGANIZATION SND
Stephen Neuman	ŠND
Ruchel Mebbs	SND

SUMMARY OF DAILY ACTIVITIES

Tailyate	meeting at	SND Yord	
MEServe	EA Dolling		

	WORK PERFORMED
11:30	Arrived at SND Tord
11:30	Tailante meeting w/ SND persunnel
1230	Arrive at Dull site
1920	Left Drill site to SND Yard (Rig Broken)
1.120	Left Yard
	// · / / X L/ OZG
	VIX
	b
1	
	/
/	
	1
Stat	
Name	Signature

020

Reviewed Date

wman

MINAN **Reviewed By**

Date Gaps Drilling Project Kirtland AFB Bulk Fuels Facility Vadose Zone Coring -- 62735DM02 Daily Quality Control Report - Non-Construction ROLE: 5540 DATE: 11/9/20 WELL ID: KAFB-106IN2 KAFB-106V3 WEATHER: Cloudy, windy, Kald 1. ONSITE PERSONNEL (including subcontractors and government employees) Name Organization EA - Site Manager/Supervisor B. Bonklach EA - Site Health and Safetly Office M. Mayey Josh Messenger EA Dylus Schmeelk EA Forrest Chattin John Alexander Mason Milla 2. OPERATING EQUIPMENT ARCH rig, air compressor, fork lift 3. DAILY SUMMARY (include QC samples collected, deviations from planning documents, converstations with the the public and governmental employees, and problems encountered and remedies applied) Drilled boring 106,510 to 175. 4. WORK PERFORMED (Indicate location, time, and description of work performed by prime and/or subcontractors) M. M-Vey, Lascide on site at lay down yard. 0645 Will confinue to screw pipe together and Stage in laydawn yard. Doghause for sanic rig arrives on site at lay Jown yard with

DQCR Page 1 of 2

Reviewed date:	11-19-2020
tenence date	October 2021

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project -- 62735DM02 Daily Quality Control Report - Non-Construction

	DATE: 11/9/20
4. WORK P	ERFORMED (Continued)
	the cest of the sonis righelpers. Unload sonis
	pipe and equipment from doghouse.
	Santiago Gallegos (VSACE) on site at BFF.
	Mechanic accives at BFF to repair ARCH
	cig.
1238	Rigfixed, mechanic off site.
	Ben Moayyad (USAGE) on site at BFF; Jim
	Kirkland (PAE Gorrosion Gontroi) on site at
	BEE
1300	Call in bot work primit; Ben Moayyad and
1.	Santiago Gallegos SF Site.
	Hat work permit somethed.
	Project Has a kisk off meeting conducted
	Start drilling.
1430	Jin kickland Brackisch att
	B. Bockisch off Site
	Suddance off Site
1100	Shut Journ drissing for the day, drilled
1715	J. Messenger, D. J. Gmeetle, Eusenda
	off site
	Λ
	the
	0

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

1 EVe Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: _______ - 20 20

Appendix C Data Quality Control Records

October 2021

Sundance Consulting, Inc.

Daily Field Activity Log

01-030

13

DATE: 11/09/2020 PROJECT NAME/NO .:_

ONSITE PERSONNEL

NAME	ORGANIZATION	
Justin Fitch	SUNSANCE	
Sethen Neuman	Sundance	4
Rachel Hearby 5		

SUMMARY OF DAILY ACTIVITIES

	- EA Dolling	Observe	
-			

WORK PERFORMED

2:00	Safety Meeting
220	Davis 4 Duill dife
7:75	Observe Drillins
7:25	Observe Drilling Left site to Yard
1620	(eft Yard
(0 - 0	
	P
	4)
- /	
Testi	1 Fitch (Sturle)
00111	

Name

INMão

Reviewed By

Signature

20

Reviewed Date

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project -- 62735DM02 Daily Quality Control Report -- Non-Construction

ROLE:	5140	DATE: 11/10/20			
WEATHER: CUEAR COD = 46%		WELL ID: KAFTS 106510			
1. ONSITE	PERSONNEL (including subcontracto	rs and government employees)			
Name	oaltsus	Organization			
		EA - Site Manager/Supervisor			
	CULTSCH/M. MCVEY	EA - Site Health and Safetly Office			
	NESSENGER	EA			
D.	SCHMEELIL	EA			
Aust	Alexander, Forres	Miller,) Gascade			
2. OPERAT	ING EQUIPMENT				
5	TEEDSTAR SOK, TENC	JER FORKLIFT			
0700	government employees, an EA AND CASCADE O	ed, deviations from plans, converstations with the public and d problems encountered and remedies applied) WSITE, PREP FAL WALL			
0730	TGSM				
	- Drilled to 22	7' with the ARCH rig.			
	- Tripped in sonit saying to 227' and				
	pulled out the ARCH Lising.				
	- Callested rigsate samples from two of				
	the four soois core barrels.				
1	- Ready to start Srilling at 227' with				
		5 to marrie marring.			
~					
		ption of work performed by prime and/or subcontractors)			
0700	PREPFOR WARK				
0730		PINCH POINTS, OVERTHEAD HARAPS			
	WATCH FOR TRAFFI				
5750	CASCADE MOVES TO 6	ATDAWN TO GHECK CANTRACT LOUAD AF			

Reviewed by:

DQCR Page 1 of 2

Reviewed date: 11-19-2020

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project -- 62735DM02 Daily Quality Control Report - Non-Construction

WORK D	DATE: ///10/20
. WORK P	ERFORMED (Continued)
	materials and offload
0800	OFFIDEDing well materials at laydown yard.
0820	M. Me Veyon site. Head over SSHO Juties.
0828	Start Srilling.
	Orilled to 227' Bottom of drive casing at
	228
0920	Tripout ARSH Scilling pipe.
	Trip in Sonic casing.
	Sonic casing tripped in and sitting on the
	bottom of the borehole at 227!
1335	Tripping out ARCH drive coxing, which was
	advanced to 228.
1446	ARCH and pulled, Demob ARCH rig and
	bring in Jenic rig 6 yd of IDW
	generated from ARCH drilling today.
	Tripping sonid Srill pipe into borchole,
	Screw 2 10-fost joints together and
	trip buck out in preparation for
	drilling tomorrow
	Collect ringate samples from two of the
_	sonic core barrals which have already
	been depend. The other two sore barrels
	will be deposed in the morning and then
	cinsate samples will be sollested,
1653	Cara ada off site
1705	EA OFF Site

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mavey Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Reviewed date: 11-19-20 20

Sundance Consulting, Inc. Daily Field Activity Log

DATE: 11/10/2020 PROJECT NAME/NO .: KAFB US01-030

ONSITE PERSONNEL			
NAME	ORGANIZATION		
Justin Fitch	Sundance		
RICHAL HOULS	Sintdurice		

SUMMARY OF DAILY ACTIVITIES

 Obsence EA	Dolling ->	move ing to	ICAFB -106251	
			1 1 1	

	WORK PERFORMED
0900	JE observed EA Doilling at KAF13-106510
1000	JF petvined to Yard to organize/logid for dilling KAFB-106251
1500	Rig Damob from KAFB-106510 a move to stage at KAFB-106251
1530	RHAMMUS
	Toserve / talk will andless //
17(3)	Dipert site
-	14
	1
	\wedge
1-	
5.1	FAILY UNITED IN
JUST (4	
Name	Signature

Stephen Nownun Reviewed By

Appendix C Data Quality Control Records

11/11/2020 **Reviewed Date**

ROLE: 5540	DATE: 11/11/20
VEATHER: Partly 2/001	4, breezy, cold WELLID: 106510
. ONSITE PERSONNEL (including	subcontractors and government employees)
vame	Organization
B. Bockioch	EA - Site Manager/Supervisor
M. M-Vey	EA - Site Health and Safetly Office
Dylan Schmeell	K EA
Josh Messeng	er EA
Josh Clotwier	
Justin Maple	5 Cancade
OPERATING EQUIPMENT	
Source FI	1.0
Sonis rig, forla	<1;++
DAILY SUMMARY (include OC co	
. DAILY SUMMARY (include QC sa government e	mples collected, deviations from plans, converstations with the public and mployees, and problems encountered and remedies applied)
government e	mployees, and problems encountered and remedies applied)
government e	Ho Z78' Hoday. Pio readings in
government e	mployees, and problems encountered and remedies applied)
government e	Ho Z78' Hoday. Pio readings in
- Cared - Jampi	Ho Z78' Hoday. Pio readings in
- Cored - Jampi.	Ho Z78' Hoday. Pio readings in
- Cared - Jampi	Ho Z78' Hoday. Pio readings in
- Cared - Jampi	Ho Z78' Hoday. Pio readings in
- Cared - Jampi	Ho Z78' Hoday. Pio readings in
- Cared - Jampi	Ho Z78' Hoday. Pio readings in
- Cored - Jampi.	Ho Z78' Hoday. Pio readings in
- Cared - Jampi	Ho Z78' Hoday. Pio readings in
government en - Cared - - Sample - ppmv.	mployees, and problems encountered and remedies applied) to Z7a' to Jay. Pio res Jings in es ranged trem 0.0 to 1,444
government en - Cored - Sample ppmv. WORK PERFORMED (Indicate time	e, and description of work performed by prime and/or subcontractors)
WORK PERFORMED (Indicate time	e, and description of work performed by prime and/or subcontractors)
WORK PERFORMED (Indicate time D645 EA, Laster 1805 Heading over	e, and description of work performed by prime and/or subcontractors)
WORK PERFORMED (Indicate time D645 EA, Laster 0805 Heading over	e, and description of work performed by prime and/or subcontractors)

 DQCR Page 1 of 2

Reviewed date: 11-19-20 20 October 2021

Page 15 of 202

DATE: 11/11/20 4. WORK PERFORMED (Continued) on site Collect ringute samples from two core 0905 barrels that were deaded sarlier Start Scilling. TO tagged at 226' Will 0930 compre slyff and native sail to 230' in first care barrel and then start coring 230' Joilling for the day. Drilled to realings for ay Plisting samples ranged from 1658 tinis he 1,444 ppmv. Suscale off site 1700 Sree and Ben Moayyad off site n= An 1705 EADLESTE 1730

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Milie May Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Page 16 of 202

Sundance Consulting, Inc.

Daily Field Activity Log

DATE:	11	hul	20
		1.1	

PROJECT NAME/NO .: USOL-030 KAFB BFF

NAME	ORGANIZATION	
	50	
Rahel Hobbs Justin Fitch	40	
Stephen Nowman	SD	

SUMMARY OF DAILY ACTIVITIES

11/11/3	to Advance casing to 130
11	
1.000	

WORK PERFORMED w/drillers cascul P 0710 0 was 730 Der 0625 a 50 1000 outinves 1020 Koelmi OV SHEN 30 50 drilling 1230 2 0 Moa JD Nance 1430 Arnv SING nammer MAY CA 111 1540 ana tom UST stp.m water hammer from PP 1680 an CONTINUE 640 nmer orwar path f repart to 1700 AGNT 1720 ean RAN Signature 11/11/2020

Hobbs Pache

Name

Stephen Newman

Reviewed By

Review

Sundance Consulting, Inc.

Daily Field Activity Log

	1
DATE	
DATE:	1

11/11/2020 PROJECT NAME/NO .: KAFB-106251 - VS01-030

ONSITE PERSONNEL		
NAME	ORGANIZATION	
Tetrin Fitch	Andonce	
Rachel Hobbs	Sindance	
Strphon Neuman	Sundance	

SUMMARY OF DAILY ACTIVITIES

Kig UP	
DAIL (AZCH) to 200'	
principacity to co	

WORK PERFORMED setus - water/ casine loading Arive - Moniter Casca 14 67-00 KAFB-106257 site # Rig 47 O900) 171 mare start drilling 1230 Repairs - Clay clay blue Unlistring & Casing 1540 Rig water to vinclog - 150gal fush w/ slurin - No PLD OF 130 somples only a Fixed - next 2 17-00 17.0 Ya VoldAs left to 4 122 720 Ya 07 1730 UNITYIK 1 1735 6 Signature

Name

2Wmal

Reviewed By

Reviewed Date

Deter 64ps Drilling Project Kirtland AFB Bulk Fuels Facility Vadose Zone Coring -- 62735DM02 Daily Quality Control Report - Non-Construction ROLE: SSHO DATE: 11/12/20 WELL ID: <u>KAFB-106IN2-</u> KAFB-106V3 WEATHER: Partly cloudy, H: 57° 1. ONSITE PERSONNEL (including subcontractors and government employees) Name Organization EA - Site Manager/Supervisor B. Boskisch EA - Site Health and Safetly Office M. MEVEY J. Messenger EA D. Schneelk EA Justin Maples Cascade Cascade Josh Slatwier Ben Moayyad USALE Phil Lovato 2. OPERATING EQUIPMENT UJACE Sonia rig, fork lift, generator, support trucks 3. DAILY SUMMARY (include QC samples collected, deviations from planning documents, converstations with the the public and governmental employees, and problems encountered and remedies applied) Finished coring to 300. Emptied ~ 1 y J3 of TOW in roll off. Total from ARSH and Sonie N 4. WORK PERFORMED (Indicate location, time, and description of work performed by prime and/or subcontractors) EA. Lajeade on site 0645 Start drilling Will trip in, class out any 0800 sluff is the battom of the barehale a then start caring at 270!

DQCR Page 1 of 2

DATE: 11/12/20 4. WORK PERFORMED (Continued) Ben Monyyad (USAKE) on site 0805 Phil Lovato (USACE) on site 0845 Earing to 300! Pulled 8" Esting 1318 Finish 272' for days art 5= that it was stuck in the clay if it swells. Jowa Le off site 1340 Messenger and D. Schmeelk off site 1400 U. M-Vey off 5.10 1430

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mike ME Name

Signature

EA Engineering, Science and Technology Inc., PBC

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Page 20 of 202

Reviewed date: 11-19-2020

Daily Field Activity Log

	6 2	1	1
DATE:	11/	12	12020

_____ PROJECT NAME/NO.:__ KAFB USDI-030

	ON	NSITE PERSONNEL
NAME		ORGANIZATION
Justin	Fitch	Surdance
Steizhen Newman		SUNDENCE
Sidvin		
		RY OF DAILY ACTIVITIES
	Fixrig	
	Ditt H 2001	
	Soul up well	ORK PERFORMED
0700	Alimon - check in w/ 1	crist at and site
6710	Back to site	
0770	Back to site	
0720	Tailgate	
07-40	Commence repairs	5
0800	stephen went to trailer	Du carbale MID
1130		Deillers went off-base for fuel - Lunch break
1235	Start doilling	
1505	reach 1318 TD @ 200' - tripout drill string	
1515	Pack up gear in touck	A.A.
1545	Return to yord - spack	
1605	Opport	10
		N
)
/		
//		$\land \land \land$
		A to la Inn.
JUST	in Fitch	
Name		Signature

20

Reviewed Date

Reviewed By

wman

1.

DATE: 11/16/2020 PROJECT NAME/NO .: KAFB US01-030

NAME	ONSITE PERSONNEL ORGANIZATION	
Justin Fifth	Sundance	
Stephen Newman	Sundance	

SUMIMARY OF DAILY ACTIVITIES

	SA SA
	TOD 10, tou to Compet
	WORK PERFORMED
0830	itrive - chat w/ drillers
-	

OSUS	Pick p truck
0916	Tailgate meeting
0970	
1050	Accompany Drillers to yord for 11314" coving 2 drillstring Dollers Lunch
1200	Dollers Lunch
1230	Accompany drillers to yord for 300' casing/drill string
1.130	Accompany dallers to vord for 300' casing/drill string
1510	Bean Drilling
1645	Systems not threading - anillers went to vard for wench
	worked to unstact casing
1415	Procked ND
1730	Procked up Repurvide pard An
1745	Petart
	\mathcal{P}
	\sim

Name

Stophen Neuman

Reviewed By

Signature

11/18/2020 Reviewed Date

	Dete 60ps
Kirtland AFB Bulk Fuels	s Facility Vadese Zone Coring 62735DM02
Daily Quality C	Control Report – Non-Construction
ROLE: 3340	DATE: 11/17/20
WEATHER: Sugar, Hi 66°	WELL ID: KAFB-1061N2 KAFB-106V 3
1. ONSITE PERSONNEL (including subcontracto	ors and government employees)
Name	Organization
B. Backisch	EA - Site Manager/Supervisor
E. Morse/M. MEVey	EA - Site Health and Safetly Office
J. Messenger	ÊA
D. Schneelk	EA
Justia Maples	Lasende
Josh Clotwier	Gazcade
2. OPERATING EQUIPMENT	
Sonis rig, fork like	washer
trailer pressure	washer
3. DAILY SUMMARY (include QC samples collect	ed, deviations from planning documents, converstations with the
the public and governmental employees, and pro	blems encountered and remedies applied)
- Collected rin	sate samples from core
burrels pas	f drann,
	aterials to build well
106010/V3	?
	ig and server will be
	the mocning.
011 011 014	The morning
	h
	fr
4 WORK PERFORMED (Indicate location time a	nd description of work performed by prime and/or subcontractors)
	the description of work performed by prime and/or subcontractors)
0645 EA on site	12 5 ()))
0843 J. Messenger	D. Schmeelk Jisposing
of core from	boring 106510/V3
0915 Gascale on 3.	te, Finalizzell construction
Ν	DQCR Page 1 of 2

	hn		
Reviewed by:	() •	Initials:	-
Appendix C Data Qua	ality Control Records		Page 23 of 202

DQCR Page 1 of 2

DATE: 11/17/20 4. WORK PERFORMED (Continued) Jetaila for 106510/V5 w! th Dernie 1000 2220-1120 510 $/\sqrt{}$ 2 out 5 Jet at over rrala 24. 1335 408 1435 445

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mille MEVE Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 11-19-2020

Appendix C Data Quality Control Records

Page 24 of 202

October 2021

Sundance C	onsulting,	Inc.
------------	------------	------

Daily Field Activity Log

Page 1 of

DATE: 11/17/2020 PROJECT NAME/NO .: KAFB

US01-030

	ONSITE PERSONNEL
NAME	ORGANIZATION
Just in Fitch	sun dance
Stephen Newman	Sundance
Forrest, John, Muson	Cascade
SUI	MMARY OF DAILY ACTIVITIES
Doll to~400'	
Trip out drill string	
	WORK PERFORMED
REAS Arrive Car. PID.	Lond terek

10-1)	MINE MALLE MALL I HALL
070	60 to cite
0715	Tailgate Begin Drilling/Sampling
MATUO	Begin Dolling Scin Ling
1230	
0715 0500 1230 1300	Tight hole - trip out bit use pipe jack to hock out on sine
700	Tight hole - trip out bit, use pipe jack to back out casing left site to Yard
1705	UNDER K MA
1705	Uppuck Truck M
	The second secon
6	
5vst	m Fitch Mista 100
Name	Signature

Newman

Reviewed By

11/17/2020

Reviewed Date

ROLE: 5540 DATE: 11/18/20 WEATHER: Sunny, Warm, slight bracze WELL ID: 106510/V3 1. ONSITE PERSONNEL (including subcontractors and government employees) Name Organization B. Backisch EA - Site Manager/Supervisor EA - Site Health and Safetly Office M. M-Vey J. Messenger EA D. Schmeelk EA TUSTIN MAPLES Caserile Josh Clotwier Cascas 2. OPERATING EQUIPMENT Sonic rig, Forklift 3. DAILY SUMMARY (include QC samples collected, deviations from plans, converstations with the public and government employees, and problems encountered and remedies applied) Complete I well to 235.3' Bestanite chips will hydrate avernight. Beatonite growt to be placed from 235.3' to 25' in the marning. 4. WORK PERFORMED (Indicate time, and description of work performed by prime and/or subcontractors) EA on site 1100 Lastade on site 1130 Backfill baring from 285'to 281' with 1254 10/20 Silica Sund. Begin Well construction

DQCR Page 1 of 2

Reviewed date: 11-20-2020 October 2021

Page 26 of 202

. WORK PERFORMED (Continued)	DATE: 11/18/2-
1605 Completed well to	235.3. Will allow
bentenite ships to	= hydrate mill
prestar initiati	
Je gestes	an of growt in the
1625 J. Messenger/U. 5	charally off 5.ta
The synappe out offe	
1710 M. May of Site	
	/
AIA	
///	
1	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

MEV Mil Name

Signature

EA Engineering, Science and Technology Inc., PBC

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Page 27 of 202

Daily Field Activity Log

DATE: 11/18/2010

PROJECT NAME/NO.:

US 01-030 KAFB

ONSITE PERSONNEL		
NAME	ORGANIZATION	
Jostin Fitch	Sindance	
Stephen Newman	Sundanie	
Forres, Mason, John	insca de	

SUMMARY OF DAILY ACTIVITIES

	1112 205 11	hole - trip in doill string & Feplace	00 (9>10
Drill 400' to 435" - breek	en chain in	hymmer	

WORK PERFORMED

10650	Arnvent Yord
0700	c + -be
0705	Tenlgate Safety meeting Accompany cusculte to their yard for bit Return to otte
0745	Accompany cusculte to their yard for bit
0745	Return to ste
0750	can in bot work ter cascade we doing on bit
0850	finished with the
0900	Went to Laydown Yard to load up sampling gear
0915	Repair and the second s
0930	Drillers began running Orillstring in whow bit
1145	Lunch
1215	Re-insert 80' removed yesterday
1445	Start collecting samples at 900'
1500	Start collecting samples at 900' Breathing Zone PID at Wellhead: 0.0
1630	Parkel Arrived
1630	Stup Drilling to replace broken than in hammer Mose IDW roll-offs
10210	Close IDE FOIL-OFFS
1725	Leque site to yer?
1730	Virbad tack
17-116	Leve Krd
	1 1
+	tin Fitch
710	

Name

Stephen Reviewed By Jewmen

Signature

Reviewed Date

00

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62599DM010m

Data 600 Drilling

	1 21 11	DATE: 11-19-2020
WEATHER: CEOR	mild	
Name	ng subcontractors and government employ	yees)
Bernie Bochie	Organization	
1001-1	- A	visor
Eanl Morse/Mik-	/	etly Office
Justin Mapl	es la	10
Josh choth.	in / Cased	
J. Messenge	r FA	
	CA	
D. Schmeel	K EA	
2. OPERATING EQUIPMENT		
Team #1 YSI Professional Plus 15K101398	Team #2	Spare
Wh0003	YSI Professional Plus 15K101396 Wh0001	YSI Professional Plus 15L100541
MiniRAE 3000 592-915778	MiniRAE 3000,592-915790	Wh0002
Nh0005 fach 21000 15100C045034	Wh0004	MiniRAE 3000 592-915579 Wh0006
Nh0008	Hach 21000 15100C044633	Hach 2100Q 15100C045025
Solinst Water Level Meter 253054	Solinst Water Level Meter 253053	Vh0007 Solinst Water Level Meter 253056
		TOULISL VALED EVALMATAR 253050
	samples collected, deviations from plannin loyees, and problems encountered and rer	g documents, converstations with the nedies applied)
- Approxi tremis p and is growt fo	mately 90'06 1 pipe broke of F encased in his con approx. 130 la used 1" stee	g documents, converstations with the medies applied) "SEH 80 PVG at the joint b Salido beatonic to ZIO' best (tremie pipt So' best by the
- Approxi tremis p and is growt fo	mately 92'of 1 mately 92'of 1 cipe broke of E encared in hig an approx. 13c le used 1" stee st to approx. the day. Will g	g documents, converstations with the medies applied) "SEH 80 PVG at the joint b Salido beatonic to ZIO' best (tremie pipt So' best by the
- Approxi tremis p and is growt fo - Cagro to gro ead of in the	mately 92'of 1 mately 92'of 1 cipe broke of E encased in his an implax. 13c Je used 1" stee the day. Will g morning.	g documents, converstations with the medies applied) "SEH 80 PVG at the joint b Salido beaton to ZIO' bega I tremie pipt So' bega by the at a hard tag
- Approxi tremis p and is growt fo - Cagno to gro ead of in the	mately 92'of 1 mately 92'of 1 cipe broke of E encased in his an implax. 13c Je used 1" stee the day. Will g morning.	g documents, converstations with the medies applied) "SEH 80 PVG at the joint b Salido beaton to ZIO' bega I tremie pipt So' bega by the at a hard tag
- Approxi treatist and is growt for - Cagear to gro ead of in the WORK PERFORMED (Indicate loc	mately 92'of 1 mately 92'of 1 cipe broke of E encared in hig an approx. 13c le used 1" stee st to approx. the day. Will g	g documents, converstations with the medies applied) "SEH 80 PVG at the joint b Salido beaton to ZIO' bega I tremie pipt So' bega by the at a hard tag
- Approxi tremis p and is growt fo - Cagen to gro to gro ead of is the WORK PERFORMED (Indicate loc 5115 Safety	mately 92'of 1 mately 92'of 1 cipe broke of E encared in high an imploy 13c 12 USEL 1" Stee 14 to approx. He Jay Will g morning. Brick	g documents, conversitations with the medies applied) "SEH 80 PVG SEH 90 SEH 90 SEH SEH 90 SEH 90 SEH 90 SEH SEH 90 SEH 90 SEH 90 SEH SEH 90 SEH 90 SEH SEH 90 SEH 90 SEH 90 SEH 90 SEH SEH 90 SEH
- Approxi tremis p and is growt fo - Cagan to gro to gro ead of is the WORK PERFORMED (Indicate loc 5715 Safety	mately 92'of 1 mately 92'of 1 eige broke of F encased in hig an applax. 13a le used 1" stee 24 to approx. the day Will g morning. brief brief	g documents, conversitations with the medies applied) "SEH 80 PVG SEH 90 SEH 90 SEH SEH 90 SEH 90 SEH 90 SEH SEH 90 SEH 90 SEH 90 SEH SEH 90 SEH 90 SEH SEH 90 SEH 90 SEH 90 SEH 90 SEH SEH 90 SEH
- Approxi tremis p and is growt fo - Cagan to gro to gro ead of is the WORK PERFORMED (Indicate loc 5715 Safety	mately 92'of 1 mately 92'of 1 cipe broke of E encared in high an imploy 13c 12 USEL 1" Stee 14 to approx. He Jay Will g morning. Brick	g documents, conversitations with the medies applied) "SEH 80 PVS at the joint b Salido bestorie to ZIO' bestorie to ZIO' bestorie to besto by the salido by the salido by the salido by the salido by the salido by the salido by the salido by th

Appendix C Data Quality Control Records

October 2021

Data bap Drilling Program Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring -- 62599DM04-Daily Quality Control Report - Non-Construction

- 62735Dmo2

201

4. WORK PERFORMED (Continued) -19-2020 DATE: 0955 Hoprov 90 "SLY TO PVC 5 6. 210 pipp 1040 Water than ar 1330 07 1" steel +6 140 00 1350 1710 46. 400 6950 Set nor 1720 17.30

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications above

Λ C Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Initials:

-20-2020 Reviewed date:

Appendix C Data Quality Control Records

October 2021

Hydrovae noz 162

Data Gaps Drilling - 62735Dmo2 Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring -- 62599DM01- June Daily Quality Control Report - Non-Construction

11

ROLE: SSHO

DATE: 1 -20-2020

. ONSITE PERSONNEL (including subcontractors		rs and government employees) Organization			
Bernie Bockisch		EA - Site Manager/Su			
EANL Mors		EA - Site Health and S	afetly	y Office	
Leroy Moorehe	ad		1		-
Dallas Field	100	7 thigh th	12	Ja	-
	the				_
					-
		1	-		-
2. OPERATING EQUIPMENT					_
Team #1 YSI Professional Plus 15K101398 r	- VSI Diefer	Team #2		Spare	-
Wh0003	Wh0001	sional Plus 15K101396		YSI Professional Plus 15L100541 Wh0002	Г
MiniRAE 3000 592-915778 [MiniRAE 30	000 592-915790		MiniRAE 3000 592-915579	F
Hach 2100Q 15100C045034	Hach 2100	Q 15100C044633		Wh0006 Hach 2100Q 15160C045025	L
Solinst Water Level Meter 253054	Solinst Wat	ter Level Meter 253053		Wh0007	L
DAILY CUMMADY #				Solinst Water Level Meter 253056 documents, converstations with the	Γ
	A	, deviations from plan lems encountered and			
	A	M			
		M			
	P	M			
	A	M			
WORK PERFORMED (Indicate loca	A				
WORK PERFORMED (Indicate local	A	description of work per		hed by prime and/or subcontractors)
1030 Meet at 7	A	description of work per to get 14.)
WORKPERFORMED (Indicate local D650 Mectat 7 0710 Sec Bernin	A	description of work per)
1030 Meet at 7	A	description of work per to get 14. EF Trailer.		ned by prime and/or subcontractors Mesa Badges E 15 confirming)
710 See Bernin Well Spot	tion, time, and ruman e a F B. F. Way	description of work per to get 14. SF Trailer. ting on the	tform , 4	ned by prime and/or subcontractors Mesa Badges E 15 confirming)
1030 Meet at 7	A	description of work per to get 14. SF Trailer. ting on the	tform , 4	ned by prime and/or subcontractors Mesa Badges E 15 confirming	>

Reviewed by: Appendix C Data Quality Control Records

Page 31 of 202

Initials:

October 2021

Data 64p3 Drilling - 627350moz.

062

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62599DM01 June Daily Quality Control Report - Non-Construction

KASB-106 510 11-20-2020 DATE: 4. WORK PERFORMED (Continued) 073 64 0740 Berni with 0750 0830 0850 C 11 lam ooks to 900 0905 01 09 6 0 5-CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications above

An Morse

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Initials:

Appendix C Data Quality Control Records

Page 32 of 202

Reviewed date: 11-23-2020

October 2021

Coring Data Gap 5 Kirtland AFB Bulk Fuels Facility Vadose Zone Coring -- 62735DM02 Daily Quality Control Report - Non-Construction ROLE: 5540 DATE: 11 / 20 / 20 WEATHER: Partly claudy, H: 690 KAFB - 106 510 1. ONSITE PERSONNEL (including subcontractors and government employees) Name Organization EA - Site Manager/Supervisor B. Bockisch EA - Site Health and Safetly Office M. Marey J. Messenger D. Schmeelik ÉA EA Currede Juster Maples Calla Josh Glatnier 2. OPERATING EQUIPMENT Fork lifts, ARCH rig, generator, compressor, support trucks 3. DAILY SUMMARY (include QC samples collected, deviations from planning documents, converstations with the the public and governmental employees, and problems encountered and remedies applied) Geneticiation of well 106V3. Complete. Will finish suctake completion temorrow. New hannes installed on ARIH Kea tostart 106-37 ser in 4. WORK PERFORMED (Indicate location, time, and description of work performed by prime and/or subcontractors) 0645 cA on site Cascade an site, B. Backisch an site 0700 Cascade leaving site to fill water tate. 0720 Lascade back on site 0742

DQCR Page 1 of Z 3

Reviewed by Initials: Page 33 of 202 Appendix C Data Quality Control Records

Reviewed date: 11-23-2020 October 2021

DATE: 11/2-/20 4. WORK PERFORMED (Continued) 0805 offite Rchis. 6 080 graut at 105' 645 Steel tremie 581 pipe Enve 44 menz 5830 1052 trand 1116 15 STELD in 60 1158 banto 11 3 1221 4 50 POF 1235 nta n. 250 1725 5 5 0 1751 TO 60 in roll OPEr off site

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

1 < V Mille Name

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 23

Reviewed date:

11-23-2020

Appendix C Data Quality Control Records

Reviewed by:

October 2021

1000	DATE: 11 / 22 / 22
4. WORK P	PERFORMED (Continued)
1420	Taking &" Jonie sading to the landow
_	yard to Jerro. ARCH rig crem landin.
-	Well materials on trailer at laydow
-	Yard. Bryan Nydoske and Forrest
	Chattin accepting to mart the
	driver with the hanner
1615	Forreston sit at laydown yerd with
-	hanner.
1635	ARCH crew putting the new hammer
705	Hammer installed. Ready to Drilling
-	2 -
1110	ARCH LOW DES site
1775	8" Sonit core Second. Sonit crew off site. M. MEVey off site
1142	The the very aft site
	2
	14
1	1./·
	//
	/
-/	
L	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

MEVA Name

Signature

EA Engineering, Science and Technology Inc., PBC

3 of 3 DQCR Page 2 of 2

Reviewed date:

11-23-2020

Appendix C Data Quality Control Records

Reviewed by:

October 2021

		Actual	1	KA	FB-I	06 V3 Bore	hole fill notes		Page lof2
Time/ Date	Initial deptu	Final 1	change	Target Section Volume	well diam.	Materials Installed	Theoretical material usage	Actual material usage	
1253 11-18-2020	285	281.1	3.9 ft	0.7 9 ft ³	6%	1.5 Bags Sand (10/20) 50 16	285-281 = 4ft ≈ 1,5 bags @ ~2,5 bagt/fg +	1.5 bags	Backfill
1311 11-18-2020	281.1	276.2	4.9 ft		1ft of 3"scH 80	Med Bentonite chips (50 lb bag) 2.25 bags	281-273 = 8ft ~2.5 bags/ft bag ≈3.2 bags	3,75	Seal through clay
1315 11-18-2020	276.2	273.0	3.2 ft		(3.5"00)	+ 1/4 + 1/4 = 1 .5 bags		bags	29. as
1409 11-18-2020	273.0	262,7	10.3ft	$2.5 ft^{3}$	6" to 271ft 8"abre 3"sch 80 throughout	Sand (10/20) 10 brigs (2015	273-263, ≈10ft) ≈5 bags	10 bags likely doe to void	Filter Pack
1955 11-18-2020 to 1558	262.7	235.3	27. Y ft	7.8ft ³	8"/ 3,5 54 \$0 \$	Med Bentanite Chips (5016 bay) Htt. Htt 111	262.7-235=27.7' ≈ 2.6 ft/bag req ≈ 10.5 bags	13 boys	Main seal (lower bentonite)
0750(17) 11-19-2020 Growting 0923-1000	Newin	228	7.2 ft	2.0ft ³	8"/ <u>3</u> 5" sett 3 07 oD	Quick Grout (20% solids) in ~ 45 gal batches (~1.5	235.2-25=210.2' reg 680.7 gal \simeq 15 batches \simeq 22.5 bags	21	Grout
1350-1700 EOD	228	10 5 tagged at 0805 11-20-2020	123	89.0ft ³ = 91 ft ³ (680.7ga)	3.5"	bags/batch) 21 bags @ EOD	©EOD w/~ 630gal TD estimated 90ft B65 w/ theosetical estimate @~40ft B65		
0830 11-20-2020	105	27.8		and the second		2630 gal Quick Grout (20% solids) in ~ 45 gal batchee (~1.5 bags/batch HTT 11		- + -	
1055 11-20-2020	27.8	17.0	10.8	4.7 f+ ³	3.50		27.8 - 17 = 10.8ft ~37.5 165/ft reg ~ 7.5 bags		Main Seal (upper Bentonite)
11-20-2020	10.\$ ≯ 17.0	12.0	5.0ft 1.2	0.853ft ³ 12.677ft 1.73ft³ 2.15ft ³	00 + for3 a 1.05	in a la de	17.0'- 12.0'= ## 17.0'- 12.0'= ## req ~ #.5 bags	6.25	Lower SVM filter pack
1207 11-20-2020	Appendix	9. (C Data Quality	2.9 ft		•D+ 1.05°0	S ¹ Med Bentonite Chips (SO 16 bag D 11 Page 36 of 202	12-9=3') @~37165/ft reg. 22.25	2. 2 . Setaber	Lower SVM Seal 2021

Page 2of 2

-				í.	_				Page 2012
	A Initial depth	ctual - Final Depth	change	Volume	diam.			Actual material usage	
1223	9.1	4.0	5.1 ft	0.865 ft ³ +1.20 s ft ³ -2.57 ft 2.145 ft ³	9 %8	Sand 5016 bag (10/20) Htt + 1/4	Material Usage 9-3-677*9-4=54 © 0.49 675 60 ft reg = 5.25 bags	5.25	upper SUM filtes pack
1242 11-20-2020 1250	4.0	2.0	2 f f	0.43ft3 0.85ff3	958 4 354 + 2×1.05	Bertonite Chips Med (So 16 bugg) 1+1/2	6 3 34-2=2ft = 2 rep ~2 bags ~1.5 bags	1.5	Upper SUM Seal
	— Tagge	d KAFB				0-228 = 95/8'' 228 - 271 = 6''' 271 - 285 = 6''' 281.1 trusion/wate		t intresie had wate	1
	Appendix	: C Data Quali	ty Control Re	cords		Page 37 of 202		October	2021

Data Gaps Drilling - 627350m02 Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62599DM01 3

Daily Quality Control Report - Non-Construction

554 ROLE: DATE: M-21-2020 WEATHER: 1. ONSITE PERSONNEL (including subcontractors and government employees) Name Organization Sockisch EA - Site Manager/Supervisor Mike McVe EA - Site Health and Safetly Office A-GEO essence F14 -GED ON est Mason Miller ascal John Alexander Justin Maples Josh Clothier 2. OPERATING EQUIPMENT Team #1 Team #2 YSI Professional Plus 15K101398 Spare YSI Professional Plus 15K101396 YSI Professional Plus 15L100541 Wh0003 Wh0001 Wh0002 MiniRAE 3000 592-915778 MiniRAE 3000 592 915790 MiniRAE 3000 592-915579 Wh0005 Wh0004 n Wh0006 Hach 2100Q 15100C045034 Hach 2100Q 1510 C044633 Hach 2100Q 15100C045025 Wh0008 Wh0009 Wh0007 Solinst Water Level Meter 253054 Solinst Water Level Meter 253053 Solinst Water Level Meter 253056 3. DAILY SUMMARY (include QC samples collected, deviations from planning documents, converstations with the the public and governmental employees, and problems encountered and remedies applied) SIDA 10 510 6 4. WORK PERFORMED (Indicate location, time, and description of work performed by prime and/or subcontractors) 072 1 15 195 entied a Dorl X4 W + he la corners at DQCR Page 1 of 2 Reviewed by: Initials:

Appendix C Data Quality Control Records

Reviewed date: 11-23-2020 October 2021

Dute bops Drilling - 627350m02

268

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring -- 62599DM01 Daily Quality Control Report - Non-Construction

4. WORK P	4F13-166510A DATE: 16-21-2020
	Start drilling on ARCH rig
0100	Dulling at 80 bas, No odors from soil
	Demanter des la la la la la
0905	Justin is cleaning out hole for surface casing,
1920	Clog cleared 3 rin back together started dr. 11.
2935	0/15 breathing Zone 0.0 ppm
025	Olis breathing zone 0.0 ppm
	Justin 15 setting rebar into form, digging holes
	For the bollands
1045	Drilling @ 200'bac
1050	M. McVex arrives
110	TO at 230' bags. Pulling Still pipe
143	Finished pulling Still pipe
154	AREH rig Samabas from boring 106510A.
	Finish site cleanup and Jemob before
	bringing in the sonic rig.
234	Mobing Saric rig into place ever
	boring 1065wawill Finigh site Setup
	to complete coring.
320	Screwing 8" casing and detil pipe
	together.
501	Wicaline Kinked while secondia
	Scill pipe together. Tosten heading to the
	bardware store to get the parts to
	splice it

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications above

N Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

DQCR Page 2 of 2 Initials:

Appendix C Data Quality Control Records

Reviewed date:

-23-00

October 2021

KAF3 106512A	DATE: 11/21/20
WORK PERFORMED (Continued)	
1615 Justen backon site	to con in whice fine
632 Wireline repaired.	
705 Gore barrel apt a	
make another	
We will call it	
pickup in then	
712 Lascale off site L	ag core from 230 to
235 bgs.	
730 EASFE Site	
1	
-4	

I
 CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

SV. Name

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 2

Reviewed by

Appendix C Data Quality Control Records

Reviewed date:

October 2021

-23-2020

3.F8

Sundance Consulting, Inc.

Daily Field Activity Log

DATE:	1/2	112020

2 PROJECT NAME/NO .: KAFB - USOI-030

NAME	ORGANIZATION	
Justin Fitch	SUNdance	
Ferrest, Mason, John	Cascale	
		~5
SUN	MMARY OF DAILY ACTIVITIES	

WORK PERFORMED torue - Dickup truck - go to site 13 Ct1 Tailgate Meeting 1320 Frelso RIG VDL 430 tacklank 1415 -11 wister to yard to unland confisting (EAS) from Truck 1440 fo 610 1500 Mount jack over hole 1630 epin to yord - unDack & lak up 1715 1725 Yord eque 23/2020 11 Sugn Fitch ame Signature

Name

Reviewed By

Reviewed

ROLE: 5340	
WEATHER: Cloudy, Hi	
1. ONSITE PERSONNEL (including Name	g subcontractors and government employees) Organization
B. Boskisch	EA - Site Manager/Supervisor
	EA - Site Health and Safetly Office
M. May	ÊA
J. Messenger	
D. Schmeelk	EA
J. Maples	Cascade
J. Glotwier	Cascale
2. OPERATING EQUIPMENT	
Sonic rig, Fork	(1:5+
says rig, isc	
3. DAILY SUMMARY (include OC s	samples collected deviations from plans, conversitations with the public and
	samples collected, deviations from plans, converstations with the public and employees, and problems encountered and remedies applied)
government	employees, and problems encountered and remedies applied)
government	
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
government	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
- Drille-	employees, and problems encountered and remedies applied) From 235' to 280' by with the
	temployees, and problems encountered and remedies applied) I from 235' to 280' bys with the rig.
government	ime, and description of work performed by prime and/or subcontractors)
government	temployees, and problems encountered and remedies applied) I from 235' to 280' bys with the rig.
government - Drille= Soare 4. WORK PERFORMED (Indicate ti 0700 EA, Casta the Soar	ime, and description of work performed by prime and/or subcontractors)
government - Drille= Soare 4. WORK PERFORMED (Indicate ti 0700 EA, Casta the Soar	ime, and description of work performed by prime and/or subcontractors)
A. WORK PERFORMED (Indicate ti 0700 EA, Casca the Sont	ime, and description of work performed by prime and/or subcontractors) ade on site. Continue contractors with incig.
A. WORK PERFORMED (Indicate ti 0700 EA, Casca the Sont	ime, and description of work performed by prime and/or subcontractors) ade on site. Continue coring with in rig. ite to pick up roll off
A. WORK PERFORMED (Indicate ti 0700 EA, Casca the Sont	ime, and description of work performed by prime and/or subcontractors) ade on site. Continue contractors with incig.

Appendix C Data Quality Control Records

October 2021

DATE: 11/22/20 4. WORK PERFORMED (Continued) 1306 Began an site Beney off site meelik aff site 1645 render off 5 ax driven to 700 280'bas into the clay. the 1 6" Lasing to TD. in with The Keep the sand above lows and bis vo over to the laydown 1710 box 140 of the 6" cusine 440 load 1715 Kvey off Site M. 1720 .

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

1 × V Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Appendix C Data Quality Control Records

October 2021

Daily Field Activity Log

DATE: 11/22/2020 PROJECT NAME/NO.:	
------------------------------------	--

ONSITE PERSONNEL

NAME	ORGANIZATION	
Stephen Newman	Sundance	
Forrest, John, Musca	Carcade	

SUMMARY OF DAILY ACTIVITIES

	Efforts wer	e made	to pull	the fol	11: ben	sth of T	the 4	3/4"
-	casing out	to replace	the she	ve, with	no no	wele. A	new	strategy
2	has been .	nade to	resolve	the	issue	tomore	ow.	0/
		• •	WORK PER	FORMED				

0655	Arrive at sundance laydown ward to prep for day.
5705	Arrive at sundance laydown yourd to prep for day. Arrive at KAFB-106251 for safety tailgate with crew
	from cascade; discuss plan for the day.
0810	Back up empty rig tender to well to begin pulling up caring.
1030	After pulling up 9 lengths of 20ft, 113/4" diameter casing,
	casing has broken somewhere down-hole. Drillers
	now must try to pull casing up by using the bit
	and drill string. These tools will be used to pull up the casing from the bottom.
	up the casing from the bottom.
1215	The drillers went off-site for which.
1250	Drillers go to laydown yard for extra drill string.
1310	Raise boom and begin tripping in drill string to lift
	casing.
1500	Drill string is down hole as deep as caking. Drillers
24 =	will use the hammer to lossen casing down hold, then
	try to lift casing using the drill string.
630	Inner casing is not moving.
1645	After discussion with Bryan Nydoske, the drillers are
	going to set up to lift the outer casing out of the ground a few feet. If the two casings are bound togethe
	ground a few feet. If the two casings are bound togethe
	this should resolve the issue. The drillers will set
	up for this and head home for the day.
700	Drillers leave site; I restorn to trailer
1715	off sife.
<	

Stephen Newma Name

Reviewed By

Signature

Reviewed Date

Sundance Consulting, Inc.

Daily Field Activity Log

DATE: 11/23/2020 PROJECT NAME/NO .: CAFB US07-030

ONSITE PERSONNEL		
NAME	ORGANIZATION	
Justin Fitch	Sundance	
Stephen Neuman	SUM dan Co	
FORFAT, Juhn, Musch	Cascado	

SUMMARY OF DAILY ACTIVITIES

Jan to det tools out	
WORK PERFORMED	

Arrive at Yord OGS0 07-40 Gio to site Tailgate 6710 Run to site for 200 these to have Avelusian Earle Eights いそれえ PID Breating Cone: O. O ROM 0740 Accompany Gascade to laydown yard 0846 Pack to site 1900 1715 Lunch Go de Yord For 5' rusing 1245 Ceturn to site 1255 Pipe not broke - just disconnected - a fuching new 11/14 then removing sure 13/18 1615 1410 Finish For day Return to yard 1705 Depart FIS 2020 2 Justin Liten me Baahel blobbe Signature Name 4.2021

Reviewed By

Reviewed Date

DATE: 11/24/10 PROJECT NAME/NO .: KAFB VS01-030

ONSITE PERSONNEL

NAME	ORGANIZATION	
Justin Fith	Sundance	
Stephen Newman	Sundance	
Forrest, John, Mason	Consende	

SUMMARY OF DAILY ACTIVITIES

Tay to	Unstick Dide	- 51
		1/2
	WORK PERFORMED	

SES G HEAVE AT YE. UTU to to Site 5710 Thilgate Meetily 07-20 tout for vash-ile Dide -PINNE 3 stands of 13 3/8" RALON 11 3/4" Bruke dallstade Left site to ver 170> Lett yord 1715 orti 24 11 ntz Signature Name 11/22 ennan 2070 Reviewed Date

Reviewed By

Sundance Consulting, Inc.

Daily Field Activity Log

Page 1 of

1

	11/2/1/202
DATE:	1170/2020

0

PROJECT NAME/NO .: KAFB- US01-030

AME Subth Dith Subth Dith Subth Dith SumMary OF DALLY ACTIVITIES SUMMARY OF DALLY ACTIVITIES SUMMARY OF DALLY ACTIVITIES SUMMARY OF DALLY ACTIVITIES USA CONCERNING TO DALLY ACTIVITIES SUMMARY OF DALLY ACTIVITIES WORK PERFORMED DAGS A Arche at Subt USA Arche at Subt Support of the Arche to the Arche to the Arched to Subt USA Subt Concerns durable to the Arched to Subt USA Subt Concerns durable to the Arched to Connell) USA Subt Concerns durable to the Arched USA Concerns to the Arched to Support Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Rey back of with at 95' more site Concerns (BAR Re		ONSITE PERSONNEL
Errest. Muser, Site SUMMARY OF DAILY ACTIVITIES Run content demohale to une top of deall string R errore 13/8" casing WORK PERFORMED 2950 Arrive at site 000 Arrive at site 000 Arrive at site 010 Storted conner deankede to use before the deconned) 100 Storted conner deankede to use before the deconned) 100 Storted conner deankede to use before the deconned) 100 Storted conner deankede to use before the deconned 115 Rachel care - Discussed where and plan Perward 1160 Casea de Tale lunch 1260 Deck public 13/8" casing 1560 Casea de Tale lunch 1260 Deck of with casing 1648 1670 Respondent at 95' move act - 619 up the public desing back at 1670 Casea de Tale lunch 1670 Casea de Tale lunch 1670 Casea de Tale lunch 1670 Deck of with casing 1648 1670 Casea de top yord do winterze casing 1600 Deck of with casing 1648 1670 Casea de top yord do winterze casing 1600 Deck of with casing 1648 1670 Casea de top yord do winterze casing 1600 Deck of with casing 1648 1670 Casea de top yord do winterze casing 1600 Deck of with casing 1648 1670 Deck of with casing 1648 1670 Deck of with casing 1648 1670 Casea de top yord do winterze casing 1600 Deck of with casing 1648 1670 Dec	AME	ORGANIZATION
Revert, Museri, Sim (as cude SUMMARY OF DAILY ACTIVITIES Run comera durahale to view top of daily tring Runove v3%" casing WORK PERFORMED 2950 Active at Safe Grad scar and truck & hend to site UOO Active at Safe UOO Active at Safe UOO Spected running causers duraked to view before typ of dailstring to be fished 115 Rachel curve - Discussed without and plan Active Red Disk public 134/8" casing 1500 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Spect of with curve of scale 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Casing vehices hash at 95' move seek - 619 up to public (4514) beek # 1600 Degreet of which see yeard do with the see year of the see year of the year	Justin Fitch	Sindance
Renove downhole to view top of 2011 fring Remove 13/8" casing WORK PERFORMED 2950 Arrive at Site 000 Arrive at Site 000 Arrive at Site 100 Sported running comma downhole to view bokentry of dialistring to be Rohed 115 Rachel come Discussed interna and plan forward 1230 Casca de Dole lunch 1200 Casing others tight at 95 - move jeck - 619 up to publication book to 1800 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Case to the for your to cosing lick 1870 Case of left for your to cosing lick	Forrest. Musur, Juna	
Renove downhole to view top of 2011 fring Remove 13/8" casing WORK PERFORMED 2950 Arrive at Site 000 Arrive at Site 000 Arrive at Site 100 Sported running comma downhole to view bokentry of dialistring to be Rohed 115 Rachel come Discussed interna and plan forward 1230 Casca de Dole lunch 1200 Casing others tight at 95 - move jeck - 619 up to publication book to 1800 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Case to the for your to cosing lick 1870 Case of left for your to cosing lick		
Renove downhole to view top of 2011 fring Remove 13/8" casing WORK PERFORMED 2950 Arrive at Site 000 Arrive at Site 000 Arrive at Site 100 Sported running comma downhole to view bokentry of dialistring to be Rohed 115 Rachel come Discussed interna and plan forward 1230 Casca de Dole lunch 1200 Casing others tight at 95 - move jeck - 619 up to publication book to 1800 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Casing others tight at 95 - move jeck - 619 up to publication book to 1870 Case to the for your to cosing lick 1870 Case of left for your to cosing lick		
Remore 13/26" casing WORK PERFORMED 2950 Arive at Yard - Grab grear and track & hend to soft UND Arrive at site 100 Arrive at site 100 Sorted running conners durable to view brokenty of dailstring to be Rished 1115 Rachel care - Discussed where and plan toward 1230 Casca de toole lunch 1240 Regin pulling 1346" casing 1500 Casing gethis tight at 95' move jack - 619 up to push casing back at 1670 Ris back of with civing jack 6670 Cascade left for yord to winterize casing 1600 Depart		
WORK PERFORMED 2950 Arive at Karl - Grab genr and tarle & hend to site UCO Arrive at site 000 Arrive at site 000 Arrive at site 000 Sported running comma durable to view boken trip of dailstring to be fished 115 Rachel care - Discussed interna and plan Arward 115 Rachel care - Discussed interna and plan Arward 1150 Casca de trole lunch 1260 Sector pulling 134/8" casing 1500 Casing ethis tight at 95' - move jack - Gig up to push rasing beek it 1670 Ray back of with civing jack 1670 Casca de telt for yord do withter 20 Casing 1600 Casing ethis tight at 95' - move jack - Gig up to push rasing beek it 1670 Case Je left for yord do withter 20 Casing 1600 Case of left for yord do withter 20 Casing 1600 Depart		.0
2950 Active at Yard - Grab geur and truck & hend to site 100 Acrive at site 175 Tailate meeting 100 Sported running camera durukele to view brekentyp of doilistring to be hisked 115 Rachel came - Discussed - Duran and plan Arward 115 Rachel came - Discussed - Duran plan Arward 115 Rachel came - Discussed - Duran and plan Arward 115 Rachel came - Discussed - Duran and plan Arward 115 Rachel came - Discussed - Duran and plan Arward 115 Rachel came - Discussed - Duran and plan Arward 116 Rag back w/r with casing 156 1500 Casing offices Aght at 95 - move , ack - 619 up to push Casing beek H 1670 Ray back w/r with casing jack 1670 Case de left for yord of with reasons jack 1670 Case de left for yord of witherize casing 1600 Depart		
100 Arrive at site 175 Tailgate meeting 190 went to Laydown Yerd to afflord page (to be deconned) 100 sported running canners downhole to view between typ of doilistring to be Riched 115 ilochel care - Discussed a traction and plan forward 1230 Casca de track lunch 1300 Casca de track lunch 1400 Begin pulling 134/8" casing 1500 Casing others hight at 95 - move jack - Gig up to publication beek H 1670 Rig back of with casing jack 1670 Cuse-Je left for yord to witherize casing 1600 Cuse-Je left for yord to witherize casing 1700 Degret		WORK PERFORMED
100 Storted running camera downhole to view brokenty of dailistrias to be Riched 100 Storted running camera downhole to view brokenty of dailistrias to be Riched 1115 Rachel came - Discussed and with and plan forward 1230 Cascade toole lunch 1240 Regin pulling 1348 casing 1500 Casing getting tight at 95 - move jack - 619 up to push casing beek A 1670 Reg back up with casing jack 1670 Cascade to the for yord to winterize casing 1600 Casing peting hight at 95 - move jack - 619 up to push casing beek A 1670 Reg back up with casing jack 1670 Cascade to the for yord to winterize casing 1600 Casing peting and to winterize casing 1600 Cascade to the for yord to winterize casing 1600 Cascade to the for yord to winterize casing 1600 Depart		b gene and tack & hend to site
640 Went to Landow Yerd to afflord page (to be deconned) 100 Storted conning conners downhole to view bookentry of dallstring to be hished 115 Idachel come - Discussed whether and plan Arward 1230 Cascade toole lunch 1260 Cascade toole lunch 1260 Cascing getting hight at 95 - move jack - Gig up to push cascus book it 1630 Cascing getting hight at 95 - move jack - Gig up to push cascus book it 1630 Cascade left for yord to withten 20 Cascus 1630 Cascade left for yord to withten 20 Cascus 1640 De yord 700 Depert		
100 Storted running connora devented to view bokkintyp of dialistring to be fished 115 Rochel come - Discussed intration and plan Arward 1230 Casca de trole lunch 1260 Begin pulling 134/8" casing 1500 Casing getting hight at 95' - move jack - Gig up to push rasing beek A 1630 Rig back up with cusing jack 1630 Cusede lett for yord to withterize casing thend to yord 700 Depart		
115 Rachel came - Discussed intration and plan forward 1230 Casca de trale lunch 1400 Begin pulling 1348 casing 1500 Casing gethis tight at 95 - move jack - 619 up to publicasius back it 1630 Ray back of with cusing jack 1650 Cascade left for yord to winterize casing thend to yord 700 Depart		
1230 Cesca de Izole Junch 1405 Begin pulling 134/8" casing 1500 Casing geting tight at 95 - nove jack - Gig up to push rasing back it 1630 Ray back up with rasing jack 1670 Cuse-de left for yord to winterize rasing Hend to yord 700 Depart		
1400 Begin pulling 134/8" casing 1500 Casing getting hight at 95 - move jack - 619 up to push casing back it 1670 Rig back up with cusing jack 1670 Cuseedo left for yord to withterize casing thend to yord 700 Depart	1	ed so tration and plan terward
1500 Casing getting tight at 95 - move jack - 619 up to push casing back # 1670 Rig back up with cusing jack 1670 Case Je left for yord to winterize casing Hend to yord 700 Depart		16"
1030 Rig back up with casing jack 1670 Currende left for yord to winterize casing thend to yord 700 Depart 1.120		
Tou Depart		
tlend to yord Tou Depart		
Tou Dyxet 1		
$\frac{1}{21120}$		
50 121.120 50 121.120 1. to the the	,	
$\frac{1}{5}$		
50 121.1120 50 121.120 1. Total 1. Total 1. Total		2
$\frac{121120}{50}$		
SP FRIT		100
		- The second sec
Sal FII II. Fatto		
		1
Sal FII III Forth		
	Sution Ella	1/10 to Otto
IV FILL I (IT VI) / / / / / / / / / / / / / / / / / /	IN THE I CAN	- ANCUS/M
ame Signature	ame	Signature

Stephun Reviewed By

Navman

2

Reviewed Date

Sel. 12/1/2020

DATE: 12/1/2020 PROJECT NAME/NO .: 1/501-030

	ONSITE PERSONNEL	
NAME	ORGANIZATION	
Stephen Newman	Sundance	
Forrest John, Mason	Cascade	
Justin Fitch	Sundence	

SUMMARY OF DAILY ACTIVITIES

Irip	out a	11 13-	3/8" (casing.	Use	bell tap	to	clean
1rb	broke	drill	ctring.	pres	Fishing	touls.		
			01	1				

WORK PERFORMED 0655 Annie at laydown yourd KAFB-106251: cascade is Arrive 0700 at repairing a sensor forklift their fett tailgate 0733 Nydoske 0735 Bryan arrives on-site tripped-out (100 ft) 1940 13-5/8 casing has been look. 1000 lown note 40 net second 1200 to help/oversee Worki returns onerations. tripping in belletap si illars equipment. Bean string with bell-tap at the tip; this will Used mutilated ead the drill string 20 deaning. UD the Down hale 1300 lill etring take ano H. Camera 100K 124n Use bill tap 40 clean VID lown hole string a bit more. 1440 out lvill string. 90 luwa-holz with camera 1530 Drill String looks 900 d prep fishing tools to pull up drill and casing 1700 Drillers Leave 1715 OF.F-sile 21,102 human Signature 12/02/200

Reviewed By

Reviewed Date

Daily Field Activity Log

DATE: 12/07/2020 PROJECT NAME/NO .: 164FB VS01-030

	ONSITE PERSONNEL	
NAME	ORGANIZATION	
Justin Fitch	Sundance	
Forriest John, Macan, Bryan	Cuscade	
Stephen Newman	Sundance	
SUMIN	ARY OF DAILY ACTIVITIES	
Try to get tou	15 out	

WORK PERFORMED 0645 Arrive act site yard Hend to drill ate 0650 Tailgate Mysting 0715 Prepare & mount fighing grapple + son downhole to connect up doill string 0720) Rig dun to pull forward & set master Tack 1115 Afendet to pull up dullation -1145 1215 which alked with Ferrest - Meter plate bent - Boyan is looking for a stronger or placement 1245 van by decon BUN riew went b 1420 Usill room returned to site Remove juck - rig up to try to premine study of dall pipe with overshet anyol approver to sample full IDW Sul Foll-off 1530 Sternien Neumin 1940 Justa went to du permit ofices 1620 Returned a Newred Jackage UN ITTU Samy 71C Dalles left 700 1715 Headed to vord to Macad 1730 Deitort

Name

Reviewed By

Signature

Reviewed Date

Daily Field Activity Log

DATE: 12/3/2020 PROJECT NAME/NO .: KHT 13 - 1062157 US01-030

ONSITE PERSONNEL		
NAME	ORGANIZATION	
Jostin Fibel	Southance	
Stephen Newsbar	Stildance	
Ferrosh, Julius, Masun	Cuscade	

SUMMARY OF DAILY ACTIVITIES

	Try to get tools out of well	
_		
	WORK PERFORMED	

2655 Arrive of Yord 0705 Go to site 177U Tailcate I've dueshed and Junkeje 1730 Casild 1115 move by a set casing, Tack up 1715 unch Fire no Dull on dellative lox bracing on casing stand & jacking ou 1215 my?) "Formed" back up - Not swo what releave I (bit, over shot, drills) 1500 Casing Strive 1530 mare juck KI. It tre blew. a flatched to one dulition stend, which broke alf from below 630 overshot of -Rize D Kint This del halt in holp HUNard PHUR SHE 17711 750 Proces Yral Signature Name Unhl 2021

Reviewed By

Reviewed Date

Arzon

DATE: 12/4/2020 PROJECT NAME/NO .: KAFB VS01-030

	ONSITE PER	RSONNEL
NAME		ORGANIZATION
Sy con	alath	Sundance
etepher	n New man	Sundance
	Mason, Sihn, Bryan, Matt (comera IT)	Chiscade
Ben Moa		VSACE
40.1111	SUMMARY OF DA	AILY ACTIVITIES
	Attempt to pull of dall string	
	-uncoupled fishing string instead -	perannect greenove overshot
	WORK PER	FORMED
0850	Afornue at yard - pix is up truck	
OFGU	Gro to site	
0710	Thilgate	
0720		ing jack
0900	Dallstraw DODEd - Rig up and Fem	we fishing string
1115	Fishing string disconnected at t	threading Iwn hote
1120		o reconnect and remove overshot
17.50	Biggen 15 giving in - avershet o	sulled out
1205	Lynch	
1250	Back to sernoving 113/4" carry	
1540	but last of mains out	
1545	Tay hole at 102	
isst		Medwar Chips - 30 Bays (5016)
1600	Tug bottom (2) (00'	
1610	30 more bass of chips	
0501	Tag 2040m @ 95' (96')	
1630	Pump 400 gal 420	
1640	Plan by yord (Carrade) for frailer	
1705	Return From Yord	
17-45	Left site theyard	
itel	Left yad	
~	40	
	V	
	1	
Tista	in Elch	MIAM ATT
Name		Signature
Stephen	Veworad	Signature 12/1/2020

Stephin Newman

Reviewed By

Reviewed Date

Sundan	ce Consulting, Inc.	
DATE:	12/5/2020	

Daily Field Activity Log

PROJECT NAME/NO .: KAFB US01-030

ONSITE PERSONNEL

NAME	ORGANIZATION	
Justin Fitch	Sindance	
Farrest, John; Mason	Carcade	
SU	JMMARY OF DAILY ACTIVITIES	

	Decon caring and chillstring reland	onto touck in prep for notive
	Go to othe to scan field docs	
1.2		

WORK PERFORMED

0715	Arrive at yord to get truck Arrive at site
OFIC	Arrive at site
17-211	tailante
0735	Conded Casing/drill string & transported to yard to Ottoad Cascade left to move a rig elsewhere in town JF left to go to office to soan field paperwork -forgot entry badge at base -rotorned
0250	Cascade left to move a fig elsewhere in take
0950	JF left to go to office the segn field paperwork
-	-fergat entry badge at base -roturned
-	men went has a more of scanned Cols
1230	Returned to other, along with cascade
1240	
1500 1500	Forrest vent to yord to long up more distance - Anson returned from WIFIN
	Forest vent to york to lond up onere dellasing - that are returned from WIFI) "Stable + lond carring/ds on touck
1635	Finish up for day 9 return to yord Depart -
1645	pepart (
	1112020
1	110/20
	12/01
	$\overline{\mathcal{P}}$
-	
· · · · · · · · · · · · · · · · · · ·	A
(***) ^{(*}	
Tist	h Entre Miltotta
Name	Signature
Name	Signaraic

Juman

Reviewed By

12/6/2020

Reviewed Date

ROLE: 3540	DATE: 12/6/20
NEATHER: <u>Clear</u> , 6001	WELL ID: 1063104
ONSITE PERSONNEL (including subcontra	
lame	Organization
B. Backisch	EA - Site Manager/Supervisor
M. Mavey	EA - Site Health and Safetly Office
Justen Maples	Cascade
Josh Slotnier	Cuscade
OPERATING EQUIPMENT	
Sonia rig, fork 1:	:Ft
57	
	llected, deviations from plans, converstations with the public and
government employees	s, and problems encountered and remedies applied)
government employees	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Pvt a camar	s, and problems encountered and remedies applied)
- Puta camer to identify	s, and problems encountered and remedies applied) a Jama the 6" casing twise patential problem cassing
- Puta camer to identify the care ba	s, and problems encountered and remedies applied) a Jama the 6" casing twise petertial problem cassing cred to get strate inside
- Put a camer to identify the care but of the care	s, and problems encountered and remedies applied) a Jama the 6" casing twise potential problem cassing ccc(to get strate inside by at 393 - 395 bgs. Nothis
- Put a camer to identify the care but of the care	s, and problems encountered and remedies applied) a Jama the 6" casing twise potential problem cassing ccc(to get strate inside by at 393 - 395 bgs. Nothis
- Put a camer to identify the care but of the care	s, and problems encountered and remedies applied) a Jama the 6" casing twise potential problem cassing ccc(to get strate inside by at 393 - 395 bgs. Nothis
- Put a camer - Put a camer to identify the care bas of the Cari oignificant	s, and problems encountered and remedies applied) a Jama the 6" casing twise potential problem cassing ccel to get strate inside log at 373 - 375 bgs. Nothing was observed because the of black in the same of
- Put a camer to identify the care but of the care	s, and problems encountered and remedies applied) a Jawa the 6" casing twise potential problem cassing ccel to get stych inside lay at 393 - 395 bgs. Nothis was observed because the at black in the Bone of
- Put a camer - Put a camer to identify the care bas of the Cari oignificant	s, and problems encountered and remedies applied) a Jama the 6" casing twise potential problem cassing ccel to get strate inside log at 373 - 375 bgs. Nothing was observed because the of black in the same of
government employees - Put a camera to identify the care bas of the Cari oignificant	s, and problems encountered and remedies applied) a Jawa the 6" casing twise potential problem cassing ccel to get stych inside lay at 393 - 395 bgs. Nothis was observed because the at black in the Bone of
- Put a camera to identify the care bu of the cari oignificant internet (so Styrtes Atcipping a	s, and problems encountered and remedies applied) a Jawa the 6" casing twisc potential problem cassing ccel to get styche inside ag at 373 - 375 bgs. Nothis was observed because the ot black in the some of a notes). t the fill and fill and fill of the fill and fill and fill and fill of the fill and fill and fill and fill of the fill and fill and fill and fill and fill of the fill and fill a
- Put a camera to identify the care bu of the cari oignificant internet (so Styrtes Atcipping a	s, and problems encountered and remedies applied) a Jawa the 6" casing twisc potential problem cassing ccel to get stych inside lay at 393 - 395 bgs. Nothing was observed because the ot black in the Bone of
- Put a camera to identify the care but of the card of the Card Significant Significant Styrtes Atcipping	s, and problems encountered and remedies applied) a Jawa the 6" casing twisc petertial problem cassing cre(to get stych inside and at 373 - 375 bgs. Nothing was observed because the at black in the Rome of a start the first of the Rome of a start of the G" and at a start of the G" at a start of
- Put a camero to identify the care ban of the care of the Card of the card o	s, and problems encountered and remedies applied) a Jawa the 6" casing twisc petertial problem cassing cre(to get stych inside and at 373 - 375' bgs. Nothing was observed because the at black in the Rome of a side the 6" cash of gescription of work performed by prime and/or subcontractors)
government employees - Put a camero to identify the care ban of the cari orignificant Significant Significant Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Sance and Startes Atripping au Sance and Sance and Sance and Sance and Startes Startes Atripping au Sance and Sance a	s, and problems encountered and remedies applied) a Jawa the 6" casing twice potential problem casesing cree (to get stych inside and 373 - 375' bys. Nothing was observed because the at black in the some of a site posite posite posite posite plan for the Jay
government employees - Put a camero to identify the care ban of the cari orignificant Significant Significant Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Startes Atripping au Sance and Sance and Startes Atripping au Sance and Sance and Sance and Sance and Startes Startes Atripping au Sance and Sance a	s, and problems encountered and remedies applied) a Jawa the 6" casing twisc petertial problem cassing cre(to get stych inside and at 373 - 375' bgs. Nothing was observed because the at black in the Rome of a side the 6" cash of gescription of work performed by prime and/or subcontractors)

Reviewed by:

Reviewed date: 12-11-2020

	DATE: 12/6/25
4. WORK P	ERFORMED (Continued)
	inside of the casing
0911	Camera nat working; Careade is
	troubleshooting.
0935	Camera now working. Start lowering
	Lanera.
1022	Camera didn't shaw any thing natewarthy
	down to 385 bys. At 385, the water
	that was added yesterday inside the
	Lasing was encountered. From 387'bgs
_	to 373' the samer went bluck, likely
1100	Justen is going to trapout the Girain
	to 370' bys and ream the baring really
	Well again. The casing will then be
	tripped back is and the comera will
	be lowered Jamp the ingite of the
	sasing again after the water and sail
	sustings have been vibrated out of th
	Lasing. This will allow for the casing
	to be viewed with the camera from 385' bys to the battom of the Shoe.
1248	Battom of casing at 398' bys. Tagged
	bottom of the boring at 397.5. will
	let the Just settle in the coving, the
	go back is with the camera.
1351	Setting up comeron

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

MEN Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2 3

Reviewed date:

12-11-2020

Appendix C Data Quality Control Records

Consul.	DATE: 12/6/20
4. WORK P	ERFORMED (Continued)
1355	Start lowering sumera
	Lamera did not show waything
	difinitive. The sidewall of the anzing
	was caked with Sist starting at approx
	380 bys, but the sumara feed weat dead
	and black at approx. 392 (possibly
	due to a short in the Endle). We were
	sazing at 398' bas. Juston consulting
	with Brynn Nydaska
1548	Bryna Nylooka spanking with
	B. Bonkisch about path forward.
	Will stand by to been back From
	Bernie and Bryan.
1600	Received Straation back from Bernie
	and Brynn, Will trippart the G'
	8" Jonic anding The ARCH rig will then by vord to advance 13"/8" Ensing
	to 200'bgs and 113/4" Easing to
	400' bys. The sance rig will then be
	brought buck in to care to TD. The
	ARCH is will the be brought back
	in to somplete the well.
	Broke down drill pipe and put back into
1730	box truck. Sturted trippingout 6" Lasing. ER, Capende off Site
100	nii) Lagen / OF+ DETa

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M: < Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

Reviewed date: 12-11-2020

Appendix C Data Quality Control Records

DQCR Page 2 of 2

DATE: 12/6/2020 PROJECT NAME/NO .: KARB Data Coup Wells, US01-030

	ONSITE PERSONNEL
NAME	ORGANIZATION
Stephen Newman	Sundance
Formest, John, Mason	CDLP
	SUMMARY OF DAILY ACTIVITIES
DIED FOR DEW	have a P&A according
	note i fill octained

WORK PERFORMED

	WORK PERFORMED
0655	Arrive at trailer, go meet cascade at EA Laydown.
07 05	Safely Tailaate
0730	Drop of equipment at Avil Site, return to get more equipment.
0740	letur to BEF to aff-load equipment.
0755	Take vin tender / forklift back to laydow yard to load with
	rasing/ will string.
	Forrest is with Sonic Rig helping set up camera
1845	Repairs to shill site to all load ansing dail string.
1000	Run to laydown yard to get final supplies, they return to site to site son to off-load
	to site sn to off-load
1045	Begin prepping for dvilling operations
1115	Fig is in place and the mast is up.
1225	Fig.s in place and the mast is up. Drillers taking lunch Drillers go off site for the day.
13215	Drillers go off site for the day.
1400	Return to Sundance yard.
	1
/	
Chenter	n Neuman
Name	Signature
Manne	

Y

Reviewed By

12/110/2020

Reviewed Date

ROLE: 5540	DATE: 12/7/20
WEATHER: Clear, cool	WELL ID: 106510A
1. ONSITE PERSONNEL (including subcontract	ors and government employees)
Name	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. MEVey	EA - Site Health and Safetly Office
Justen Maples	Cascade
Josh Clothier	Cascade
Forrest Chattin	Carcade
John Alexander	6- 11- la
Majon Miller	Sagrada
OPERATING EQUIPMENT	
Sonie rig, Fork lif	t, pipe hoist
. DAILY SUMMARY (include QC samples colle	cted, deviations from plans, converstations with the public and
government employees, a	and problems encountered and remedies applied)
- Tripped out	all of the Guand &" sonit
Caring and	demobed the space rig.
	ARGH rig and removed
	5/8" Gazing. Tripped in
13318" Easin	g to 100' bg5.
	M
	ription of work performed by prime and/or subcontractors)
0645 Cascade on sin	te
0700 EA on site 0708 H+5 meeting, 0730 055-1021 6" 29	
1708 H+5 meeting,	plus for the day
0730 075-10ad 6" <a< td=""><td>5.74</td></a<>	5.74

DQCR Page 1 of 2

	DATE: 12/7/20
	ERFORMED (Continued)
0826	Begin tripping out 8" sonie casing and loading
	in box truck
0724	Finished trippingout &" Sonia anding.
	Towering down, maving sanis rig, cleaning
1.25	up site, dumping hepper in roll att bin
	Taking 8" casing to laydown yard to
	decan and stage
1030	Setting up ARCH rig over 126510A
	borehole to pull 9 5/8" Lasing and instal
	13 18" Lasing to 200' and 11 14" to 400'.
1306	Begin pulling 9518" Lasing out of the
1.00	borehole
1334	Finished decon and staging of 8" sonis
11100	Lasing at the laydown yard
1958	Justan Maples and Josh Clotwier (gonie
	drilling a read leaving to go on day shoft
	Will return to site Saturday marning at Tam.
1435	Finished tripping out all of the 95/2"
	Lasing. Will bat up ARCH rig to start
	installing the 13% and 11 14 casing
1536	Start installing 1318" casing
1700	Installed 100' of 13318" Kasing
	EA, Cascade off site
	Am

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M MEVE Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by: ____

DQCR Page 2 of 2

Reviewed date: 12-11-2020

Appendix C Data Quality Control Records

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring = 62735DM02 Daily Quality Control Report - Non Country in State

reather: Clear/Cold in 1	DATE: 12-8-2020
ONSITE PERSONNEL (including subcontrac	otors and government employees)
Bernie Bockisch	Organization EA - Site Manager/Supervisor
FIGUL	EA - Site Health and Safetly Office
Forrest Chattin	
Mason Miller	> Cascade Dallins
John Alexanden	- scale Valling
- Cas atra	
PERATING EQUIPMENT	
Team #1	Team #2
	fessional Plus 15K101396 YSI Professional Plus 15L100541
IRAE 3000 592-915778 MiniRAE	\$000 592 915790 Whote 2000 500 045570
Wh0004	Who006
0008 Wh0009	MAG0007
	Valer Level Meter 253053 Solinst Water Level Meter 253056
AILY SUMMARY (include QC samples collec	ted, deviations from planning documents, converstations with the
- Installed 1	3 318" Kasing to 200' bas
und 11 3/4"	Easing t- 200 645.
	Laskaj 7 = 200 6ys.
An	
An	
An	
P	
P	nd description of work performed by prime and/or of
DRK PERFORMED (Indicate location, time, and	nd description of work performed by prime and/or subcontractors)
DRK PERFORMED (Indicate location, time, and DRK PERFORMED (Indicate location, time, and the performed location) (Indicate location	A
DRK PERFORMED (Indicate location, time, and DRK PERFORMED (Indica	ng
DRK PERFORMED (Indicate location, time, and DRK PERFORMED (Indicate location, time, and the performed location) (Indicate location	ng

Reviewed by:

Appendix C Data Quality Control Records

Page 59 of 202

Initials:

Reviewed date: 12-11-2020 October 2021

Kirtland AFB Bulk Fuels Facility OWTS Expansion/Monitoring - 62599DM01 In Daily Quality Control Report - Non-Construction

AFB-106SIDA DATE: 12-8-2020 4. WORK PERFORMED (Continued) 0/10 695 0812 at 140' 0815 Ver 29 Site 0900 off 0913 alon the Lompressor. Forrest tend one locally to replace it. 1242 I replace. installation of 11 3/4 1631 54 11= 13 318" Lusing to 200' by 1732 Insta "Lasing to 200' 6 90 1740 the site = fE site 750

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications above.

MEVE Milie Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Initials:

Reviewed date: 12 - 11 - 2020

Appendix C Data Quality Control Records

Page 60 of 202

October 2021

2 db 2

THER: Clear, cool	WELL ID: 106310A
NSITE PERSONNEL (including subcontractor	
e	Organization
3. Backisch	EA - Site Manager/Supervisor
M. McVey	EA - Site Health and Safetly Office
orrest Chattin	1
lason Miller) Cascade
The Alexander	
and Allexander	
PERATING EQUIPMENT	
Brunia Envis	Pt, air compressor
Den rig, tork 1.1	tt, all complessor
	ed, deviations from plans, converstations with the public and
	d problems encountered and remedies applied)
- Tripped 1331-	8" = sing out of the
6- 1- 1-)
Carchole	3, 1/
- tostalled	11 314 " cosing to 400' bg.
	-
	b.A.
	AVI
	V
ORK PERFORMED (Indicate time, and description	ption of work performed by prime and/or subcontractors)
00 EA, Lagrade o	n 5.te
10 H+ 5 mosting	plan for the day
N- 5 112 1	plan for the day pull 13 318" casing the 13 318" casing
To Detting up to	2 pull 12 18 Gasing
10 Trippinsput +	the 13 18" casing
)
2	DQCR Page 1 of 2
wed hu:	Reviewed date: 12-11
wed by:	

Appendix C Data Quality Control Records

DATE: 12/9/20 4. WORK PERFORMED (Continued) 01+133/8 20 tri nina 14 tinue insta 4. VD 15 14 645:0 33/8 " 22 1010 10 040 160 124 3/4 16 1140 11-3/4 1626 installa 206 628 705 1710

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M=V Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 12-11-2020

Appendix C Data Quality Control Records

Page 62 of 202

ROLE: SSHO	DATE: 12/10/20
WEATHER: Claudy , Good	
. ONSITE PERSONNEL (including subcontrac	
lame	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. M=Vey	EA - Site Health and Safetly Office
Facust Chattin	
Majon Miller) Eascade
John Alexander	
OPERATING EQUIPMENT	
Forty lift	
DAILY SUMMARY (include OC samples colle	ected, deviations from plans, converstations with the public and
government employees,	and problems encountered and remedies applied)
- Venab HAC	A rig and equipment, Figish
site lease	2
Jue created	p /
	1 M
	-0
WORK PERFORMED (Indicate time, and des	cription of work performed by prime and/or subcontractors)
0700 EA, Cascude on	site
0710 Has meeting	rig and equipment, clean
730 Demob ARCH	rig and equipment, clean
up site	

Reviewed by:

DQCR Page 1 of 2

Reviewed date: 12-16-2020

Appendix C Data Quality Control Records

M

	DATE: 12/10/20
. WORK PE	RFORMED (Continued)
1100	2 and 1 attack of
000	Campleted site cleanup
1015	EA, Cassade off site
-1-	sh, cassade on price
	$\Lambda \Lambda$
	1 /
C	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mave 150 Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 12-16-2020

Appendix C Data Quality Control Records

Daily Field Activity Log

DATE: 12/10/2020 PROJECT NAME/NO .:__

KAFB USU1-030

ONSITE PERSONNEL

sunle
ta de
inesu

SUMMARY OF DAILY ACTIVITIES

	Tremie	oil	hale	try 20-	odd	5'	chips
--	--------	-----	------	---------	-----	----	-------

WORK PERFORMED

	WORKTERIORMED
0740	Arrive at Yard - warm up truck
OTTO	Go to BFF Gate to escort High Mesa onto BFF
0803	HM Arnves - Backty rite
0815	Tailgate w/ Hup Mesa - They start
0910	Look at hole - it looks good - 7' deep/14' wide - 14 utilities
0975	Brick fill
0917	Cheschild Arrives
6931	ESCORT HM AFSILE
0940	Tailante un cascade
0450	Insert Tremie popes 15pt up mixer & pumps - fremie pipes: 00'
1015	stort mixing grout - 8 bags - Tump into hole via tremie proe-200g
1030	Tapged Lottum @ 67' - pulled) pipe - vie 60' Fremil Pipe Mix/pump78 more bugs + grant - 200 ggl Pullynigvier piece of Tremile pipe - Jag: 40' 9 add 5 bags - 175 ggl
1040	Mix/pomp78 more bugs it grave - 200 ggl
1050	Pullynotvier piece of Tremie pipe - Jag: 40' 9 add 5 bags - 175 gal
100	Tac I then la 20' and the walk -0
1105	tench Add 7 Bige bentomite Chips Tay at 15
1)70	Fas at 15
1230	Lunch
1230	Mix 120gal portland coment - 20 Mags rement / 1/2 guick gel - pump in
1700	depth ~ 2' - once dry, will avik-rete the top 2' to surface Went dy Friestation #2 to renew Hot Work permit - called in workat BFF
1315	Wint dy Friestation #1 to renew Hut Work permit - called in workal BFF
143 U	Returned to site - mechanic prisent working on rig-arrived at 1420
1435	Rati to yard w/ Masin / John
1445	Return to site ter hat work
1695	called in end of notwork
USEI	Leave site for yord
1730	Leuve yard
	1 1

Name

Reviewed By

Sign

Reviewed Date

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62599DM049m Daily Quality Control Report - Non-Construction

Name	E PERSONNEL (includin	g subcontractor	organization	-B - 106 510 Dyees)	
Be	mie Bactus	-h	EA - Site Manager/Supe	ervisor	
51	An Morse		EA - Site Health and Sa	fetly Office	
5	osh Messenge	-			
7	Justin Mapl.	es .			-
	Josh Clothie	1	7 Cascoo	E Drilling (Sour	5
					-
. OPERAT	TING EQUIPMENT Team #1				
SI Profess	sional Plus 15K101398	YSI Profess	Team #2 sional Plus 15K101396	Spare	- 44
h0003	000 592-915778	- TWh0001		YSI Professional Plus 15L100541 Wh0002	
/h0005		Who004	000 592-915790	MiniRAE 3000 592-915579 Wh0006	
ach 21000	Q 15100C045034	7 Hach 21000	Q 15100C044633	Hach 2100Q 15100C045025	
/h0008		-//Wh0009		146002	
h0008 plinst Wat	ter Level Meter 253054	Solinst Wate mples collected yees, and proble	er Level Meter 253053 I, deviations from planni ems encountered and re	Mh0007 Solinst Water Level Meter 253056 ng documents, converstations with t medies applied)	he
h0008 plinst Wat	ter Level Meter 253054	Solinst Wate mples collected yees, and proble	er Level Meter 253053 I, deviations from planni ems encountered and re	Solinst Water Level Meter 253056	he
h0008 plinst Wat	UMMARY (include QC sa and governmental emplo	Solinst Wate mples collected yees, and proble	er Level Meter 253053 I, deviations from planni ems encountered and re	Mh0007 Solinst Water Level Meter 253056 ng documents, converstations with t medies applied)	he
h0008 plinst Wat	UMMARY (include QC sa and governmental emplo	Solinst Wate mples collected yees, and proble	er Level Meter 253053 I, deviations from planni ems encountered and re	Mh0007 Solinst Water Level Meter 253056 ng documents, converstations with t medies applied)	he
h0008 plinst Wat	UMMARY (include QC sa and governmental emplo	Solinst Wate mples collected yees, and proble	er Level Meter 253053 I, deviations from planni ems encountered and re	Mh0007 Solinst Water Level Meter 253056 ng documents, converstations with t medies applied)	he
h0008 plinst Wat	UMMARY (include QC sa and governmental emplo	Solinst Wate mples collected yees, and proble	er Level Meter 253053 I, deviations from planni ems encountered and re	Mh0007 Solinst Water Level Meter 253056 ng documents, converstations with t medies applied)	he
h0008 plinst Wat	UMMARY (include QC sa and governmental emplo	Solinst Wate mples collected yees, and proble	er Level Meter 253053 I, deviations from planni ems encountered and re	Mh0007 Solinst Water Level Meter 253056 ng documents, converstations with t medies applied)	he
h0008 Dinst Wat	UMMARY (include QC sa and governmental emplo Set up Cored from	Solinst Wat mples collected yees, and proble 2011 C	er Level Meter 253053	Wh0007 Solinst Water Level Meter 253056 Ing documents, converstations with t medies applied)	he
h0008 Dinst Wat	UMMARY (include QC sa and governmental emplo Set up Cored from	Solinst Wat mples collected yees, and proble 2011 C	er Level Meter 253053	Wh0007 Solinst Water Level Meter 253056 Ing documents, converstations with t medies applied)	he
h0008 Dinst Wat	Inter Level Meter 253054	tion, time, and c	description of work performance	Mh0007 Solinst Water Level Meter 253056 ng documents, converstations with t medies applied)	he
/h0008 Dlinst Wat DAILY SI e public a	RFORMED (Indicate loca	tion, time, and c	description of work performance	Wh0007 Solinst Water Level Meter 253056 Ing documents, converstations with t medies applied)	he
ADDODE DAILY SI e public a 	REFORMED (Indicate loca	tion, time, and c Drief	description of work performance	Wh0007 Solinst Water Level Meter 253056 ng documents, converstations with t medies applied) 104510 commed by prime and/or subcontractor	he

Appendix C Data Quality Control Records

262

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62599DM01 Jm. Daily Quality Control Report - Non-Construction

TF4	FB-106510 ERFORMED (Continued) DATE: 12-12-2020	
1	(soundd)	7
2845	Start running 6"Pipe into hole	1
2922	Tagged bottom of hole at 398,10 /OK on dry ice for	1, ,
2930	1411000106 2 0.50 0	
1020	I THEP UPIT LOYET WATER) ALL	NE.
1055	in sile preppin to war in i	
110	Startrunning 1st core barrel, 11:40 First core out of hol.	
200	Josh Livingston off-site	400-4
1400	Core recovered to 414'	-
1445	Core to 420' starting to see fluxutions in PID readings	-
	Headspace on correction 1 11 PERdings	-
1600	Headspace on core samples getting PID reidings	-
630	Cora to 425 getting PID readings on core samples Cora to 430 Driller romany core barrel For final	-
	cleanout cleanout	
740	OH-SITE	-
		-
		6
	N.	
1		
ONTRACT	OR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All d, and work performed during this reporting period is in compliance with the second statement of the second state	
d	period is in compliance with the contract plans and specifications	
e.	Marca 5/ Jul	

Name

ć

N Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

DQCR Page 2 of 2

Initials:

Reviewed date: 12-15-2020

Appendix C Data Quality Control Records

Kirtland AFB Bulk Fuels Facility-GWTS Expansion/Monitoring - 62735D/MO 2-Daily Quality Control Report - Non-Construction

WEATHER: Clear/C	DATE: 12-13-2 KAFB-106510	06
1. ONSITE PERSONNEL (includin	ng subcontractors and government employees)	_
Name	Organization	
BERNIE Boch	EA - Site Manager/Supervisor	
ZANL Mor	EA - Site Health and Safetly Office	
_ Justin Map	les AC. 1 /)	
Josh Cloth	hier (Casca de (Sonie)	
		_
		_
OPERATING EQUIPMENT		
Team #1	Team #2	
SI Professional Plus 15K101398	YSI Projessional Plus 15K101396	-
/h0003 iniRAE 3000 592-915778	Wh0001 Wh0002	
/h0005 ach 2100Q 15100C045034	Wh0004/ Wh0006	
h0008 Dinst Water Level Meter 253054	Hach 2/00Q 15100C044633 Hach 2100Q 15100C045025	
Dimst Water Level Meter 253054		
	Solinst Water Level Meter 253053 Solinst Water Level Meter 25305	6 Г
DAILY SUMMARY (include OC s		6
DAILY SUMMARY (include OC s		the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include OC s	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	i6 the
DAILY SUMMARY (include QC sa	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC sa e public and governmental emplo	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied)	the
DAILY SUMMARY (include QC si e public and governmental emplo Drilled/Cora	amples collected, deviations from planning documents, converstations with loyees, and problems encountered and remedies applied) ad Snom 430' to 470' bgs	the
DAILY SUMMARY (include QC sa e public and governmental emplo Drilled/Cora	amples collected, deviations from planning documents, converstations with oyees, and problems encountered and remedies applied) and from 430' to 470' bgs	the
DAILY SUMMARY (include QC se e public and governmental emplo Dr. Ned /Cora	amples collected, deviations from planning documents, converstations with oyees, and problems encountered and remedies applied) above the second seco	the
DAILY SUMMARY (include QC si e public and governmental emplo Drilled/Cora	ation, time, and description of work performed by prime and/or subcontract	the ors)
DAILY SUMMARY (include QC si e public and governmental emplo Drilled/Cora	amples collected, deviations from planning documents, converstations with oyees, and problems encountered and remedies applied) and from 430' to 470' bgs	the ors)

DQCR Page 1 of 2

Initials:

Reviewed by:

Reviewed date: 12-15-2020

October 2021

2

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62735 DMOT Daily Quality Control Report - Non-Construction AFB-106510 DATE: -13-2020 4. WORK PERFORMED (Continued) 0815 Start first Corina Core to 435 run 10820 0915 feduera 40 6 040 Corg No Voc problems 655 10 Cora 595 No Voc problem 210 Jatar an 440-445 Tophallow. Loadin wounding well based on Casina into 1320 Cora recovered from 455 bas -Not in 1450 410 fror GVE RECOVERED 458' 6 55 59 6 U 13 :2 5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications above Name Signature EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Initials:

Reviewed date: 12-15-2020

Appendix C Data Quality Control Records

October 2021

ROLE: 55140	DATE: 12/14/20
WEATHER: Cloudy cold	WELL ID: 106510A
1. ONSITE PERSONNEL (including subcontr	actors and government employees)
Name	Organization
B. Backisch	EA - Site Manager/Supervisor
M. MEVey	EA - Site Health and Safetly Office
Justen Mapler	
Josh Cladwier	YEascade
	N
Josh Merranger	TEA
Vest Livingston	
2. OPERATING EQUIPMENT	
government employee	ellected, deviations from plans, converstations with the public and s, and problems encountered and remedies applied) = 1 + 5 + 5 + 7 + b + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5
government employee	s, and problems encountered and remedies applied)
government employee	s, and problems encountered and remedies applied)
government employee	s, and problems encountered and remedies applied)
government employee	s, and problems encountered and remedies applied)
government employee	s, and problems encountered and remedies applied)
- Sonic cor - PID reading	s, and problems encountered and remedies applied) $a_1 \neq a_5 = 51 = 7 + 6 + 51 = 7 + 51 = 7 + 6 + 51 = 7 + 51 = $
government employees	s, and problems encountered and remedies applied) $a_1 + a_2 + 51 + 51 + 55 + 51 + 55 + 51 + 55 + 51 + 55 + 5$
government employees - Segie cor - PID readie - PID readie - WORK PERFORMED (Indicate time, and de 0655 EA, Gaurande	s, and problems encountered and remedies applied) $a_{1} \neq a_{2} = 512' hgs$ $a_{2} = 517' hgs = 5-6 ppmv$ $a_{2} = 517' hgs = 5-6 ppmv$ $a_{3} = 500 ppmv$ $a_{3} $
government employees - Segie core - PID readie . WORK PERFORMED (Indicate time, and de 0650 EA, Cauranda	s, and problems encountered and remedies applied) $a_{1} \neq a_{2} = 512' hgs$ $a_{2} = 517' hgs = 5-6 ppmv$ $a_{2} = 517' hgs = 5-6 ppmv$ $a_{3} = 500 ppmv$ $a_{3} $
government employees	s, and problems encountered and remedies applied) $a_{1} \neq a_{2} = 512' hgs$ $a_{2} = 517' hgs = 5-6 ppmv$ $a_{2} = 517' hgs = 5-6 ppmv$ $a_{3} = 500 ppmv$ $a_{3} $

Reviewed by:

DQCR Page 1 of 2

Reviewed date: 12-16-2020

Appendix C Data Quality Control Records

DATE: 12/14/20 4. WORK PERFORMED (Continued) Phillip Lovato (USACE) on site 1320 1330 Ben Mogyyad (USACE) on site Learing to 510' bas 1335 molete Jepth to water : 473.02'bas 344 at 512' bas: 17.0 ppmy. W:11 1400 10 rthma (USALE) on site 1518 ALT on site to change out cover on open top roll off bin PID reading at 517' bys : 9.6 ppmv. In 1606 consultation with B. Rockisch Magyad, the Jecision was made this TO. Bracking Jown Drill pipe 1610 e off site 1715 1725 EA off 5- +.

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mave Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 12-16-2020

Appendix C Data Quality Control Records

	WELL ID: 1065101
	uding subcontractors and government employees)
Name	Organization
B. Backisc	EA - Site Manager/Supervisor
M. M=Vey	EA - Site Health and Safetly Office
J. Messeng	
Justen May	
Josh Claty	
John Alex	ander) Cascade
Mason M	
Forrest 60	nattin
2. OPERATING EQUIPMENT	
	OC complex collected deviations from size a converte it as with the set it
- Gunge	QC samples collected, deviations from plans, converstations with the public and ment employees, and problems encountered and remedies applied) A static mater lavel in 1065(DA borehold) 72.30' bes
- Gauge	ment employees, and problems encountered and remedies applied) d a fatie mater lavel in 106510 A boreball 72.30' bgs
- Gauge - Gauge - Fulsa	s atatic mater lavel in 196510 A borebola
- Gavge - Gavge - Fulse and b.	ment employees, and problems encountered and remedies applied) 2 atatic mater lavel in 106510A boreball 72.30' bgs 1 6" Sanic casing, demoked senic rig 2x truck
- Guuge - Guuge - Guuge - Fulsa - Pulsa - Jet up	ment employees, and problems encountered and remedies applied) 2 atatic mater lavel in 106510 A boreball 72.30' bgs 1 6" Sanic casing, Jemobal senic rig
- Guuge - Guuge - Guuge - At 47 - Pulsa and b. - Jet up tripp	ment employees, and problems encountered and remedies applied) 2 atatia mater level in 106510A boreball 12.30' bgs 16" Sanic casing, demoked senic rig 2x truck ARCH rig and support squipment,
- Guuge - Guuge - Guuge - At 47 - Pulsa and b. - Jet up tripp	ment employees, and problems encountered and remedies applied) 2 atatia mater lavel in 106510 A boreball 72.30' bgs 16" Sanic casing, demoked senic rig ex truck ARCH rig and support equipment, 2 dia drill pipe. Ready to start
- Guuge - Guuge - Guuge - At 47 - Pulsa and b. - Jet up tripp	ment employees, and problems encountered and remedies applied) 2 atatia mater lavel in 106510 A boreball 72.30' bgs 16" Sanic casing, demoked senic rig ex truck ARCH rig and support equipment, 2 dia drill pipe. Ready to start
- Guuge - Guuge - Guuge - At 47 - Pulsa and b. - Jet up tripp	ment employees, and problems encountered and remedies applied) 2 atatia mater lavel in 106510 A boreball 72.30' bgs 16" Sanic casing, demoked senic rig ex truck ARCH rig and support equipment, 2 dia drill pipe. Ready to start
govern - Gewge at 47 - Pulse and b. - Jet up drift.	ment employees, and problems encountered and remedies applied) 2 atatia mater lavel in 106510 A boreball 72.30' bgs 16" Sanic casing, demoked senic rig ex truck ARCH rig and support equipment, 2 dia drill pipe. Ready to start
govern - Gewge at 47 - Pulse and b - Jet y drift	ment employees, and problems encountered and remedies applied) 2 at the maiter level in 106510A boreball 22.30' bgs 6" senie casing, demobed senie rig a truck ARCH rig and support equipment, a drill pipe. Ready to start in the marching. At the marching. At the marching.
govern - Gauge at 47 - Pulsa and b. - Jet y tespe Jritte 4. WORK PERFORMED (India 0645 (5320)	ment employees, and problems encountered and remedies applied) 2 atatic water level is 106510 A boreball 2.30' bgs 6" Saaic casing, demoked seaic rig at truck ARCH rig and support equipment, ad in drill pipe. Ready to start in the marching. At the marching. At the marching. At time, and description of work performed by prime and/or subcontractors) at time, and description of work performed by prime and/or subcontractors)
govern - Gauge at 47 - Pulsa and b. - Jet y tespe Jritte 4. WORK PERFORMED (India 0645 (9355) 0750 EA 39 5	ment employees, and problems encountered and remedies applied) 2 atatic water level is 106510 A boreball 2.30' bgs 6" Saaic casing, demoked seaic rig at truck ARCH rig and support equipment, ad in drill pipe. Ready to start in the marching. At the marching. At the marching. At time, and description of work performed by prime and/or subcontractors) at time, and description of work performed by prime and/or subcontractors)

Appendix C Data Quality Control Records

	DATE: 12/15/20
4. WORK PI	ERFORMED (Continued)
0745	Start pulling 6" Sanie casing
	J. Messenger off site
	Finished pulling 6" caring
0900	Towaring Jown, Jumping happer, classing
0953	Setting up AB <h equipment<br="" rig,="" support="">at 106510A</h>
1005	Sonie rig, box truck, fick lift mobing to laydown yard to Jeson 6" caring and sonie rig for demob off site, Facl
	Marsie (EA 53H2) at laydown yord to provide aversight for Jeans activities
2 S S S S S S S S S S S S S S S S S S S	ARCH rig and support equipment satur. Start tripping in Scill cod
1453	Heading over to the lagdada yourd to lond
-	Back at Bir. Valanding and staging well materials. Finish loading and staging
	Back te lagdene yard te lead op a farr mare jointe af Scill red.
1650	Back at BiF. Pipe tosake backed into place. Will start Scilling in the marning
	Eaguade off site
710	EA off site

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

C Mi M Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 12-19-2020

Appendix C Data Quality Control Records

WEATHER: Clear, cold, bre	WELL ID: 106510A
1. ONSITE PERSONNEL (including subcont	
Name	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. M- Vey	EA - Site Health and Safetly Office
Forcest Chattin	
John Alexader	Cascade
Magon Miller	
	ĒA
J. Messenger	67
2. OPERATING EQUIPMENT	
ARCH ris air com	presser, fork lift
g all esti	presente , reck for F
	а. Те
3. DAILY SUMMARY (include OC samples co	ollected, deviations from plans, converstations with the public and
	s, and problems encountered and remedies applied)
- Unilled to 4	97'bgs with the ARCH rig
- Tripped we	11 Skrach and kasing into baring
- Placed Sun.	1 from 497' to 487'bg3
- Noticed n	inter Sripping from the
	the hard toprolloff bin.
	ving nuts and immediately
	ster. Contrated Aliand other
	ussist w/ glessup. Pumped fice
	2 55-gallons drums. Will assess
4. WORK PERFORMED (Indicate time, and d	escription of work performed by prime and/or subcontractors)
0650 EA on site	
0700 Easende on J.	ite
OTIO EA gauging 1	
and waster dest	ing avec to the Ingdown yourd
	DQCR Page 1 of 2 4
Reviewed by:	Reviewed date: 12 - 19 - 20

4 WORK P	PERFORMED (Continued)
4. 110/11/1	
Cardon Sector	to load up a ferre things.
0738	EA done ganging wells
	-Well 149-484 DIW= 469.72
	- Well 024 Diw= 467.03
	- Well 154-484 DIW= 470.91
0740	Cascade back on site. Will now head over
	to fill water tank on pipe truck.
0813	Forrest called and said that the underground
_	line to the fice hydrast used to fill their
-	Water tanks is broken. Water surfaces
	From east side of hydrast when the
	value is turned on
0834	Spake with a fireman at Fire Station
	No. 2 and showed him the issue with
-	the hydrast. He shawed us alternate
	hydrants to obtain water from and
	Said he would sontact the appropriate
	satities to take care at the issue
	with the hydract.
0845	Paul Basa with PAE showed up and
_	looked at the hydrant. Said he would
_	contact SE (Civil Engineering).
0905	
	pipe truck. Back an site at BFF.
0920	Eric Martinez with SE showed up at
	BFF. He said he she he he best of my knowledge the above report is complete and correct. All

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mike MEVE Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2 7

Reviewed date: 12 - 19 - 20 20

Appendix C Data Quality Control Records

	DATE: 12/16/22
4. WORK P	ERFORMED (Continued)
	and everything was fine. He said that
	the water was coming from weep bole
	is the pipe and is second. He gude me
	his bossed another info is suse of
	say totore issuesi
	→ Eric Korsil (5p?) 5E - (505)377-0855
0935	Start Jrilling
1316	Phillip Lovato (USASE) on site
1328	Reached total depth of 497'bys
1330	Tripping out Scill pipe
	Finished tripping ast Scill pipe. Satting
	up to igot Il well. Proposed well
	construction diagram attached. The
	well construction was verbally approved
-	by the Air Force and NMED.
1517	Tripping in well screen and kusing
1615	Finished telpping in well saces and saring.
	Tower dawn, move rig to bring in saring
	jack, repasition rig, towar up.
1630	Resume well construction
	Noticed water dripping from the bottom of
_	the hard top roll off bin. Tightened wing
	auts, which were loose, and immediately
	contained the water by making a bern.
	Landagted ALT to assist with clause part
	(D) + ++++++++++++++++++++++++++++++++++

5. CONTRACTOR'S VÉRIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mike Maye Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

JQCR Page Z of Z

Reviewed date: 12-19-2020

Appendix C Data Quality Control Records

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project 62735DM	02
Daily Quality Control Report – Non-Construction	

	DATE: 12/16/23
. WORK PE	ERFORMED (Continued)
	Pumpad Free Itquid into 55 gallon Jrums
	Assessment will be participed
	ton morning.
	Sind placed from 497' to 487'bys
	Eugende off site.
	Selver colleft bins, 55 gulles Jrums
	EA off site /
	2.2
	<u>N'II</u>
	/

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mi Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

Hofy DQCR Page Z of Z

12-19-2020 Reviewed date:

Appendix C Data Quality Control Records

ROLE: 5540	DATE: 12/17/20
WEATHER: <u>Clear</u> , windy,	
. ONSITE PERSONNEL (including subco	ontractors and government employees)
lame	Organization
B. Boakisch	EA - Site Manager/Supervisor
M. Marvey	EA - Site Health and Safetly Office
J. Messenyer	ĒA
Forrest Chattin	
John Alexander	Cascade
Muson Miller	/
OPERATING EQUIPMENT	
Terri et anti	IL FLUD
URAIS FIG, COSIA	gjack, Fork lift
	0
DAILY SUMMARY (include QC samples	s collected, deviations from plans, converstations with the public and
	yees, and problems encountered and remedies applied)
- Frequestal	IUW water impacted soil From
	round the roll off bins.
OFF.	son placed in apen top sall
	12 moved to Zia Park 90-day
Storage an	
	at to TA Deaver for analysis
	J, 8260, 8011, 8015 620/020)
	placed from 447 to 442.8' bys;
BIS" benten: WORK PERFORMED (Indicate time, and	te ships from 440.8' to 436-2'b55 d description of work performed by prime and/or subcontractors)
1700 EA, Gasende	
720 H+5 meeting	g, plas forthe day
1737 Resume well	
1746 United Reat	als drapping off skidsteer for

Reviewed by:

DQCR Page 1 of 2 3

Reviewed date: 12-19-2020

Appendix C Data Quality Control Records

4 WORK P	EREORMED (Continued)
4. MORAP	ERFORMED (Continued)
	Use in campuing IDW water impartal sails
	From the area of the roll off bint.
1038	Sand placed from 497' to 440.8' bys (lower Sand Pack?) bentonite chips
1100	Place 315 bentanite chips
1118	Tripping in contingency well succes and
	Ensing.
1120	Act on site to pick up the coll off bing
	and take then to the Zia Park 90- day
20.00	Storage area.
1211	Finished tripping in contingency well
100	Sarran and casing
1290	Excavating TOW water impartal sail in
	the area of the sall off bing, Total area
	at widest print. Placing excavated
	Soil in open top roll off bin.
	Ben Maayyad (USALE) on site
	Finished excavating impacted sail. Open
	top soll off bis model to the Zia Park
	92- Day Starage area.
1400	Callect 3 soil sumples from area of
	10 we ter impact Samples will be
	Submitted to TA Denver for 8260, 8011,
	and 8015 GRO/DRD analysis. One duplicate
	and one M5/M50 will also be sollected.
1425	Ben Monyyad OFF Site.

5. CONTRACTOR'S VERIFICATION.' I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

MEVe 110 Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

DQCR Page 2 of 2 3

Reviewed date: 12-19-2020

Appendix C Data Quality Control Records

1.1.1	DATE: 12/17/20
. WORK P	ERFORMED (Continued)
1456	Finished soil sampling.
1549	Placed 318" besterite chips from 440.5'
	to 436.2' bgs (lower bestonite seal)
1654	Placedy sand pack for the contigenary well
1200	from 436.2' to 415'bgo
	Casende off site
115	EA OFF 5. te
	10
	N'il
	_/

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mike Name

Signature

3

EA Engineering, Science and Technology Inc., PBC

Reviewed by

Appendix C Data Quality Control Records

DQCR Page 2

Reviewed date: 12 -19-2020

ROLE: 5540	DATE: 12/18/20
NEATHER: Clear, mild	WELL ID: 106510A
. ONSITE PERSONNEL (including subcontracto	ors and government employees)
lame	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. M-Vey	EA - Site Health and Safetly Office
J. Messenger	EA
Forrest Chattin	
Jahn Alexander) (ascade
Mason Miller	
OPERATING EQUIPMENT	
Sonie rig, casing	Jack Sout 115+
- ing, saling	Jaca, sra 1.13
DAILY CUMMA BY (Sector) OC	
	ted, deviations from plans, converstations with the public and
government employees, an	d problems encountered and remedies applied)
- T + 11 1	6.11 1.6 1171-1
Lastalle uppe	Filter park from 436.2'
to 405.5' bys	
	per 3/5" bydrates bestonite
	m 405.5' to 373.6' bys
	6
- Installed gl	rout from 373.6' to 60' by
	A
	AM
WORK PERFORMED (Indicate time, and descri	ption of work performed by prime and/or subcontractors)
1650 EA, Lascade 0	a site
715 H& 5 meeting,	plan for the day
755 Resume well	Construction
1924 Installed upper	filter park from 436,2' to

Reviewed by:

DQCR Page 1 of 2

Reviewed date: 12-19-2020

Appendix C Data Quality Control Records

DATE: 12/18/20 4. WORK PERFORMED (Continued) 405.5' 645 atonite chip 3/4" 6. 0926 og vpper Losta Seal 1052 per besterite chip sen bas. Sett 5 373.6 1140 ipe and saying aver to the 12-Vn 1355 11in Freyt inst. 1531 6010 et was drop off more ca 1/ -BFF. Cantinue BARK 1625 +0 60'645 m 373.6' Grout installed fra 1820 1830 Laskade aff ÉA Site

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M: Ke Name MEVE

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 12 - 19 - 20 2 0

Appendix C Data Quality Control Records

ROLE: 55Hb	DATE: 12/19/20
WEATHER: Clear, mild	WELL ID: 106510A
. ONSITE PERSONNEL (including subcontract	ctors and government employees)
lame	Organization
B. Backisch	EA - Site Manager/Supervisor
M. Markey	EA - Site Health and Safetly Office
J. Messanger	EA
Forrest Chattin	
John Alexander	Cascade
Mayon Miller	
OPERATING EQUIPMENT	1
Sonie rig, bladder	DUMP FORK 1:Ft
07	
DAILY SLIMMARY (include OC complex coll	acted deviations from plane convertations with the public and
	acted, deviations from plans, converstations with the public and and problems encountered and remedies applied)
= Installed gr	out from 373.6' to 20' bgs
- Installed Par	thand Cement from 20' bys to
ground surt	
V	
- Filled Lopen	pathales with grout
- Tagged wate	clevel in deep well at
469.06' 695	
- Finished sit	« Eleanup, Jecone) AREH
cia	
	m
0	
WORK PERFORMED (Indicate time, and des	cription of work performed by prime and/or subcontractors)
2650 EA, Gascade -	a site
120 Has meeting,	
5722 Forrest going	toget new ignition switch
for the fork	1:54
Ter The Jerk	

M Reviewed by:

DQCR Page 1 of 2

Reviewed date:

2-5-21

DATE: 12/19 /20 4. WORK PERFORMED (Continued) Masas heading to the 07.70 50 Lasing off the of the barebola yesta 0822 pofgravt at 72 675 0830 routine 373.6 1040 from ero orthand lene SULFa locations 1050 two open pothole level in dea 1110 well at 475.53' btor Stickup = 6.47 75.57-6.47 -469.06 NOW at we 1130 1155 Jogia 1-L 1725 maleta). ARC 1730

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

< Mike Name

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 2

Reviewed by:

Reviewed date: 2-5-21

Appendix C Data Quality Control Records

October 2021

ROLE: SSHO	DATE: 12/20/20
WEATHER: <u>Clear</u> , mild	WELL ID: 106510A
1. ONSITE PERSONNEL (including subcontra	actors and government employees)
Name	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. McVey	EA - Site Health and Safetly Office
Forcest Chattin	
John Alexander) cascade
Mason Miller	
2. OPERATING EQUIPMENT	
Fork 1:ft	
- Finished 34	itace completion for 1065104
	6m
	A view of the second se
	V
4. WORK PERFORMED (Indicate time, and de	scription of work performed by prime and/or subcontractors)
0650 EA, Cascade o	
0715 H+5 Meeting,	
0730 Benavio, 6-	more and have from ARKH
rig, Jeconin	pipe and casing. Forrest
Ν	DQCR Page 1 of 2
Reviewed by:	Reviewed date: 2-5-2
//	

4. WORK P	ERFORMED (Continued)
	going to Home Depot for supplies to finish
	the well pass for V3 and 106510A.
1100	Back at the BFF to finish well pads.
	Generator / weller not working Forrest
	will head to the shop to pick up
	another generator/weider so he and
	run the concrete mixer. Hell also cut
	the rebur for the concrete pad while
	he's there. John and Mason will stay
	here and prepare the part and ballards
	for passets.
1523	Finished well pad for 106510A, but
	don't have time to complete the well
	pad for V3 because Forrest has to
	leave the site by 5 pm to get John
	and Massa to the airport. Forrest
	will finish the V3 well pad when
	they return in Jaquary.
1550	Headingover to the laydown yard
	to continue decenion, pipe and
	essiny.
1718	EA, Gascale off site
	h

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

NEVe Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 2-5-21

Appendix C Data Quality Control Records

OLE: SSHO	DATE: /2 -	-23-2020
EATHER: 1000 505 ("	F); clear; breezy-windy WELL ID: KAFB	-106V3 / KAFB-1065
	luding subcontractors and government employees)	
ime	Organization	
B. Bocki		
J. Messe	EA - Site Health and Safetly Office	
Al Han	de son Jet hbst	
Lane And	USS NMED	
Ryan W	ATIMA ATCAC	
Santiago	billegos USACE	
Forrest Chatter	Cascade	
Aci Esen		
OPERATING EQUIPMENT		
1.1.5.0	index t	
Geophysical ,		
	5778)	
GR 5599 -	- Gamma Ray Sensor - source	
Cement mis		
DAILY SUMMARY (include	e QC samples collected, deviations from plans, converstations with the	public and
/	mment employees, and problems encountered and remedies applied)	
- Well par	1 installed @ KAFB-106V3	
- Geophysin	al dogging completed @ KAFB-106510+	KAFB - 106V3
- Jane Andress		
	Alt	
VORK PERFORMED (Indi	cate time, and description of work performed by prime and/or subconti	ractors)
1. 1	EA, USACE, NMED, AFREE on site Q,	the second s
950 H# 5 Gris		
	log @ 1478-106510	
	loying down Kai-B-106510	
ins reciser dep	and admin were reading	

Reviewed by: ARBINN

DQCR Page 1 of 2

Reviewed date: 2 Z

Appendix C Data Quality Control Records

WORKE	DATE: 12-23-2020	
	ERFORMED (Continued)	
1044	TD = 488 A bas reached discrepency "/TD = measurement error "/logger; adjus	thent will be
1045	pad installed @ KAFB-106V3	Made to trial 1
1125	prep to deploy dual - induction sensor - deployment began	
1200	Dual Induction completed	
1300	Prep to move to KAFB-106V3	
1310	Set up over KAFB-106 V3	
13A	Begin deploying DI sensor in KAFB-106V3	
1347	DI sensor back up - 1358 62 sensor began deployment down i	vell
1430	GK tool out of hole	
1515	USALE, AFCEC and NMED offsite	
1600	EA & Jet West off site W	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

DQCR Page 2 of 2

Reviewed date:

Appendix C Data Quality Control Records

ROLE:SSHO		DATE: 12-24-2020
WEATHER: low 40s (F)	clear; light breeze	DATE: 12-24-2020 WELL ID: KAFB-106 ST
	subcontractors and government em	ployees)
Name	Organization	
B. Bockisch	EA - Site Manager/Si	upervisor
J. Messenge	EA - Site Health and	Safetly Office
M. Cain / S. Leslie	Cascade	
the particular		
2. OPERATING EQUIPMENT		
M85 rig		
- 00 IF		
		ans, converstations with the public and
	employees, and problems encounter	
Developed KHFB	-106 310	I drums Grought to < 90 - day y
- 120 gallons bail	ed - 3 × 55 gallon steer	I drums Grought to < 90 - day y
v		1
	0	
	Hand	
	At	
	1	
	V	
		·
. WORK PERFORMED (Indicate tin	me, and description of work performe	ed by prime and/or subcontractors)
0900 EA + Cascad	le on site	
0715 Has brief	+ discuss work for	the day
	setup to develop we	n1 ()
0820 Swaldbing be		
	9	

1/2 Reviewed by:

DQCR Page 1 of 2

Reviewed date: 2/25/2

Appendix C Data Quality Control Records

12-24-2020 DATE: 4. WORK PERFORMED (Continued) 0834 didn't make bailer dellaned down We baile Zh / 1100 bailed Cain volumes M. switches swabber swabbin 1109 1120 bega Jwabbing en 1130 Ba continue 1237 747 dul Greak 415 mpleted bailed 11 men 20 after 9. lons sediment 1420 Boom down onMu 440 site ascade

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

sena Name

Signature

EA Engineering, Science and Technology Inc., PBC

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Page 90 of 202

Reviewed date:

DATE:	1/4/2021	

KAFB VS01-030 PROJECT NAME/NO.:___

	ONSITE PERSONNEL
NAME	ORGANIZATION
Justin Fitch	Sundance
Forrest, John	Cascade
) •	
	SUMMARY OF DAILY ACTIVITIES
Dean + Piers	
here have	
	WORK PERFORMED
USIS Arrive at yard - Du	imp sound trush out of truck, load eqp? I propere
0830 Drive by dall site - cl	heck IDw Bins - All full - only 1 w/ Her on top> ect Drilles-working on rig / down
0840 Gan to yourd to m	ect Wrilles-working on rig / Coun
0845 Jailgate	
Drillers mounted have	o changed rg cil
1100 SJurt Decon	
12au Inneh	
1500 Rd pipe seaments by ct 1700 Retractor yord - T	
	Dalles to Anto Zone
1710 Lewre	
	1
1	
51 11	(1)
Notin Mitch	
Name	Signature
RUDIN INITELIAN	
KIUM WITTUR	02-05-2021
Reviewed By	Reviewed Date

Reviewed By

Sundance Consulting, Inc. 0115/21

DATE:

PROJECT NAME/NO .: KAFB/V501-030

ONSITE PERSONNEL

NAME	ORGANIZATION	
Justin Fitch	Jundanic	
Forrest Chattam	Cars cada	
Sun Alexander	Gascade	

SUMMARY OF DAILY ACTIVITIES

Stub casing - had Atraisport rig & equip to site
Stare & get ceady to start drilling

	WORK PERFORMED
0845	Arrive at yord - load tock thead to ste Carcade laydown yard Gick thilgate - Carrade albudy did theirs Stab Dife
	Chick thilgate - Carrowde allow did theirs
0915	ship die
1050	Start londing First load to Site
1130	First load to site
	Rind all semiales from first cells in IDW Rollock
	Rimp ald samples from first cells in IDW Rolloff Prep Cherything to start drilling
230	lunch
1300	continue noving / Staging Pipe
1500	Evel there touck & get couldn't
1530	More org to site
1600	More og to site Stagerig our drill location Return 30 yard Dejsart
1435	Rotum 30 vare
1705	Deixart
	\wedge
1	//
10	
Tic	In Fisch Mitta The
Name	Signature

EN Reviewed By

Reviewed Date

7071

DATE: 01/06/2021 PROJECT NAME/NO .:_ KAFB / VS01-030

	ONSITE PERSONNEL	
NAME	ORGANIZATION	
Sustin Fitch	Sundance	
Forrest /John	Cascade	

SUMMARY OF DAILY ACTIVITIES

111	Sh Erails	10 - Dall i	0 130 -	unclog	CLLY	Dlug	in	DIDE
					/	100		11
Do	11 41 150	5 under (In tone	here				
Per	10 10 10 0	> Undey (iny som	ierc			_	

	WORK PERFORMED
0645	Arrive at yord - long tack, calibrate 1717
0655	Go to site
0710	Tailgate
5715	setup exclusion zone - plastic under rig- set up cuttings tables
asan	F.12 VD (19
0815	Fire up rig That Drilling
0855	PLD Breathing Zome: 0-0
1130	Shippel getting entrugs back - cla (clay) in cycline + hommer Seems to be clay ply downhole - Taking lunch while Forest talks to Byon
1150	Seems to be clay plug downhole - Taking lunch while Formert talks to Byon
1230	Pripped to pump water lanhale
1300	Durbored ~ 700 gal HaC) - UMplugged Crill string
1345	Casende to kard to go t traction pads (a lot of water around work great Making stow progress- clay stuck in hose again - working to get it out
1500	Making stow progress- clay strek in hose again - working to get it out
1600	Hose de-classed - Carcede has to anto chother site
	will with last 90' tomorrow - telescope - remove (3" and continue
	packed yo
1615	Back to Yard to mond
1630	Depart
-	\bigvee
+	
Tree	tim Fish Mith Files
	in in the
Name	Signature
DILLIA	MITHER 07-05-2021
Reviewed	By Reviewed Date
reviewed	By Neviewed Date

Reviewed By

17/21	
	けた

PROJECT NAME/NO .: VAFB/ VSUV-030

	ON	SITE PERSONNEL		
NAME		ORGANIZATION		
Justin	Fideh	Sundance		
Friest		cascade		
	SUMMAR	RY OF DAILY ACTIVITIES		
	Drill ghead - tele rope			
(
1				
10		DRK PERFORMED		
0650	Arrive at Yard-pack prick-Callib Go to ste to set ys	brate PID		
0700	but to set by set y?			
0710	Tailgate			
0715	Setup beo area - prep rig -	warm- 47, empty cuttings bin, etc.		
0730	Stert dolling			
0830	Reach 200 - Sport pulling d	er 11 steing		
6710	Broathing Tope VID: 0.0			
1(71.10	mane 11 Dipe to truck			
1145	Cascade de get fuel lunch, & accept delivery of 40-yd trash receptide al laydawn			
1- 74	Lunch			
1320	Resume telescoping Pull outer Gasing			
1500	Bryon Nytheskill Come by for site inspection (cascade) Finish pulling 13 drive casing			
15 45	Bryan Nytoskil come by for site inspection (cascade)			
1650	Finish pulling B' drive casing			
1700	Cascade dropping truck ladel	I B" doive casing to Their longdown yard		
1705	Return to yard of track/ equ	pmont		
1715	Depart			
		TAK		
	$\square \square$			
/	1/			
/				
F		A		
~ •		(1. A ()) At		
Jus	tin l-itch	Maths FMIN		
Name	· · · · · · · · · · · · · · · · · · ·	Signature		
01	Tu-			
KIRI	MITTER	02-05-2021		
Reviewed	By	Reviewed Date		

.

Sundance Consulting, Inc. Daily Field Activity Log

DATE: 1/8/21 PROJECT NAME/NO .: 154FB / US01-030

	ONSI	TE PERSONNEL
NAME		ORGANIZATION
Justi	K7th	Sindunce
Furlest /	John	Criscade
Biyan Nayoske		Cuscade
	SUMMARY	OF DAILY ACTIVITIES
,	Change to Under-rea	mbit
1		
N		
	WOR	KRERFORMED
0645	Arrive at yard-calibrate PID	
6655	Go to BFF	
705	Tailgate Neeting	
otis	Godo Cascade laydown to a	Aland 13" pipe
0815	izeturn to site	
1830	ACT came to add 2ndury co	ntannent to Roll-otts
	cascade moving jocks & set.	ns up tre drill shead
0930	VSACIE on-site	
0945	start Dalling	
1005	Brenthing Space PID.	
1120	Cascade went to got underream.	ing bit & take lunch
	Installed straw mattles a	round IDW Bin ty for 2ndary containment
	Cleaned out back of truck	
	Lynch	

Began tripping out DS to change bit PUIL 2 stends of drive change 400 1600 Change dit righting and get really 1700 50 90 5) 1710 into VIERA 1715 11 N Justin

Name

Reviewed By

Signature 7121

Reviewed Date

DATE: 1/9/21

PROJECT NAME/NO.:_ KAFB US01-030

	ONSITE PERSONNEL	
NAME	ORGANIZATION	
Justin Fitch	Sundance	
Forrest, John	Casiade	

SUMMARY OF DAILY ACTIVITIES

Trio	in & Drill ghead		\frown	
· ·				/
. P	W	ORK PERFORMED		

0715 Anveat yard - Calibrate 1711) 0721 Herd & site 0725 Tailgate 0740 Attech bit 9 trip in to 200' 130 Attech bit 9 trip in the second stand 1420 Forest is going 10 similian back to original bit as which the diversal 1500 Calling it for the day winds are too high and too much dust to pull dallotoing Cover IDW 9 Pieldup 1530 Retwin to yord
0720 Hend de site 0725 Trilgate 0740 Attech bit 9 trip in to 200' 1030 Start connecting 119/4" drive casing while expanding bereliste all mider-room bif 1130 Making New Hole 1130 Junch 11310 Start again with second stand 11420 Forrest is going 10 switch back to original bit as vere through herd internal 1150 Calling it for the day winds are too high and too much dust to pull dallotoing 1530 Return to yerd
0775 Trilgate 0740 Attech bit 9 trp in to 200' 1830 Start conserting 119/4" drive carry while expanding borefule of mider-room bit 1830 Making New Hole 1830 Junch 1920 Forrest is going 10 switch back to original bit as while through he-d internal 1800 Calling it for the day winds are too high and too much dust to pull dalboing Gaver JDW & Protection
0740 Attech bit 9 trp in to 200' 1030 Start conserting 119/4" drive cating while expanding borelyce of inder-rean bit 1130 Making year hole 1130 Start spain with second stand 11420 Fornest is going 10 switch back to original bit as while through herd interval 1500 Calling it for the city winds are too high and too much dust to pull dillatoing Gaver JDW & Pickey
130 Making New Hole 1730 Junch 1310 Start again with second stand 1420 Forrest is going 10 switch back to original bit as we're through herd internal 1500 Calling it for the day winds are too high and too much dust to pull dallotoig Cover JDW 2 Pickup 1530 Return to yord
130 Making New Hole 1730 Junch 1310 Start again with second stand 1420 Forrest is going 10 switch back to original bit as we're through herd internal 1500 Calling it for the day winds are too high and too much dust to pull dallotoig Cover JDW 2 Pickup 1530 Return to yord
1730 Junch 1310 start again with second stand 1420 Forrest is going 10 switch back to original bit as we're through herd internal 1500 Calling itser the day winds are too high and too much dust to pull dailbooing over JDW & Pickup 1530 Return to yerd
1310 start spain with second stand 1420 Forrest is going to switch back to original bit as we're through herd internal 1500 Calling it for the day winds are too high and too much dust to pull dialtoring cover JDW 2 Pickerp 1530 Return to yord
1420 Forrest is going 10 similitie back to original bit as vere through herd internal 1500 Calling it for the day winds are too high and too much dust to pull dallotain over JDW 2 pickup 1530 Return to yord
1500 Calling it for the day winds are too high and too much dust to pull dallateing over JDW & Pickerp 1530 Return to yord
530 Ketvin to pere
530 Ketvin to yere
1540 Depart /
10
Justin Mtch (1/1/24 1/4)
Name Signature
RIEU WITTEN 02-05-2021
Reviewed By Reviewed Date

Reviewed By

DATE: 1/10/21 PROJECT NAME/NO .: KAFB-106251

ONSITE PERSONNEL

NAME	ORGANIZATION
Justia Litch	SUNJANCE
Forrest Chattin/John Alexander	Cascade
SUMMARY O	F DAILY ACTIVITIES
Trip out; change bit; trip in	Drillahend to 440'
Tripout, retjackstopull ?	-3 stands at drive casing out
tomorrow marning	<i>y</i>
WORK	PERFORMED

	WORK PERFORMED
0720	Arrive at Vard-calibrate PID 60 to Site
1725	Goto Site
1730	Tailate
0745	Shert tripping at DS Trip in new bit
1200	Tap in new bit
un	Dril alound
200	Lunch/Re-fill fuel tent (cascede)
1295	Restart
257	Breathing Jare 1712-0.0
500	Hole got not after drilling through ~70' of gravel, so pulling back a Pars stunds Tripping DS - Clube IDW Rollings, pack geo geor
	Tripping DS - Cluse IDW Rollads, Pack geo geor
1600	Fuel pick-up - Doop stuff (sempler, PID, trick) at your
1640	Mast Dawn 2 move ng to set jack
1645	Det Jack - Mist yD - Pullistand part-way out - packp
1720	Pepart
1	
1	
/	
(-	
Tex	in Fill last (last
Dust	
Name	Signature
21011	1111+11 PM
KIKM	WIITION 02-05-1021
Reviewed	By Reviewed Date

Reviewed Date

DATE: 1/11/2021 PROJECT NAME/NO .: KAFB/ US01-030

ONSITE PERSONNEL

NAME	ORGANIZATION	
Justin Fitch	Sindage	
Formast Chattin /Juhn Alexander	Cascade	
SUMMARY	OF DAILY ACTIVITIES	

pull back 3 stands Dr then Juillahead	

WORK PERFORMED Arrive at Yard- calibrate PID - warm up truck/defost undows 6650 Go to site OFUT Tailgate Safety Meeting 6710 to Astozone for new Forklift Battery 6715 Forrest/John US15 Instell new buttery ill 3 stands at drive casing (19 up - trip in trivione bit hadt 0530 406 DUI 09 35 12 : 21 9 Jalling Set up to start 對 1130 new 3rd (Inling Aest) 1230 Dick VIZ 1400 tonlande when sur eta acion 1430 rilling agon thing PID mensurement = 0.0 r.P 610 0 730 stand of 121 1750 Care S te 16 SIU ovstin Fitch Signature Name

Reviewed Date

iewed By

Daily Field Activity Log

/VS01-030

DATE:	1	121	1202
Tang Stand I	-		

KAFB PROJECT NAME/NO .:

ON	SITE PERSONNEL				
NAME .	ORGANIZATION				
sustin Fitch / Rachel Hubbs	Sundanie				
Forsest, Julia, Gerry	Cascade				
/ 00-0- /					
SUMMAR	RY OF DAILY ACTIVITIES				
~ Constact well					
	DRK PERFORMED				
0645 Arrive at Yord - pack th	up at asphalt cuting sites				
OTAL Drive to ANG-put comes	up at asphalt outing sites				
0715 Meet rachel at yard					
oter Hencoto site					
0735 Tailgate					
0830 Mencine depth in KAFB-11					
OUW Merson deptn in KAFB-10					
1000 Run in PVC For primary 1	re I(
1206 Lunch					
1230 Stort adding sand and pu	Stort adding sand and pulling Drive Casing				
1530 Add Bentinite Inseco	Add Bendente & Massecond Well				
1710 Measure depth the Bentonite - ne	Mensure depth to Bontonite - not accomplished use to size between wells a casing				
Will start with that tomograw					
1720 Finish up & diport site to	yard no				
1735 Depart Yord					
	th 2				
	VIN				
	2				
	γ				
1	/				
P	1 1 5 1 1				
Sustin Fitch	MATA MA				
Name	Signature				
Ois Lundling C					
KITEN MITTLEN	02-05-2021				
Reviewed By	Reviewed Date				

Reviewed Date

DATE: 1/13/21

PROJECT NAME/NO .: + KAFB VS01-030

	ONSITE PERSONNEL	
NAME	ORGANIZATION	
Justin Fitch	Sindance	
Forrest, John, Gerry	Cascade	
SU	MMARY OF DAILY ACTIVITIES	

 Continue building well we lower benjonite, upper Sond, upper bentonit
set is and grint well from 378' to
 st as the grant well grant to

WORK PERFORMED

0345	Arrive at yerd
BITT	Arrive at yerd Go to site
0770	Tail gate
(1930	Tail gate Tail gate Continue well construction - Bentomite, Great Sand, Bentonite Set yo to hydrote Bentomite & begin gruting Lunch 9 An to Carcade hydrwn yes Stort greating Refill water tack (1400 gal of great in solf.) Back to greating
1045	Set up to pudrate Bertonite & bearin oriuting
1140	Lunch 9 An the Carcade Landrun yest
1140	stert graving
1525	Refill water tack (1400 gal at grant in so for)
1600	Back to granting
1720	finish grouting tag at 40'
	WINTERZO PACKUP
	Back to graving finish graving tag at 40' Winterzo / packyp Retvin to yord
	Depart
	\neg
/	
T.d	In Fitch Ohn An State
Annual Contraction of the International Contractional Contractionactional Contractionae Contractionae Contractionae Contractiona	
Name	Signature

Name

Reviewed By

Reviewed Date

Daily Field Activity Log

	11.110
DATE:	1/14/2021

KAFB US01-030 PROJECT NAME/NO .:

ONSITE PERSONNEL						
NAME	ORGANIZATION					
Justin Fitch	Sundance					
Forcest, John, Gerly	Cascade					
SUMMARY	OF DAILY ACTIVITIES					
Grant & cement - Deca	1					

WORK PERFORMED	
0655 Arrive at yard - pick up truck /gear Oter Head on site	
0715 Tailgate	
5720 mix and run Grut	
6745 Mix and run cement	
0815 Tag bothum at wells at "191.6' and 441.9' (6' 25.2' stuk-up, resp.)	
0820 Glow 2rst all rig - clean-up; empthy last (wet) IDW	
US50 Mast COM	
oral More my forklift the the cascule yard	
Keturnter trailer & divide cusing	
Ongo Remove Casing Mammer & hose - more 159 to decan part	_
1015 John Decon rig - Forrest Jundrop Gerry in Grants	-
	>
- Mh	
\cap	
	_
Justin Fitch Minter THE	

Name

Reviewed By

Signa

2021

Reviewed Date

DATE:_

/19/2020 PROJECT NAME/NO .: FAF3 / US01-030

ONSITE PERSONNEL				
NAME	ORGANIZATION			
Justin Fitch	Sundance.			
Ferrest Gerry	Cascado			

SUMMARY OF DAILY ACTIVITIES

 work ca	NET IVI	1 52	wind	-		
 Return	Later	Jo	rope	of-	ANG	Site

WORK PERFORMED

0640	Arrive at Kard- Grab cones
6643	bo to ANG - try to cone off next site - too much wind (35 sust, 51 gists)
0700	he to cascade yord - Discuss prospects Isafety of work in wind
0720	Tailgute - decide to at least prep for pad construction-see how it is over at.
0730	start loading up materials /equipment
OFUT	Carrade called work off due to wind (1/ Sundance approval)
	sustand winds (urrently 35 mph, w/ gusts to 51)
	sustained winds fore cast 730mph until at least 2pm
	unlocal trailer
0500	Go to ANG to stage out site w/ Ferrest
0.900	BFF Project Call
0430	Go to be hite (up for wattes/schebass
1000	Stat meeting
1040	Return to Luse
1115	Clean up at Vard- Fill sandbass, lack up, surt sampling materials
215	Derat the flome
1630	Head to Yard for taxet & comes
0700	Get cones from 100757 Site
0720	Place coves at ANG Site
0745	Return de ya-2
0750	Depart
/	
	1
41	rdi http://
	in Fitch (1/ 1/11 Trad
lame	Signature
nila.	111 - V
KIRU	NITTIEN 02-05-2021
aviound P	

Sundance Co	onsulting, Inc. Daily Field Activity Log Continuation Page Page of
	20/21 PROJECT NAME/NO .: USOI-030 KAFB BFF
'	WORK PERFORMED
0830	Meet w cascade to get pass for pereloper
0900	Mobilize to site prep paperwork
0930	Beach setup take water level reading of 472,5.
150	Teo hottom at 499.2
1145	called in hot work permit to grind burron
1.5.10	cable
1154	24 gal removed - switch to bailing Surging
1315	stop suraina, switch to bailing some issues
1-10	acting know bailer into water, switch to
	harrower bailer.
1720	Last ball.
1	$\int \int \mathcal{D}$
-	1 lolut
	1 to
	Not
	$\mathcal{D}\mathcal{A}^{\mathcal{C}}$
21-2-1	
	ichel Hopps Rachel Holehs
R	
Name	Signature
An	stim 215/21
Reviewed	By Reviewed Date

Appendix C Data Quality Control Records

DATE:	1	20,	12
	. /		

PROJECT NAME/NO .: US01-030 / KAFB

ONSITE PERSONNEL					
NAME	ORGANIZATION				
Justin Fitch, Riley Withler, Rachel Holles	Sundance				
Furrist, John, Gerry	Cascale				

SUMMARY OF DAILY ACTIVITIES

	Doran & Sample I	DAL Soil		
	The man			
1				
		WORK PERFOR	MED	

0645	Arrive Q KAFB - check cones/tape at ANG 5.70
0650	(no to vork - warne up trucks, alt wheter out
OFTS	not to york - warne up trucks, get we meter out most Roley - Give her ALT Labo
0700	Riley to ACT - Justins to surdance office to let RH in
0730	At office - scan does
GRIV	Lenve office for ACT
0831	Pick up 275 gal tote from Act 7 Back to 91%
68 UT	At site - discuss sampling & Schedule w/ Riley/Rechel
0900	for the Check to be deepen
6905	Quick tailante (Cascade did full one earlier) - Decress not cold & snow-wet ger
0910	Casca de setting up to decan equit for the day
09 114	Ges station för diel of ice
1000	Yord for swypling equal:
1630	To 106251
1130	Stort IDU Sampling
1338	Firish IDW Sampling - Head do Feder (Stop for exta ice) Back do ANG to meet ACT for 3-d collect
1430	Back to ANG to meet ACT for 3-2 relieft
1445	To Cascade Yerd
1530	To 106251 - to yord for strips
1615	Jake water toke to Jik land
1030	Back te 106257
1438	Finish Dovelysment - Duckup to yard
1750	-Deficit A
	200
	1. 1 atala
te	tin Fitch 11000 MM
	Signature
Name	o processo

HIPI

Reviewed By

17,1

Reviewed Date

DATE: 1/21/21

PROJECT NAME/NO .: ICAFB / USO1-030

ON	SITE PERSONNEL
NAME	ORGANIZATION
Justin Fitch	Sun dance
Forrest John, Gerry	Carcude
SUMMAR	RY OF DAILY ACTIVITIES
Finish Day; Decrun & Mare +	h 249; Build Suctace Dad

	WORK PERFORMED
0545	Arrive at Yord - loud up the IC
OTU	Arrive at Yord - loud up the C Hand to Carende Yord
0700	Tailgate
6730	Willind IDU Water from truck in JDGS Yard
	Either rest of materials for itad construction
1000	Head to Site - Jop 3rd happer at next site
	Lond all stand egot onto trailer/mater truck for transit to ANG
ogis	Ver (1) leaves
	more equip to new (ANG) Size
Nav	to yard to check sample bottle inventery - Cascade to build pad
1130	the other Home depot
1300	Back to yard - Cascade still at 106251 building pad
1315	Lond up wattles (ascade to pick up rig
1330	Lond up wattles - Cascade to pick up right 2" Contain, on IPW water
1340	2ndry Contein on roll-off at ANOn
400	Santigo from ACE Acrives - Back to 106251
1500	Cascale Juck to Finish pad Lond the last geve to ANG
1600)	Land the last new to AND
1730	Depart
~	
	· · · · · · · · · · · · · · · · · · ·
/	YV V
1	1
4-	Hit Mil
Just	in Filch (Millio Hits
Name	Signature
1 1 0	
1/11	WITHEN 02-05-2021

Reviewed Date

	11
DATE:	1/22/20

071 PROJECT NAME/NO .: 164F3 / V501-030

ONSITE PERSONNEL		
NAME	ORGANIZATION	
Systin Fitch	Sundance	
Forrest, John, Gerry	Carrade	

SUMMARY OF DAILY ACTIVITIES

	Rin Ho and stert Unilling @ 249 - Iniver incident
1	
	WORK PERFORMED

	WORK PERFORMED				
6650	Arrive at Yord - Lond winterials				
UTURI	Meet Cascade at 105251 - londing up track & last at pad meterals				
1715	Coronan to Cascade Raid				
07:00	Tailgate				
0730	unload trailers a maint homemory etc on rig, load pipe on water track				
1000	Maio is to site and most up				
1130	Here Pipelfink at site, prop IDW				
1200	Have Dipelficit at site, Drep IDW Nount bit, start doilling off				
1225	C C C C C C C C C C C C C C C C C C C				
1255	Start Drilling				
1439	Accident gayrred				
1447	Called base ethergency number - Collern				
	Called Rachel Holps - Justin				
	Justin, Collein, Cherry d'd not see incident				
	Santiago Grallegos of NSACE saw the event				
	- pipe rotated w/ 105 16 wrench and hit Juhn in lower right ribs - Knocked Juhn off platform with forrest				
	- Knucked Juhn off platform with forrest				
	- Juhn complained of spielliss on right lower ribs				
1	- Forces had a block lower right lip from being hit by John's hadheit				
	- EMS felt no broken ribs, but roubit rokent Fractures				
1516	John londed onto ambridge - Bayan arrived at site				
1540	Ambulance left - checked egpt, Bayan / Forrest & Losp				
1595	Suntingo left: Garry left				
1600	Called Rachel & JD				
1725	Pack up site				
1735	Return to yord - unliad telles				
1745	Depart				
ちいま	Tin Fitch Illiter State				
Name	Signature				

Reviewed By

7

Reviewed Date

Appendix C Data Quality Control Records

Daily Field Activity Log

DATE:	1/23	121
	-	

PROJECT NAME/NO .: KAFB / UJ01-030

	ONSITE PE	RSONNEL	
NAME		ORGANIZATION	
Tustin	1 Fifeh	Sun Cance	
Forlest C	SE, John A, Gerry, Bran N	Cascado	
	SUMMARY OF D		
١	Review incident and botton	up site for safety stand-darm	
		RFORMED	
1341	Arrive at Lond - pick up Si	1) tack	
1315	to to site		
	Jail gate meeting		
1230	Cascide buttoned up source loss	ie ends, remared contal lenably be	
	repaired	interd and it to be -1'the dense	
	15 man forest & Gent 12-th	acted incidents, trale photos, described	
1.1.0	incident for Bryan's notes Finished and left site		
1415	Finished End left Site Retrined that deverd	1	
1425	Papert		
		3	
		1/	
		X	
Tuch	in Fitch	MINTAN KAAA	
Name		Signature	
21.	. Junor	LANG OFT	
KILM	NI 174 PW	02-05-000	
Reviewed By		Reviewed Date	

Appendix C Data Quality Control Records

DATE: 2/2/2007 PROJECT NAME/NO .:_

JECT NAME/NO .: CAFE / USO1030

	ONSITE F	PERSONNEL		
NAME		ORGANIZATION		
Justin.	Kiley, Rachel	Sindance		
Furrest, Ge	My Boyan, Rondall	cascade		
1	<i>// · · / ·· · · ·</i>			
	SUMMARY OF	DAILY ACTIVITIES		
	Kestort Doilling	4		
/				
		ERFORMED		
0155	Arrivo at site, meet Riley & i	Zuchel		
0715	Heyd by site			
0730	VSACE Phone Cell			
OQW	Initiate safely mechine			
1120	Bun Ja Cascade yard			
1145	Buck to site			
1230	Azoranal Jobezin			
1235	Fre up the ma - Prillers disc	ussing activities		
1250	Stort Poiling			
1660	Plugged up at - 130' again			
TTIS	Pack-up - will try by unploy	g tumorrow		
1730	treat mig	A		
1735	Return Ou yord			
1745	Pepart	<u></u>		
		0		
		2/		
	\sim			
V				
F		(1) A		
Fistin	FAch	1 1 at to Olymp		
		sithed when the second se		
Name		Signatura		
PILPIN	111++1PN	2-25-2021		
Roviewad				
Reviewed I	σγ	Reviewed Date		

DATE: 2/3/2] PROJECT NAME/NO .: ICAFB / US01 - 130

	DNSITE PERSONNEL	
NAME	ORGANIZATION	
Justin, Rilek, JD	Sincance	
Forrest, Gerry, Rundall, Riyan	Casea de	
SUMM		

SUMMARY OF DAILY ACTIVITIES

T	ocill ahead Telescope: in st	ul Dealer Dolp	
	WORK PER	FORMED	

	WORK PERFORMED
0620	Arrive at yard - Und - calibrate PID
0700	Go to site
0710	Tailgate Sufety Meeting
OTSO	Fuel Nig & compressor
	UNDLOG CLAY from hor
08270	-tart Invites
TUMS	Frach Zour- preptar telescoping
1110	Trip Orillstring
1115	Brenthing Space PID-0.0 Justin do meet B&D - JD & Rilly Stay v/ Cascade
1120	Justin du meet BAD - JDA Rilly Stay u/ Cascade
1155	langate W/BD
1200	Finish to ipping DS + head to Laydown Begin Install of power pole
1. 7 .	Begin Install of power pole
1330	B&D left to return tomorrow
1900	called in the work for grinding at cascade Yard Sof GWTS
1435	Call at Hut work - back to site trip in doll string bit
TFH	trip in dail stain thit
1440	Telescope pipe
1440	Move ng a set jack - ready to pull 13.3/8" tomorran Depart for yord
	Majour the yard
	Depart
-	3
	4
	6
	Λ Λ
+ .	
Just	in Fifeh ////////////////////////////////////
Name	Signature
.A.In.I.	
KIMI	N1791-EV 02-05-2021
D	

KILLY WITTER Reviewed By

Reviewed Date

DATE:	2/4	12021

PROJECT NAME/NO .: KAF3 / US01-030

TE PERSONNEL	
ORGANIZATION	
Jun Conic	
Cascade	
OF DAILY ACTIVITIES	
	ORGANIZATION Jun conce Cascade

	- Pull	133/8-4	Tesume	Pulling -	Fix Comi	Diexor	1
		/		9	1000		
1							1
			WORK PER	EORMED			

	WORK PERFORMED
OGTO	Arrive at yard - Dick up trucks
0700	Hend to site
0710	Arrive at yard - pick up trucks Hend to site Tailgate and "Story time"
0735	Bgin setting up to start include pipe
9900	Justin to gas up truck and meet B&D at Yard
1000	Boin setting up to start jacking pipe Justin to gas up toxik and meet B&D at Yard Cascade 4 Riter to cascade yard to unlead 13" & load 11" casing Back to drillate v/ 11" casing - Rig up 9 prep to drill Lunch
1125	Back to drillate v/ 11" casing - Rig vog papedo doill
1715	Lunch
1300	stort drilling (a) 200'
1430	shut compressor & rig down - check check values on ng
1700	Justine Lake
1800	Riley to yord to lockup A
triu	Depart
	5
	5
	N
/	
/	
Jul	infitch Mith MID
Name	Signature
01.	

Reviewed Date

Daily Field Activity Log

DATE: 2/5/21 PROJECT NAME/NO .: KAFB/ US01-030

ONSIT	E PERSONNEL
NAME	ORGANIZATION
Justin, Riley, Rachel	Sundance
Forrest, Gerry, Randall, Bryany Mark	Cascade
SUMMARY (OF DAILY ACTIVITIES
Continue Drilling - Pu	Il at a fight hule replace Hammer

	WORK PERFORMED
0650	Arrivent yard - load up - calibrate PID
0700	Go to site
0730	Tailgate Meeting Hook up new compressor Set up do start drilling
0715	Houk up new complessor
6200	set up to stert drilling
6930	start drilling
1200	Flang connecting hose to hamme-lanvil broke
	LUNCH
1230	Prep to pull back drive casing due to tight hole
1310	Cascade taking mater trick to not to affload casing the mate rough to pill DS
1350	POINDS
1420	Rig dum & set jack
1530	Rig dum & set jack Begin Jacking Pipe - 3 stands more by bick over well
1630	nove as back over well
1645	change hammer
1750	Leave ter yard
1800	Deput
/	
4	A
_	that Ant
JUS	tin Fitch INMONO
Vame	Signature
\mathcal{A}	

Name

chel Hohla

Reviewed By

Page 111 of 202

Reviewed Date

3.4.2021

DATE:_ 2/6/21

PROJECT NAME/NO .: 1CAFB- 106249 / US01-030

Justin, Riley Forcest, Gerry, Randell, Mark Forcest, Gerry, Randell, Mark SUMMARY OF DAILY ACTIVITIES Finish and reasoning bit Tright and reasoning bit Tright and reasoning bit Tright and reasoning bit OGGO Acrive at Yerd OGGO Acrive at Yerd Acrive at Yerd OGGO ACRIVE AC		ONSIT	TE PERSONNEL		
Forest, Gerry, Rankell, Mark Cascade SUMMARY OF DAILY ACTIVITIES Finish rig (Construction bit reight, Markell, Marke SUMMARY OF DAILY ACTIVITIES Finish rig (Construction bit reight, Markell, Markell, Markell, Jon 360' WORK PERFORMED 0650 Arcive at land 0650 Arcive at land 0650 Arcive at land 0740 Beak book in 055 Construction 1000 Beak book in 055 Construction 100 Beak book in 05 Construction 1125 Finish at Sed' 1125 Finish at Sed' 1140 Depart Junter Signature	NAME		ORGANIZATION		
Forest, Gerry, Rankell, Mark Cascade SUMMARY OF DAILY ACTIVITIES Finish rig (Construction bit reight, Markell, Marke SUMMARY OF DAILY ACTIVITIES Finish rig (Construction bit reight, Markell, Markell, Markell, Jon 360' WORK PERFORMED 0650 Arcive at land 0650 Arcive at land 0650 Arcive at land 0740 Beak book in 055 Construction 1000 Beak book in 055 Construction 100 Beak book in 05 Construction 1125 Finish at Sed' 1125 Finish at Sed' 1140 Depart Junter Signature	Justin, Riley		Sundance		
SUMMARY OF DAILY ACTIVITIES Finish org (Ppsivis Tripts, w) under receiving, bit reading at 1/200' to 3200' >> Drill aboud to 360' WORK PERFORMED 0650 Arrive at 1/2rd 0400 Context hose / hommar Ruth to Casade yord fir under receive bit prop to on in Dist reading 1000 Sample at Dist in 10 AFB-10/198 (2) 476.2' 1100 Sample at Dist in 10 AFB-10/198 (2) 476.2' 1112 9140 Decked dy continue w/ under resmer 1320 1400 Back to drilling w/ under resmer 1320 1400 Depart Justin dy yord Justin Artich Name					
Finish og lepans Tripth Junker leaning bit Perd All 260' to 320' Deill alpend to 360' WORK PERFORMED 0650 Arrive at Vard 0450 Gasto side 9700 Gasto side 9700 Gasto side Properties of the Marker Rult to Candot vard for Witherener bit prope to on in 255 readiff 1020 Tripth Witherener - Juston do yard for Witherener 1030 Juston do yard for Witherener 1040 Sample do Data in KAPB - 104118 (0) 476.2' 1150 Jeat drilling w/ under-reamer 1150 Go to lapton for for data and 1170 Back to drilling - 512 drills of - New hule after 315' 11725 Einsth at 360' 11730 Return by yard 1190 Saperd Juston by yard Juston by yard Juston by yard Juston by yard Juston by yard Juston by Salar and Significan					
Finish og lepans Tripth Junker leaning bit Perd All 260' to 320' Deill alpend to 360' WORK PERFORMED 0650 Arrive at Vard 0450 Gasto side 9700 Gasto side 9700 Gasto side Properties of the Marker Rult to Candot vard for Witherener bit prope to on in 255 readiff 1020 Tripth Witherener - Juston do yard for Witherener 1030 Juston do yard for Witherener 1040 Sample do Data in KAPB - 104118 (0) 476.2' 1150 Jeat drilling w/ under-reamer 1150 Go to lapton for for data and 1170 Back to drilling - 512 drills of - New hule after 315' 11725 Einsth at 360' 11730 Return by yard 1190 Saperd Juston by yard Juston by yard Juston by yard Juston by yard Juston by yard Juston by Salar and Significan					
Tripte Justice reasing bit Predict 10200 Justice 0650 Arrive at Verd 0700 Gasta site 0710 Gasta site 0710 Gasta site 0710 Gasta site 0710		SUMMARY	OF DAILY ACTIVITIES		
Tripte Justice reasing bit Predict 10200 Justice 0650 Arrive at Verd 0700 Gasta site 0710 Gasta site 0710 Gasta site 0710 Gasta site 0710		Finish n'y lepairs			
Name Name Image: State		Tripin w/ under-reamines 1	bit		
0650 Arrive at Yerd 0700 (av to mile 0705 (av to mile 0715 (contact hose/hammer Ruth 20 Check yerd Fir White-reaver bit prop to en in 25 + re-drill 102 Sample it Dith in RAFB-10/118 (20176.2' 1100 Sample it Dith in RAFB-10/118 (20176.2' 1100 Sample it Dith in RAFB-10/118 (20176.2' 1115 910 Continue w/ under-reamer 1730 60 to landum fir lov drive casing NUU Back to drilling - Static of 301 - New hule after 315' 1730 Return by yord 1740 Depart		reacill ZGO' to 320' > D	rill a head to 360'		
Bird (a the pile Gress Tailyht Grean to hose / hommer Ruh bi Casada yand Bir unlitr-reamer bit prop bo on in DS & re-drill 100 Sample it Diphin in NAFB-101118 (d) 476.2' 1100 Sample it Diphin in NAFB-101118 (d) 476.2' 1115 glet drilling w/ under-reamer 1240 Linich 1370 Go to laylum Bir 100' drive casing NUU Back to drilling - Stardig at 300' - New hult after 315' 1730 Return by yard 1740 Depart Just by yard Just in Stard Just in Stard Just in Afth Name			< PERFORMED		
Gross Tailyate Gross Tailyate Ruh to Casada york tir uniter reamer bit prep to on in 25 4 re-drill 1030 Tap in V uniter reamer - Justim to york For tools 1100 Sample at Doth in KAFB-100198 (a) 476.2' 1115 Start drilling w/ under reamer 1240 Linuch 1310 Back to drilling - Starting at 301 - New hele after 315' 1730 Return dr. yord 1740 Depart Justim dr. yord 1740 Depart Justim Ar 260' Signifure Justim Fitch Name	0650	Arrive at Yord			
oris (connect hose/hammer Rin bu Cascade yord Dir unter-reaver bit prop to om in 2054 re-drill 1030 Trip in V/ under-reamer - Justim do yord Bir truls 1100 Sample at Dight in NAFB-108148 @ 476.2' 1115 Stert drilling w/ under-reamer 1240 Lunch 1310 Go to lartum Fir 104' drive casing 1400 Back in drilling - starting of 304' - New hule after 315' 1720 Term do yord 1740 Depart 1740 Depart Just Start Sust in Attah Name	ovto	Grato site			
Ruh tu Cascade yord Fir unter-reamer bit prep to son in 25 % re-drill 1030 Tap in V/ unter-reamer - Justim by yord Fir truls 1100 Sample # Dight in KAFB-100198 (0) 476.2' 1100 Sample # Dight in KAFB-100198 (0) 476.2' 1115 glot drilling w/ under-reamer 1240 Linich 1240 Linich 1370 60 to log lum the IOV drive Casing NOU Back to drilling - Stating at 300 - New hole after 315' 1720 Rehum the yord 1740 Depart 1740 Depart Justim Lanch Signature Justim Fitch Name	6705	Tailyate			
prep to om in DS + re-drill 1030 Trip in V/ underreamer - Justim do yard her tools 1100 Sample # Doth in 16AFB-loci48 @ 476.2' 1115 9140 Linich 1130 1140 Linich 115 9147 115 9147 115 9147 116 117 118 9141 119 119 1110 1111 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 <t< td=""><td>0715</td><td></td><td></td></t<>	0715				
1030 Tap in V/ interventer - Justin to yard For Jouls 1100 Sample # Dight in 12AFB-100148 @ 476.2' 115 glot dilling w/ inder-regner 1240 Linch 1370 60 to laytum Fir lov' drive casing NEW Back to drilling - Starting at 304' - New hill after 315' 1720 Tetum by yard 1740 Depart 1740 Depart Just in Fitch Name		RUN to Cascade yord For under-r	eamer bit		
- Justin by yard her Jouls 1100 Sample # Dath in 16AFB-100148 @ 476.2' 115 Start drilling w/ inder-regner 1240 Linich 1370 60 to laylum for low' drive casing NGU Back to drilling - Starting at 30% - New hule after 315' 1720 Return by yard 1740 Drpart 1740 Drpart Just in Filch Signature Signature					
1100 Sample it Dath in KAFB-106148 @ 476.2' 1115 glat drilling w/ under-reamer 1240 Lunch B18 pecided to continue w/ under-reamer 1350 60 to laytom the low drive casing NOU Back to drilling - Stating at 300' - New hole after 315' 1325 Einsch at 360' 1730 Return du yard 1740 Depart Jusy IN Fitch Name	1030	Top in V/ undervermer			
115 gtert drilling w/ under-reamer 1240 Lunch 1310 Decided dr continue w/ under-reamer 1370 60 to logitum for low drive consing 1400 Back to drilling - Stadnicg at 3Ql - New hole after 315' 1325 Einish at 360' 1730 Return dr, yard 1740 Depart 1740 Depart 1740 Depart		- Justin to yard ter ful	5		
1240 Limich 1310 pecidel do continue w/ under-tesmer 1330 60 to laylum for tot' drive casing NOU Back do drilling - starting of 300 - New hole after 315' 1325 Einsch at 360' 1730 Retrind by yard 1740 Depart		Sample # Darth in ICAFB.	-108148 (a) 476.2		
1240 Limich 1310 pecidel do continue w/ under-tesmer 1330 60 to laylum for tot' drive casing NOU Back do drilling - starting of 300 - New hole after 315' 1325 Einsch at 360' 1730 Retrind by yard 1740 Depart		gfert drilling w/ under-ream	er		
1330 60 to laylun by lov' drive casing hull Back to drilling - Starting at 301 - New hule after 315' 1720 Tetrm by yord 1740 Drpart	the second s	L'unch			
Mail Back do drilling - starting at 301 - New hule after 315' 1725 Timoh at 360' 1730 Return du yard 1740 Depart		Decided to continue w/ under-resident			
1725 Finish at 360' 1730 Return du yard 1740 Depart		60 to lay lun tir lov' drive casing			
1730 Return by yard 1740 Depart			301 - New hule after 315		
1740 Depart					
Just In Filch Name					
Name Signature	1790	Wejpart			
Name Signature					
Name Signature					
Name Signature					
Name Signature					
Name Signature	1		\sim		
Name Signature					
Name Signature	1	1/0			
Name Signature	0				
Name Signature					
Name Signature			1.		
Name Signature	Jusy	in Fitch	Mintin Deltin		
	Name		Signature		
R R V 0 V (n V 1) 54. 707 (polo kladel	3.4.2021		

Reviewed Date

DATE: 02-07-2021

PROJECT NAME/NO .: KAPB WWW USDI-030

NAME	ORGANIZATION
RILPH WITTLEY LIVSTIN Fiton	Sundance
Forrest Evans, mark bureen, Geny woods Randall Hatfield	Cascode
Randall Hatfield	cascope
•	
SUMMARY OF	F DAILY ACTIVITIES
Drilling	
mip drill string	b
<u> </u>	- hr
	PERFORMED
10 safety meeting	
0745 Slart drilling	D. o.l.a
0745 go to laudawn yard from dri	
0820 return from lay down yourd	to drillsite
1200 IUNCH 1240 resume drilling	
1400 Drilled TD 1450 Start tripping drill string	
1450 Start tripping drill string 1420 Finish tripping drill string	
1630 at to landown hand	
1710 ALLOAYT CYLLL SILE	
	/
	1
RIPHIMITTLEN	GPOMLAN

KIH Name Halls

KINKI Signature 1

3.4.2021

Reviewed Date

Daily Field Activity Log

Page 1 of _

DATE	2.	- 7.	- 21
DATE	05	1	6

PROJECT NAME/NO .: USO1-030

		ONSITE PERSONNEL
NAME RO	achel Hobbs	ORGANIZATION Sundance
<u> </u>		
		ARY OF DAILY ACTIVITIES
2-7-21	Site safety over	Sight
		()
		WORK PERFORMED
1030	Arrived at project	t trailer Desktop Work
12.49	Arrived at KAPP	3-1018249. Observed activities, performa
1100	safety audit.	a la la Martina la contractional
1400	Return to proj	ect trailer to send out
1/ 20		diagram.
1630	End of day	0
/	0	
	1	
		- 1)
1	K	GH
1.2		
D. I	116664	Reichelflohl
	el Hobbs	- ruche pro ma
Name	stra Filich	Signature
Sul	stra Filth	315/21
Reviewed E	5Y	Reviewed Date

DATE: 218/21

PROJECT NAME/NO .: KAF3/US01-030

10	SITE PERSONNEL	
NAME	ORGANIZATION	
Justin, Riley, John David	Sundance	
Forrest, Mark, Gerry, Rondall	Cascade	
· · · · · · · · · · · · · · · · · · ·		
SUMMA	RY OF DAILY ACTIVITIES	
Build WEN 106290	1	

WORK PERFORMED

	WORK PERFORMED		
0625	Arrive at Yord - get trucks		
6655	60 do site		
0705	Jailgate		
0775	mater level rending: 415'- pape floided ul sediment plug at bottom		
0800	trep 30 Vuile well		
0855	stort many PUC for WT well		
100	pull pipe & start construction		
1130	water Level inside well (puc) (a) 473.9		
	Well set 1.5' high due to sediment in hale		
1210	Linch		
12411	Back to it		
1345	Finish lawor sand employement a smab		
1900	continue inselt contragency well		
1500	add bentemite ! upper sand Bentenite seal & pull caring		
1700	add 300 gal to hydrate upper bendonite		
1715	Land removed DE ando truck in		
1725	Mend bank to yord		
1735	Depart		
-			
/			
(1		
JUS	tin tate (1/1 atta Olla)		
Name			
0			
Ka	chel Alous 3.4.2021		
Reviewed E	By Reviewed Date		
	nevieweu Date		

DATE: 2/9/21 PROJECT NAME/NO .: 164FB US01-030

ONSITE PERSONNEL			
NAME	ORGANIZATION		
Justin, Killy, Rachel	Sundance		
Mark, Forrest, Geny, Randall	Cascade		
SUMMAR	RY OF DAILY ACTIVITIES		
Well Construction ((Z4G) & SAMPING IDWI		

WORK PERFORMED Acrive at Yard - Dack VD UGSO OTW site -Gray Filling MyU Track TAilgate Meeting 0750 Begin mixing grad a pumping 0302 in to 1:00 Strage Yard . Cascade to Yar to Arrives move DI bins to 1230 +mi)er 60)v to prep/erganize Sempling 1345 5 Ja tion Gas Carcade back at site v/ niley - buy ire 1400 cascade added more growt new mixing ladding cement Back to site 1430 Rachel site - riley to SUS- Justin Sample 1445 Sample KAF13-1196299 # 3 492.1' (plan was 493.2) wi well bo Hom at 1510 er Leve 476.9 at ia 1530 Sample KAFB-106249-2-10W 1535 Sample KAFB-106249-1-1DW Riley QC SAMples: pack/scal samples (at 105249 site) 1630 1645 Back to vare 1700 Drosit Feder to 1715 Relinguish Sample caller for FedEx Epress Delivan for Mane 1720 Pepart Name Signature 2021

Reviewed By

Page 116 of 202

Reviewed Date

Daily Field Activity Log

VS01-030

DATE: 2/10/21

PROJECT NAME/NO.: KAP

0	NSITE PERSONNEL	
NAME	ORGANIZATION	
Justin, Riley, JD	Sundance	
Mark, Forrest, berry, Ron chill	cascade	
SUMMA	ARY OF DAILY ACTIVITIES	
Decon, Clean-UD, M	10b to 106250	

	WORK PERFORMED		
0650	Arive at Yard		
0700	To cascade yard		
0705	tailgate		
0730	Between Yard & site		
0900	To yord for straps + more stuff to silver truck - JD maite		
6930	Riley to ACT & Other Deput		
	Cascade working on surface/pad (2 at yard doing decon)		
1000	Buckner came by the look at sites		
100	Act brings new colloff		
1200	Riley Returns. Justin to yord . continue decon & mob to 106250		
1330	Justin buck to site - ACT load KAFB-106249-3-1DW to steray Van		
1350	Take collect to strong & nove stegn watter		
1430	Riley to AET For More totes		
1-0.	Justin Sweep up straw from 249 rite		
1330	Unload totes in yard		
1600	Back to site where Casade continues to stage & prep		
1	Kiley to yord to prep sample bags		
1700	Ritey returns - tascade continue moving egpt		
1/Cr)	Weld new shoes onto date down prive casing		
1600	Back to fart Al H		
1610	Depart		
E 1	FIL ALT		
, Justi	n Itch Illann Mill		
Vame	Signature		
X	achel Holits 3.4.2021		
A	achel Molis 3.4.2021		
) autourad [

Reviewed By

Page 117 of 202

Daily Field Activity Log

DATE: 2/11/21

PROJECT NAME/NO.:____

KAFB / US01-030

ONS	TE PERSONNEL	
NAME	ORGANIZATION	
Justin, Riley Mark, Forest, Gerry, Randall	Sun dance Cascade	
SUMMARY	OF DAILY ACTIVITIES	
Stort drilling 10625	2	

	WORK PERFORMED
6650	bray to avoit.
07av	Go to site - tailate
0715	Get storted retting up to dr. 11 164,73-106250
6500	Start Drilling
0850	Hanner broke - Made to gr get another
	Finish cleaning up at 106249
1230	Got nammer tryd - Lunch
1400	Start Drilling
1315	Clay plug in cyclane - Clean out
1400	Continue Drilling
1730	Depart for yard
1745	Déput
	7/
	tet. Ar
Just	n Fitch
Name	Signature
Main	
neu	hel Malis 3.4.2021

Name el blacks

Reviewed By

Reviewed Date

DATE: 2/16/21 PROJECT NAME/NO .: KAFB - 106250

	ONSITE PERSONNEL		
NAME	ORGANIZATION		
Just	n Ziliz, Rachel Sundanco		
Mark	n Silir, Rachel Sundanco Forrest, Llayd Cascade		
	SUMMARY OF DAILY ACTIVITIES		
	Repairing - triport DS - toip in w/ smaller bit		
	rig dwn - set jack, pull 13" as DC		
	R.S-UP		
	WORK PERFORMED		
0650	Acrive at site - prep gear & tacks		
0705	Go to site		
0710	Tailyate		
0720	Mork to get salt for ice		
6800	Mast Dann - repair rige mestup		
6930	PUN DS		
1100	Telescope		
1230	Lunch		
1300	Mast Rown - Set lack - Dull 13" DC		
1440	Enish jarking pipe - mist dawn by move jack - set rig up over hole		
1520	Enish jarking pipe - mist dans, nove juck - set ry up overhole To Casce de yord to unload 13"		
1540	Return + lond 11° easing in water truck		
1600	set of to start the horary marring - make roundation		
1630	Clear up - mky whate to yerd		
1705	Fuel Rig		
17.5	BSCIC To Yard		
1720	lepart /1/		
-			
	7 (/		
/			
	1		
. /			
Tic	stin Fitch Martin		
Vame			
	Signature		
AC	achol Male 3:4.2021		

Reviewed Date

Sundance Consulting, Inc. Daily Field Activity Log

DATE: 2.16.21 PROJECT NAME/NO .: USO 1030 KAFB BFF

ONSITE PERSONNEL		
NAME	ORGANIZATION	
Rachel Hobbs	Sundance	

SUMMARY OF DAILY ACTIVITIES

2.16.21	Well	Development	KAFB-106251	
	1.7.7			

WORK PERFORMED 0640 Get base pass for cascade helper project trailer and pack up truck 0700 0710 with Developer about sched mmunicate Hoviba Start paperwork Arrive at HAFR 106-251 and 0300 bea n setup 6930 JSAS for Work review set up 0900 and pump install 1006 discuss weather Ben Moayu'ad with ecide to keep workin frequent discussion dition al with team of 170805 Sreak 1130 GOD to other site 250) to talk with M. Green Fitch, R. Witther about conditions NO HNICK at PX and return to 251 1145 at ~ 480 ft set 1300 Surface. seain Water to oumping to tote AURINA water lesp, sounder WITH Got initia roh 1332 LIDNT Pumbe V 50 DIA gallons 1340 removina pain grop pipe mplete drop removal FINAL WL OF Rive 1510 Clean 00 For day Decide to wait until next Start 106249 to

Justin Filch

Name

Reviewed By

Reviewed Date

<u>Reichele Hoble</u> Signature 3/5/21

DATE: 2/17/21

PROJECT NAME/NO .: KAFB / US01-030

ONS	ITE PERSONNEL	
NAME	ORGANIZATION	
Justin, Riley, Rachel	Sundance	
Mark, Forcest, Lloyd, Bryan	Cascade	
SUMMAR	OF DAILY ACTIVITIES	
Prill Ahead-Repair r	19/complessor	

WORK PERFORMED

0650	Arrive at Twee- cal PID - Pack yp
0700	Go to site
0710	Tailgate
0730	Bezin Drilling at @ 157' MD
17 00	Hommer Chain broke - repair & take lunch
1245	Resume drilling
1-130	Hydraulic meter broken & leaking - needs replaced
1530	Reparts Completed - Gran- 12 Since at Company 5555
1645	Repairs completed - Going to swap at compressor Visit Rachel at KAFB. 106249
1745	Resm by yard
1710	Depart
_	
	\square
/./	
Jurt	n Fitch ///stra MI
20711	
Name 1	chel Nehrb 3.4-2021
M	chel North 3.4-2021
NA	chel North 3.4-2021

Reviewed By

Reviewed Date

DATE: 2.17.21

PROJECT NAME/NO .: KAFB BFF

ONSITE PERSONNEL

NAME	ORGANIZATION
Rachel Hobbs	Sundance
S	UMMARY OF DAILY ACTIVITIES

2.17.21	KAFB-106249	Well	Datelopment		
		WORK	PERFORMED	A	

	WORK FERFORINED BCH
0635	Arrive at site Location KAFB-106249 trailer
	pack up materials for day
0700	Arrive at KAFB-106249.
0715	Tailaste Discuss site hazards, begin setup,
5750	443.21- Tag bottom of Shallow well.
	443.21-Tag bottom of shallow well. WL in deep 476.3. 411.75 Estimated bottom
0830	Lower surge block to begin surging Complete surging. WL 476,17 Bail one well
0946	Complete studing. WL 476.17 Bail one well
1030	Begin Surging again.
1130	Begin Surging again. Finish 2nd round of surging, begin to bail
1230	complete hailing
1300	Complete bailing 0.00 0 Begin pump in stall
1400	Numo set
1410	Desilies 11 6 11 and
1500	Snowing, accumulating, Taking, readings every
	Suppl (1) Supple S
1720	
	sediment. End development
1730	Leave site
	Ratt
	2.411
/	
-	
0	chel Hobbs Rachel Moll
Kal	chel Hobbs Rachel Molth
Name	Signature

Name

istin Titch

Reviewed By

Reviewed Date

151

Daily Field Activity Log

Page 1 of

VS01-030

DATE: 2/18/21 PROJECT NAME/NO .: KAFB

	ONSITE PERSONNEL	
NAME	ORGANIZATION	
Justin, Riley, Rachel	Suridance	
Mark, Fourest, Llayd	Cascade	
SUMN	I 1ARY OF DAILY ACTIVITIES	
Drill to TD		

	WORK PERFORMED
1015	Arnveat vard - cultorate PID Heid to site
1020	Heid to site
1030	Tailgate
1050	Begin frilling
	TD - Co to get watter From 106251
16W 1730	Refurn to yard An
1745	Depart
-	
	. /
	3
1	
5	
+ :	(1. (1. h.)
Just	in Fitch Il Man AAA
Name	Signature

1 .4.2021

Reviewed Date

Reviewed By

chel phelis

Daily Field Activity Log

DATE: 2. 18.21

PROJECT NAME/NO .: KAFB BFF / USO1-030

ONSITE PERSONNEL NAME ORGANIZATION R. Hobbs Sundance

SUMMARY OF DAILY ACTIVITIES

L-18-21 P	vil develo	poment	pump	
		7	Forub	

WORK PERFORMED 0630 Piscuss weather w/ Mark. Green conditions Decide to reevaluate at 193 1930 have improved Conditions begin work 020 030 te. AGIAL bea OUI 140 Dulled Return te ler 300 R Pasia . Open GRAMIZE 2.9H-DUMP materials -10675 to lo cation. west Q Wittley an Cerilo. SOCKS under plastic 25 CONTOL 1730 nd of day Ratt Rachel Hobbs acher Flow Name Signature

Reviewed By

Reviewed Date

Daily Field Activity Log

DATE: 2/19/21

PROJECT NAME/NO .: KAFB / VS01-030

ONSI	TE PERSONNEL	
NAME	ORGANIZATION	
Justin Fitch /Riley Wittler	Sundance	
Mark, Forosh Lloyd	Carca to	
SUMMARY	OF DAILY ACTIVITIES	

	WORK PERFORMED
0645	Arrive at yord - warm up trules Hend to site
0700	Hend to site
0710	Tailgate
0725	Start running lower well - send + pull pipe
1100	finish adding lower sand, benning when well
1130	Start running lower well - Sand & pull pipe finish adding lower sand, bengin running upper well Go to yord to top drilling tools & put up restor F PVC for upper well lunch
1245	Continue Comming oppor woll
1305	Twob laver sand
1320	Rosome building well
1545	Finish Bentonite employment - load pipe into water truck - tay vells
[600	ilgente Bentunite - 500 gal Hro
1620	Back to yard
1630	Depart
1-	
~ 1	al i that a the
Just	in Isteh
Name	Signature
.1	

Reviewed By .2021

Reviewed Date

Appendix C Data Quality Control Records

Daily Field Activity Log

DATE: 02 20 202)

PROJECT NAME/NO .: KAFB US 0 -030

	ONSITE PERSONNEL		
NAME	ORGANIZATION		
KIRM V	Wittler, JUSHIN Fitch SUndance Enveen, Forrest Chattin, Uoya Mahattay Cascade		
IVKAVK	Erreen, Forrest Chattin, loyd Mahattay Cascade		
	Finish building well (Grad /cement)		
	Decon		
11	WORK PERFORMED		
0700	Safety Tailogte with cascade		
0720	a tart a routing		
1000	refill water thick		
1215	Start comenting		
300	Finish cementing and start otean -up		
1400			
430	start deconing rig at laudown yard		
1700	leave site for the than.		
_			
	MAAT		
-			
1			
Ally N	ittler R. ORTAAN		
me J	Signature		
Ma			
Ra			
viewed By	Y Reviewed Date		

Reviewed By

Daily Field Activity Log

DATE: 02/21/20	21

PROJECT NAME/NO .: KAPB VS 01-030

	ONSITE	PERSONNEL
NAME		ORGANIZATION
	uttler, justin Fitch	Sundance
Mark	Green, Forrest chattin	(ascade
Usyd	Mahaffey	cascade
	5	
	SUMMARY OF	DAILY ACTIVITIES
	delon equipment	
	construct well pad	
	· · · · · · · · · · · · · · · · · · ·	hu
01.2		ERFORMED
0645	arrive at field trailer	
0700	safely tailgate with case	ade
0120	start delar	
1030	Transport Materials to offsh	e juidown yard
1345	end deconing	V 0
1345	start pad construction	
1140	Finish Pad Construction Have well sile	
1800	HEAVE WELL SILE	
1000	LUNC NITH	
1		
		RW
17		Alt
·		
() () () () () () () () () () () () () (
Pilail	1414 118.0	POUL IL TILONO
	WIHLEN	KILLIN WINTH TON
Name J	Λ.	Signature
Na	chel blohf	2 4 2 3
		3.4.2021
Reviewed E	Зу	Reviewed Date

Reviewed By

Daily Field Activity Log

DATE: 2/77/71 PROJECT NAME/NO .:_

KAFB/USCI-030

	ONSITE PERSONNEL	
NAME	ORGANIZATION	
Justin Fitch	Schlahre	
Forrest, Murk, Llayd	Cascale	
7		
	SUMMARY OF DAILY ACTIVITIES	
Demok w/ Cascad	C	

WORK PERFORMED

	WORKTERIORIWED
0645	Arrive at york
6700)	Mend by Cascade Terri
07-10	Tailjuti
0715	Load up part to while off- hiero
0830	To site the finish cleaning up
17950	To site the truich cleaning up Finished at site - back to larcade year to lead up more strff
1130	16 PTT TEC INSTALL
1430	ACT Actives . In 106750 9 I'M Yerd
1530	ACT LEWS - gater Fiel
1600	ACT Actives In 106250 9 JThe Yerd ACT Lewis - ga der Frel Back to BEE
1645	Retrin to yard 11
F7W	Depart
1	
	A /
	7
/	
Justin	shel Hohls 3.4.2021
Name	Signature
n	$\rho = \rho = \rho = \rho$
Kal	allel Mohls 3.4.2021

3.4.2021 Reviewed Date

Reviewed By

Daily Field Activity Log

DATE: 2-22-21 PROJECT NAME/NO .: 0501-030

	ONSITE PERSONNEL
Rache Holds L. Bensley D. Justin Rilly	ORGANIZATION SUNCANCE SUNCANCE SUNCANCE
SUN	/MARY OF DAILY ACTIVITIES

2.22-21	Installing	PUMBS		
	0	9-		
S				

WORK PERFORMED 0700 meetin canisters at latheson. ier up equipment nt t -10625 Screen 3 ce bas 200 300 MAD 1430 11. Produc 15 30 hbl. KROW Not 645 Droducing bubble ache Name Signature

Reviewed By

Reviewed Date

Kirtland A	FB Bulk	Fuels	Facility	- Data	Gaps	Drilling	Project	62735DM02
	Daily	Qualit	v Contro	l Repo	ort - N	lon-Con	struction	

ROLE:	SSHO /Geologist		DATE:	2-23-21
WEATHER	: 2 60°F; Partly Cloudy	<u>.</u>		KAFB-106252
	PERSONNEL (including subcontrac	ctors and government employee	s)	
Name	00 1	Organization		
	B. Backisch	EA - Site Manager/Supervis	or	
M.L	resserger	EA - Site Health and Safetly		
D. Fielo	Lessenger Les + L. Moorhead	Henden	HMC	6
2.005047				
Z. OPERAI	ING EQUIPMENT			
Hude	ovac Equipment			
11/000	orac cyclipmene			
3. DAILY S	UMMARY (include QC samples colle			
1		and problems encountered and		
1	KAFB-106252 Pothole,	Thydroval completed	e 14 a	liameter × 0 # 6
			/	
_				
	tw			1
	H			
/				
	ERFORMED (Indicate time, and des	cription of work performed by p	orime and/or su	Ibcontractors)
8802	EA + HMCG on site			t tub
	location of well shifted		to avoid	d utilities
0830	Degin totholog (14)	diameter to 84 bys)		٨
1030	MMCG #site	-		- M
	i v	lift		V
	11.1	DQCR Page 1-of 2->		- / /
Reviewed by	1. JAIL Klan		Revie	ewed date: 2/2/2/2

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62735DM02. Daily Quality Control Report - Non-Construction

ROLE:

DATE: 2-23-2021

10/2

1. ONSITE PERSONNEL (including Name	subcontractors	and government one			
Name	ne		Organization		
Bernie Bactasch	1	EA - Site Manager/Supervisor			
EANL Morse/Mitre Mavey		EA - Site Health and Safetly Office			
Mark Green	1 Levey				
- 1		0	1		
	er	> Ca	sca-dE		
Lloyd Mahaff	ay (/			
Josh Messen	ger	EA			
2. OPERATING EQUIPMENT					
Team #1		Team #2			
YSI Professional Plus 15K101398 Wh0003	YSI Professi	onal Plus 15K101396	Spare YSI Professional Plus 15L100541		
MiniRAE 3000 592-915778	- Wh0001		Wh0002		
Wh0005	Whooo4	00 592-915790	MiniRAE 3000 592-915579		
lach 2100Q 15100C045034		15100C044633	Wh0006		
Vh0008 olinst Water Level-Meter 253054	Wh0009	11	Hach 2100Q 15100C045025		
		r Level Meter 253053	Solinst Water Level Meter 253056		
		and should be and	ning documents, converstations with the remedies applied)		
- De 211e		and should be and	ning documents, converstations with the remedies applied)		
- Contraction of the Contract		and should be and	ning documents, converstations with the remedies applied)		
- Contraction of the Contract		and should be and	ning documents, converstations with the remedies applied)		
		and should be and	ning documents, converstations with the remedies applied)		
		and should be and	ning documents, converstations with the remedies applied)		
		and should be and	ning documents, converstations with the remedies applied)		
- Contraction of the Contraction		and should be and	ning documents, converstations with the remedies applied)		
		and should be and	ning documents, converstations with the remedies applied)		
- Dr://eJ	+. 13	A	J-3		
- Dr://a	ton, time, and de	A scription of work per	rformed by prime and/or subcontractors)		
- De://ed	ton, time, and de	A escription of work per yard to f	remedies applied)		
NORK PERFORMED (Indicate location 15 Arrive at - 20 Safety be	ton, time, and de Truman	A A A A A A A A A A A A A A	rformed by prime and/or subcontractors) Find Cascade crea to drill site		
NORK PERFORMED (Indicate location 15 Arrive at - 20 Safety be	ton, time, and de Truman $r_1 \in f/Ca$ δ start	A escription of work per ya-d to f paperesor off loading up	remedies applied)		
NORK PERFORMED (Indicate location 715 Arrive at - 730 Safety Di 740 Cascade to	on, time, and de Truman Truma	A A A A A A A A A A A A A A	rformed by prime and/or subcontractors) Find Cascade crea to drill site		

Reviewed date: 5-25-21

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62599DM01 262 Daily Quality Control Report - Non-Construction AFB-106252 DATE: 2-23-202 4. WORK PERFORMED (Continued) 0745 Settin 0 800 0830 1000 ishe 1015 1134 5000 crier 5 131 1401 417 445 0 of 0 Arm Dart. 5-1455 1502 743 114 f 0fs 5. 1800 Gra

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Λ Y2 Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Initials:

Reviewed date: 5-25-21

Appendix C Data Quality Control Records

Daily Field Activity Log

DATE: 02 23 202

PROJECT NAME/NO .: KAPB US 01 030

ONSITE	PERSONNEL
AME	ORGANIZATION
Rachel Hubbs, Rieu wittler, justin Fiter	sundance
	F DAILY ACTIVITIES
GW sampling	
pump installation	Re
WORK	PERFORMED
0700 Amive to field trailer	
0715 will installation of pump a	+ KAPB WW251
	B106251
1340 Sample KAPB 1010251 518 Start pump Installation	at vator in lag
lele Finish pump installation	at KAFB 106249
1030 AVVINE BAUK At FIELD TRAVEN	/
)
K.M.	

RILEY WITTER Nam

2. O Ne Reviewed By

Signature

026

Reviewed Date

ROLE: 5540	DATE: 2/24/21
WEATHER: Clear, H: 590	WELL ID: 106252
1. ONSITE PERSONNEL (including subcontracto Name	Organization
B. Boskisch	EA - Site Manager/Supervisor
M. M-Vey	EA - Site Health and Safetly Office
TM	6-
J. Messenger	
Forrest Chattin	
Lloyd Mahaffey	Cascade
Mark Green	
2. OPERATING EQUIPMENT	
ARCH Srilling ric	compressor, fork lift
5 11	
2 DAILY SUMMARY (include OC complex collect	
	ted, deviations from plans, converstations with the public and nd problems encountered and remedies applied)
- Drilled to Za	oo' with 1318" casing
	11 3/4 " 6asing to 200'
- Tripped in d	rill pipe to 200'
- Pulled aut 13	37- "
- 10/122 207 10	is casing
	hm
	Ar
4. WORK PERFORMED (Indicate time, and descri	iption of work performed by prime and/or subcontractors)
0642 M. Mary 22	Tite
100 F. Chattin Gal	I. Massager on Tite Lloyd Mahattay on Site
0715 Safety meet	
)
Chry	DQCR Page 1 of 2
Reviewed by:	Reviewed date: 5-25-
V	

DATE: 2/24 121 4. WORK PERFORMED (Continued) 0730 ri OF 14 10 N:11 00 MAD 1408 00 113/4 1420 Ko JE +7 77 1. 8 10 316 1633 the 3 +6, reholo 1640 Lasia snett; 1340 off EA 5

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Miles Name M<V

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 5-25-21

Appendix C Data Quality Control Records

Page 135 of 202

Daily Field Activity Log

DATE: 02 24 202

PROJECT NAME/NO .: KAPB USOL 030

	ONSITE PERSONNEL
NAME	ORGANIZATION
RIPEM W	Ittler, Rachel Hobes, Justin Fitch Sundance
10 NO	sundahoe
0	
	SUMMARY OF DAILY ACTIVITIES
	GIW rampling
	kev
	WORK PERFORMED
0800	
0825	Amive at tield trailer/ prep for day
1030	Go to Matheson [Act] SWS
1150	arrive balt to field traver
1215	arrive at KAPB 106249
1350	Sample KAPB 106249
1500	getile
11030	start packing for shipping 1
1730	leave field trailer for the day.
0.10.11	
KIKU V	VITTEN KILLYAAN
Name	Signature
Dal	
Kach	el Alolilo 3.4.2021
Reviewed B	Y Reviewed Date

	Keld, windy WELL ID: 106252 tractors and government employees)
Name	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. Mary	EA - Site Health and Safetly Office
J. Messenger	FA
Forcest Chattin	
Lloyd Mahaffey	Cascade
Mark Green	/
OPERATING EQUIPMENT	~
	Ladvanced 11 314" casing
357 Ft bg	5
357 ++ bg	5
<u>357 ++ bg</u>	5 An
357 ++ bg	5 An
357 ++ bg	5 An
357 ++ bg	5 An
	In
. WORK PERFORMED (Indicate time, and c	description of work performed by prime and/or subcontractors)
WORK PERFORMED (Indicate time, and c D655 EA, Lascude	description of work performed by prime and/or subcontractors)
WORK PERFORMED (Indicate time, and c 0650 EA, Lascude 0710 Safety meet.	description of work performed by prime and/or subcontractors)
4. WORK PERFORMED (Indicate time, and c 0655 EA, Lascude 0710 Safety meet.	description of work performed by prime and/or subcontractors)
WORK PERFORMED (Indicate time, and c 0650 EA, Lascude 0710 Safety meet.	description of work performed by prime and/or subcontractors)

Appendix C Data Quality Control Records

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project 62735DM02	2
Daily Quality Control Report – Non-Construction	

	DATE: 2/25/21
. WORK P	ERFORMED (Continued)
0815	Back at Scilling site. Mark ceplasing
	bolts on the hammer at the endone hose
	Mark has to reweld the taphand
	Walding completed. To seeing back up.
	Start drilling , advancing 113/4" casing
1135	Problem with the compressor backing
	for issue to repair.
1216	Santingo Gallegos (VSAKE) on site
	Comparson repaired Continue Scilling
	Santingo Gullingos off site
	Ben Monyyad (JSALE) on site ALT pasite to deliver op hard top solloof
	and pick up full open dap rall-aft
1626	Eastande danse drilling for the day. Cascale
	Sidat know they were installing a 2"
	piezemeter so they need to head anothe
	the year and Seternine it they have the
	right pipe to boild the wall (the
	Clean up site, service for the night.
	Cases le ste site
715	EA off site
	hu
	Art

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Milke MEN

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 5-25-2 (

Daily Field Activity Log

1

DATE: 2.25.21 PROJECT NAME/NO .: 0501-030

	ONSITE PERSONNEL	
NAME	ORGANIZATION	
Rachel Hobbs	Sundance	

SUMMARY OF DAILY ACTIVITIES

2:25.21 We	ell Development	

WORK PERFORMED 1010 250 700 DISCUSS WINC 50 hazove 4Dtan bottom A100 2900 Re n bay ma DIAI mple NPC 930 á DOCK over Divids MON 1300 WORK 40 restart winds have confi oclow ppe Suraina Beain nat naalh 2100 Mell & wolume. De 440 4 ide not place due Will Return pundo to wind complete pumping morron Rachel Hobb Name Signature Reviewed By

Reviewed Date

ROLE: 5540	
WEATHER: Partly claudy	
1. ONSITE PERSONNEL (including so Name	ubcontractors and government employees)
	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. Mavey	EA - Site Health and Safetly Office
	E A
J. Messenyer	-64
Forrest Chattie	· · · · · · · · · · · · · · · · · · ·
Gloyd Mabuffe) Casrade
Mark Grass	/
2. OPERATING EQUIPMENT	
ARCH drilling ri	's, compressor, fork lift
	nples collected, deviations from plans, converstations with the public and
	nples collected, deviations from plans, converstations with the public and nployees, and problems encountered and remedies applied)
government em	nployees, and problems encountered and remedies applied)
	nployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	nployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; I/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; I/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr; 1/e d = 527 Ft b	ployees, and problems encountered and remedies applied)
government em - Dr: I/e & = 527 FF b - W; II TD	and advanced 11 ³ /4" saving to gs the hole on Monday
government em - Dr: I/e J = - Dr: I/e J = - W: II TD 4. WORK PERFORMED (Indicate time	ployees, and problems encountered and remedies applied) advanced 11 ³ /4 ⁴¹ serving to g5 t6 ho (e on Monday A A and description of work performed by prime and/or subcontractors)
<u>government em</u> <u>- Dr: IIed a</u> <u>527 F4 b</u> <u>- W:II TD</u> <u>4. WORK PERFORMED (Indicate time</u> 0700 <u>54</u> , <u>69 760</u>	ployees, and problems encountered and remedies applied) and and reacced 11 ³ /4 ¹¹ serving to gs the hole on Monday A A and description of work performed by prime and/or subcontractors) Je on site
<u>government em</u> <u>- Dr: IIed a</u> <u>527 F4 b</u> <u>- W:II TD</u> <u>4. WORK PERFORMED (Indicate time</u> 0700 <u>54</u> , <u>69 760</u>	ployees, and problems encountered and remedies applied) and and reacced 11 ³ /4 ¹¹ serving to gs the hole on Monday A A and description of work performed by prime and/or subcontractors) Je on site
<u>government em</u> <u>- Dr: IIed a</u> <u>527 F4 b</u> <u>- W:II TD</u> <u>4. WORK PERFORMED (Indicate time</u> 0700 <u>54</u> , <u>69 760</u>	ployees, and problems encountered and remedies applied) and and reacced 11 ³ /4 ¹¹ serving to gs the hole on Monday A A and description of work performed by prime and/or subcontractors) Je on site
<u>government em</u> <u>- Dr: IIed a</u> <u>527 F4 b</u> <u>- W:II TD</u> <u>4. WORK PERFORMED (Indicate time</u> 0700 <u>54</u> , <u>69 760</u>	ployees, and problems encountered and remedies applied) advanced 11 ³ /4 ⁴¹ serving to g5 t6 ho (e on Monday A A and description of work performed by prime and/or subcontractors)

Reviewed by:

DQCR Page 1 of 23

Reviewed date: 5-25-21

4. WORK P	ERFORMED (Continued)
	Start Scilling
0830	Tag water level in KAFB-106230
	[DTW = 448. 80 6to-]
1525	Act on site to pick up full open top
	rollooff with 17 yd of soil.
	[Stenail # 104059; Painte] # ACT 2052]
1555	Drilled and advanced 11 314" casing to
	527 ft bgs.
1600	Spake with B. Backish - piezometer
1	should be set in the source gravel Zone
	from 515 - 525 ft bys. Casaude will reed
	toget mare pipe from the lagdown
	yard to drive to a deeper depth. We
	will also need to sheak into getting
	another hard top roll-off from Act,
	as the one we have an site is full.
1610	J. Messenger OFF site to open the
	IDW yord for ACT.
1613	Act will have to get another hard
	top roll-off ready which will take
	4 couple of hours. Spoke with
	Mark Green and he said we waved
	To the hole on Manday.
1620	
	Searcing the hole and site for the
1640	Act an site to pick up hard top roll-aft

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2 3

Reviewed date:

5-25-21

Appendix C Data Quality Control Records

	DATE: 2/26/21
	ERFORMED (Continued)
	and take it to the IPW yard, 10yd wat said
	and take it to the IPW yers. 10yd wet goin [Painted stepping # AET 2057]
720	EA, Lascade off site
	1
	Aut
	_/ //
	-/ Y
	- Y _ /
/	/
00117710	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M; Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Reviewed date: 5-25-21

October 2021

Daily Field Activity Log

DATE: 2.26.21 PROJECT NAME/NO .: USOI-030 KAFB BFF

ONSITE PERSONNEL			
NAME	ORGANIZATION		
Rachel Hobbs	Sundance		
	SUMMARY OF DAILY ACTIVITIES	_	

2:26:24	Well Development
÷.	

	WORK PERFORMED
0630	Arrive at trailer, load tack
0.700	Arrive at KAFB-106250
0710	Tailgate
0715	Beatin Dump install
0350	pump installed, cannot get water level.
	Tape hung up on pumpt tubing
0905	Produce H20. Hogo 1.9 gpm.
1130	Complete pumping, begin to remove pump.
1230	clean up Demote J
	2
	2
	26
-	2 th
	1 A
	Dle
/	
1	
Rac	the Hobbs Rachel Holl
Name	Signature
	ACALLA
	3/5/01
Reviewed	Reviewed Date
(eviewag	Reviewed Date

ROLE: 554/5	DATE: 3/1/21
EATHER: <u>Clear</u> , cold, H	<u>47</u> ² WELL ID: 106252
ONSITE PERSONNEL (including subcor	ntractors and government employees)
ame	Organization
B. Backisch	EA - Site Manager/Supervisor
M. M-Vey	EA - Site Health and Safetly Office
J. Messenger	EA
Forrest Chattin	~
Lloy J Mahaffay	Cuscade
Mary Green	
OPERATING EQUIPMENT	
4.7 1	
ARCH Scilling rig	compressor, fork 1: Ft
0 0	
DAILY OUR ADV () 1 DO	
	collected, deviations from plans, converstations with the public and
	ees, and problems encountered and remedies applied)
- Drilled and	advansed 11314" captag to
538 ft bgs.	
	reads were either popped
or the ca	ing braken during well
	on. 2" well casing was
	dok the barehore, Gaikad.
	the inside at the 11314"
	the moraing to Jetermine
where the	15500 /ins.
	m
WORK PERFORMED (Indicate time, and	description of work performed by prime and/or subcontractors)
640 M. M-Vey on	Site
645 Lascade po	
655 J. Messeng	er on site
710 Safety mee.	ting

DQCR Page 1 of 2 3

Reviewed by:

Appendix C Data Quality Control Records

Reviewed date: 3-9-21

	DATE: 3/1/21
4. WORK P	PERFORMED (Continued)
0742	Ast an site to Seliver hard top roll-off
	# 4173-1
0800	Cascade changing top seal on the hannel
	Start Scilling
0940	Drilled and advanced 11 3/4" caring to
	538 ft bys. Cleaning out borchola, Total
	of 1,000 gal of water removed from the
	borchole; total of Too yal at water
	injecte) into borchale.
	Start tripping well ssreen and cusing
	into the barehole for the piezometer
1150	Satting up the caring jacks
1200	AAA an site to service the parton-patty
1210	Hand to Truman Yard to lord up wall
	materials (sund, besterite, coment)
1345	Back on site with well materials,
	unload
1420	Act as site to proport the free
	liquid in hard top sall-aff # HTB-1
	Mark was voing the Easing jacks to
_	begin remaring 113/4" saying for well
	construction and there was a loud
-	matallic pap. Either the threads
	papped somewhere between two
	joints of laging of the leaving
	broke a men bere Jerre below the post of Tripped

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Milke MEVE Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2 3

Reviewed date: 3-9-21

Appendix C Data Quality Control Records

DATE: 3/1/21 4. WORK PERFORMED (Continued) 2" Nall SECREN 667/- - -Sand 14 F 4 +4 1453 Zi pinp 4 tra 1535 free 1: 1604 610 1625 site 1. 1710 40 044 5 MEVE 5160

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mi 1×v Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Reviewed date:

3-9-21

KAFB-106252 1063 Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring -62599DM01-fr Daily Quality Control Report - Non-Construction ROLE: 5540 DATE: 3-2-2021 WEATHER: an 11 1. ONSITE PERSONNEL (including subcontractors and government employees) Name Organization netesch EA - Site Manager/Supervisor lema MitceMeVa EA - Site Health and Safetly Office ha Cascada Arno y dostil Flan N ò l USACE To ego s 2. OPERATING EQUIPMENT Team #1 Team #2 YSI Professional Plus 15K101398 Spare YSI Professional Plus 15K101396 YSI Professional Plus 15L100541 Wh0003 Wh0001 Wh0002 MiniRAE 3000 592-915778 MiniRAE 3000 592-915790 MiniRAE 3000 592-915579 Wh0005 Wh0004 Wh0006 Hach 2100Q 15100C045034 Hach 21000 15100C044633 Hach 2100Q 15100C045025 Wh0008 Wh0009 Wh0007 Solinst Water Level Meter 253054 Solinst Water Level Meter 253053 Solinst Water Level Meter 253056 -3. DAILY SUMMARY (include QC samples collected, deviations from planning documents, converstations with the the public and governmental employees, and problems encountered and remedies applied) mor bro me 4. WORK PERFORMED (Indicate location, time, and description of work performed by prime and/or subcontractors) 0645 arrive ONG 0715 afet brie Arnald 0730 Cascade anwes 0745 USACE anwes DQCR Page 1 of 2 3

Reviewed by:

Appendix C Data Quality Control Records

Page 147 of 202

Initials:

Reviewed date: 3-9-21

Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 627350mo 2 Daily Quality Control Report - Non-Construction

4. WORK PERFORMED (Continued) 3-2-2021 DATE: 0 5 SCA ta Se camero 0827 that the -6e unale 91 2 0840 5-F 27 2843 0853 0930 Th 50 ba 44 the 1000 two The foret 1100

1243 Back at the Scilling site. 5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications above.

ille 6 Name

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 23

Reviewed by:

Initials:

Reviewed date: 3-9-21

Appendix C Data Quality Control Records

October 2021

263

3 of 3

Kirtland AFB Bulk Fuels Facility - Data Gaps Drilling Project -- 62735DM02 Daily Quality Control Report - Non-Construction

DATE: 3/2/21 4. WORK PERFORMED (Continued) Tripping grapple into 11314" Laring 251 160 ft bto 1404 1able fork broke heal' 1517 5141 SO 6.1M 1640 W:11 Lasin 1645 500 an 50 730 +Ge 2211 h. +40 in the morning P 1745 1750

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mille Name

Signature

3053

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

Appendix C Data Quality Control Records

Reviewed date:

-21 October 2021

3-

Page 149 of 202

Kirtland AFB Bulk Fuels Facility Vadose Zone Coring -- 62735DM02

Daily Quality Control Report - Non-Construction

ROLE: 53/43 WEATHER: Slear, Sunny, H: 610

DATE: 3/3/21 WELL ID: KAFB-1061N2 M 106252

	ontractors and government employees)				
Name					
B. Bockisch	EA - Site Manager/Supervisor				
M. M-Yey	EA - Site Health and Safetly Office				
Forrest Chattin					
Lloyd Mahaffey) Kaszade				
Mark Green) Laszade				
Bryan Nydoska					
2. OPERATING EQUIPMENT					
Fork lift					
3. DAILY SUMMARY (include QC samples	s collected, deviations from planning documents, converstations with the				
he public and governmental employees,	and problems encountered and remedies applied)				
- 11314"					
	ag separated again in the same				
locationa	+ 135 ft bloc while using				
	eles. The grapple somehow				
released :	So Daly the casing jacks were				
	2 the knoing resulting in the				
threads po	pping egera.				
- Beserence) -	saring buck together and				
sonfirmed	mity the camera.				
	the				
. WORK PERFORMED (Indicate location	, time, and description of work performed by prime and/or subcontractors)				
2645 EA, Cascado	e on site				
1720 Safety mee					
0744 Setting up -					
2803 Spoke with	Bryan Nydonke (Casaade) and				

Reviewed by: ______ Initials: _____ Appendix C Data Quality Control Records Page 150 of 202

Reviewed date: 3-7-27 October 2021

1 WORK	DATE: 3/3/2/
4. WORK F	PERFORMED (Continued)
	he said that they have desided, since the
	casing has been sitting in the hale for Ja
	long, that they are going to pull the
	grapple out at the bate casing and rig up
	to Saive the cusing six inchasor so to
	lossen it up in the hole. Once done, they
	will trip the grapple back into the saing
_	and using the casing jacks and the new
	tool, begin tripping out the 11314" casing
	to balan the location where the threads
	papped. They will then begin drilling and
	driving casing, replacing the two joints
	where the threads papped, to TD.
0850	Rigged up and drave anding 6" to looses
	it up in the borabole.
0852	Reinstalling grapple,
0912	Rigging down, setting up caring jacks
0445	Begin pulling casing.
1140	Loss metallic pap while pulling the
	sasing. Mark believes that the casin
	separated at the thready again
	below the grapple. Will pull the
	grapple and go buck in with the
	samera to determine the location
	of the separation.
1318	Brugo Nyesske on site with the comen

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mike Mive

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2/3

Reviewed date:

2-21 3

Appendix C Data Quality Control Records

DATE: 3/3/21 4. WORK PERFORMED (Continued) 1330 tting 10 at the same location 24 JERGR 35 ffset 15 Me 5 be SEVENI torethe 1550 SSSE 64 +Ge + 0+6 Hin grapple 10 shillin 10 For the SELVE 54 SFF 1735

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

MEV. M, Name

Signature

3of

EA Engineering, Science and Technology Inc., PBC

N Reviewed by:

Reviewed date:

3-9-21

Appendix C Data Quality Control Records

DQCR Page 2 of

Date bugs Drilling Project Kirtland AFB Bulk Fuels Facility Vadose Zone Cortifg - 62735DM02

ROLE: 5540	Daily Quality Control Report – Nor	DATE: 3/4/2/
EATHER: Cloudy, ali	ght wind, H: 56°	WELL ID: KAFB-1061N3 10625
	g subcontractors and government em	ployees)
ame	Organization	
B. Bockisch		
M. Mayey	EA - Site Health and	Safetly Office
Forrest Chat		
Lloyd Mahat		
Mark Green) < 400	cade
Bayan Nydo:	SKe /	
OPERATING EQUIPMENT		
OPENAIING EQUIPMENT		
1 1	and the second second	
4RCH drilling	rig, choing jac	ks, compressor,
Eack lift	5	
1-119 19		
and the second second		
DAILY SUMMARY (include QC s	amples collected, deviations from pla	anning documents, converstations with the
	loyees, and problems encountered an	
- Pulled	20'05 11314" 60	sing from the
borch		
porch	ale.	
	0 . 1	
	T	
	A	
	1	
	V	
/		
WORK PERFORMED (Indicate lo	ocation, time, and description of work	performed by prime and/or subcontractors)
645 ER, 6436	ade on site	
715 Safety a	reeting	
737 2:	June - 11	
- igging	dawn, satting	up sarry jacks
130 Casing	anks in place,	rigging buck up.
Ans	DQCR Page 1 of 2'3	9.71
viewed by:	Initials:	Reviewed date: 3-9-22

Page 153 of 202

October 2021

DATE: 3/4/21 4. WORK PERFORMED (Continued) 0820 tralum + 1908 Dath forms Sni 1 0912 + lisse be hen 50 50 50 for One 660 over 14 01 46 0 10 1he w:11 apla not 0920 Canoving Sus va. 13 0945 010 030 SEP previously (1354+ 6tor) . 45 Sarawi

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

7: Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2 3

Reviewed date:

3-9-21

DATE: 3/4/21 4. WORK PERFORMED (Continued) back together 112 ther as 11 3/4 oF 1140 opla me 12 1202 Jettin. 213 1240 lowd Up Settin 1330 Up to 0. 416 1725 25 asing out 60 1730 site and + 4. print fo 1745 255 5.t. EA 260

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mile

Signature

3=f3

EA Engineering, Science and Technology Inc., PBC

Reviewed by: ____

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Reviewed date:

2

October 2021

-21

Daily Field Activity Log

Page 1 of

	-75.03	(* 100	A	
DATE:	03	104	2021	

KAFB US 01030 PROJECT NAME/NO .:_

ONSITE PE	RSONNEL
NAME	ORGANIZATION
Riley Wittler, Rachel Holdos, Justin Fitch	Sundance
· · · · · · · · · · · · · · · · · · ·	
SUMMARY OF D	AILY ACTIVITIES
pump installation	
GW sampling	
iow sampling	
WORK PER	FORMED
0800 arrive at KAPB	
D&30 arvive at KAPB 100250	
1000 Install PUMP	
1125 Start purging KAFB 106250	
1230 Sample 1010250 3 IDW JOH	
1330 Finish sampling KAPB No2	
	King coolers
1500 go to mattheson I Fed EX	NING COOCHS
	theson
1630 Finish at field Trailer	1100000
- Ar	
<u>IG</u>	
/	
Riley WITHEr	$\mathcal{A}_{\mathcal{A}}(\mathcal{O}_{\mathcal{A}}) = \mathcal{O}_{\mathcal{A}}(\mathcal{O}_{\mathcal{A}}) = \mathcal{O}_{\mathcal{A}}(\mathcal{O}_{\mathcal{A}})$
Name	Signature HANNIA
	Signature ()
Justin Fitch	315/71
Reviewed By	
Nevieweu by	Reviewed Date

Reviewed By

ROLE: <u>35Ha</u>	DATE: 3/5/2/
WEATHER: Sunny, H: 60	
I. ONSITE PERSONNEL (including subco	ntractors and government employees)
Name	Organization
B. Bo-kizak	EA - Site Manager/Supervisor
M. Markey	EA - Site Health and Safetly Office
Forrest Chattin	
	Cascade
Lloyd Mahaffay	
Maria Green	/
2. OPERATING EQUIPMENT	
11.5	
- Pulled 120'	collected, deviations from plans, converstations with the public and ees, and problems encountered and remedies applied) $of 11^{3}ry^{\prime\prime}$ casing from the
	including the two 10 pints
with the	damaged threads.
	A
	An
	-H
_	
WORK PERFORMED (Indicate time, and	I description of work performed by prime and/or subcontractors)
0650 EA, Laskad	e on site
710 Safety Mee	ting
1135 Have Dulla	120' of 113/4" Easing from
in ave pulled	I a sing trom
	DQCR Page 1 of 2

Reviewed by:

Reviewed date:

3-9-21

	DATE: 3/5/21
. WORK P	ERFORMED (Continued)
-	the barebale. The grapple isn't biting on
	the inside of the casing anymore 50
	Cascade will trip the grapple ast of
	the casing to assess the problem
1330	Grapple is no longer working. Instead
	of wasting time trying to fix it, Mark
	has decided to try to pull the last
	two joints with the rig.
1430	Last two 10 joints pulled successfully
	With the rig. A tatal of 140' of 113/4"
	casing pulled from the borchole,
	including the tre joints with the
1440	Remaring subs from grupple, loading
	Ensing pote pipe truck.
1645	Heading to the Trumon Yard to valead
	pipe, Easing, grapple, Will decon the
	grapple so it can be picked up in the
	macainy
1720	Leaving Tramas Yard.
	1
	2112
	11-
/	· ·
	/

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M:Ke Name MSV.

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 2

Reviewed by:

Page 158 of 202

Reviewed date:

October 2021

3-9-21

ROLE: 5540	DATE: 3/6/21
WEATHER: Jungy, H: 620	WELL ID: 106252
1. ONSITE PERSONNEL (including subcontract	tors and government employees)
Name	Organization
B. Backisch	EA - Site Manager/Supervisor
M. MEYey	EA - Site Health and Safetly Office
Forrest Chattin	
Lloyd Mahastay) Caskade
Mark Green	/
2. OPERATING EQUIPMENT	
ARCH drilling rig.	rasing jacks; complessor.
fork lift	rasing jacks; compressor,
2 DAILY CHAMA DY Gratude OC complex calls	and desitations from store and store with the sould be and
[24] 사람이 영상 영문 이 것은 것은 것 같은 것은 것을 가지 않는 것 같은 것을 하는 것을 가지 않는 것을 것을 하는 것을 했다.	cted, deviations from plans, converstations with the public and and problems encountered and remedies applied)
- Drilled to	
- Pr. (123 13 1	/ 03 0 93
	by .
	H
	V
4. WORK PERFORMED (Indicate time, and desc	cription of work performed by prime and/or subcontractors)
0700 EA, Gascale D	2 site at Traman Yard
0713 Safety meeti.	79
0735 Stabbing cas	ing, louding up equipment
to start redr	ing, loading up equipment

Reviewed by:

MV.

DQCR Page 1 of 2

21 9-3-

WORKP	EREORMED (Continued)
	ERFORMED (Continued)
1035	Back at the dilling site; setting up to
-	drill.
1215	Tripping in bit and drill pipe.
	Start drilling.
	Hummer brake, Hending to Truman
	Yard to piak up the space and bring
	it back to install.
1452	Back at the Scilling site with the
	hanner Will trade out hanners
552	Hammer installed. To reduce the amount
	of water generated tomerrow, Generate
	has decided to stop drilling today and
	require in the marring. The more we
	drill tonight, the more open hale to
	Fill up with water overnight, which
	will generate a higher wasta
	Stream to mercow - both cuttings
	and water.
1605	Drilled to 480' bys. clean up and
	sease the site for the sight will
	Jrspoff hummer at Truman Yard and
	wait for Jesurity
730	EA, Lascade off site,
	An
_	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

4 Name

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 2

Reviewed date:

21 3

Reviewed by

Appendix C Data Quality Control Records

Page 160 of 202

ANALTE PERSONNEL I	WELL ID: 106232
 ONSITE PERSONNEL (including subcont Name 	tractors and government employees) Organization
	EA - Site Manager/Supervisor
B. Boekisch	
M. Miley	EA - Site Health and Safetly Office
Forrest Chattin	X
	Cascade
bloyd Mataffey	1040402
Mark Green	1
2. OPERATING EQUIPMENT	
ARCH Drilling ring,	Sazing jacks, compressor, fork
1:54	Sazing jasks, Compressor, fork
1171	
	collected, deviations from plans, converstations with the public and
	es, and problems encountered and remedies applied)
	TD of 538 bas
- Installed	2" PVG for piezometer, Sale
C. C. C. 2.1	,,, _,, _
515-525'	
- Installas	4"PVG for deep well,
bottom of	2'sump set at 467'bys
- 10/22 Jun	1 planad from 538-539.9 by:
	a pelleta places from 509.9-
- 1/4" beatonis	
- 1/4" bentanin 504.8' 695	
- 1/4" beatonis	
- 1/4" beatonia 504.8' bgs - 10/20 silice	sund placed from 504.8-
- 1/4" beatonia 504.8' bgs - 10/20 silice	
- 1/4" beatonin 504.8' bg5 - 10/20 50/100 468' bg5 4. WORK PERFORMED (Indicate time, and o	description of work performed by prime and/or subcontractors)
- 1/4" beatonin 504.8' bgs - 10/20 silie 468' bgs 4. WORK PERFORMED (Indicate time, and o 0850 EA, Caseade -	description of work performed by prime and/or subcontractors)
- 1/4" beatonin 504.8' bgs - 10/20 silie 468' bgs 4. WORK PERFORMED (Indicate time, and o 0850 EA, Cascade - 0900 5afety meet	description of work performed by prime and/or subcontractors)
- 1/4" bentanin 504.8' bys - 10/20 silie	description of work performed by prime and/or subcontractors)
- 1/4" beatonia 504.8' bgs - 10/22 5: 1:20 468' bgs 4. WORK PERFORMED (Indicate time, and o 0850 EA, Cascade - 0920 545-ty meet 0926 Start drilling	description of work performed by prime and/or subcontractors) = n side ing
- 1/4" beatonia 504.8' bgs - 10/22 5: 1:20 468' bgs 4. WORK PERFORMED (Indicate time, and o 0850 EA, Cascade - 0920 EA, Cascade - 0920 Start drilling	description of work performed by prime and/or subcontractors)
- 1/4" beatonia 504.8' bgs - 10/20 5: 1:20 468' bgs 4. WORK PERFORMED (Indicate time, and o 0850 EA, Cascade - 0900 5afety meet 0926 Start drilling	description of work performed by prime and/or subcontractors) = n side ing

Appendix C Data Quality Control Records

V

DATE: 3/7 /21 4. WORK PERFORMED (Continued) 1120 AG Tite 10 K up 00 0 20 +4 IDN sttings, 50 11 1147 bor 10, R 9 220 2. 1250 300 2 130= 3 405 70 0. 5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Name

Signature

EA Engineering, Science and Technology Inc., PBC

M

DQCR Page 2 of 2 3

21 Reviewed date:

Reviewed by:

Appendix C Data Quality Control Records

	DATE: 3/7/21
. WORK P	ERFORMED (Continued)
	IDW yard.
1440	10/20 silica sand placed from 538-509.9'
	bgs (30 bags)
512	1/4" bentanite pellets placed from
_	509.9'- 504.8' bgs (6 buckets)
1600	12/20 Silian sand placed from 504.8'-
	468' by= (41 bag=)
1626	Tripping in 4" PVC casing for deep
	Well to 467'bgs (batton of 2'sump)
710	Cleaning up site and securing for the
	night, fueling rig and compressor.
730	Gascade off site
740	EA aff site
	/
	0
	112
	Λ
	1
	/
-	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

< V Name M

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 2

Reviewed by:

Appendix C Data Quality Control Records

Reviewed date: 3-9-21

ROLE: 55HO	DATE: 3/8/21
VEATHER: Claudy, H: 650	WELL ID: 106252
. ONSITE PERSONNEL (including subcont	ractors and government employees)
lame	Organization
B. Boeldisch	EA - Site Manager/Supervisor
M. MEVer	EA - Site Health and Safetly Office
Forrest Chuttin	
Lloyd Mahaffey	Cascade
Mark Green	
The second	
OPERATING EQUIPMENT	
- Installed de	ollected, deviations from plans, converstations with the public and es, and problems encountered and remedies applied) cp filter pack from 468-423' bg =
	nite chip seal from 423 - 418 bys,
hydrated	
	11- + filter pack from 418-388.4
bgs	
- Installed bea	tonite chip seal from 388.4-
358'b95, bys	Irated
r Set up to b	"so 's growt; my in the morning
	fui
WORK PERFORMED (Indicate time, and o	description of work performed by prime and/or subcontractors)
1650 EA, Lusande	on site
715 Safety meet	29
735 Resumence	
	Sand plused from 468- 423 b.
	DQCR Page 1 of 2

Reviewed by:

Reviewed date:

3-

DATE: 3/8/21 4. WORK PERFORMED (Continued) Will Settly +61 Swa 6 0940 09 031 741 418 226 613 347 388.4 353 De te, etc. 431 40 1637 1:00 F M

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date:

21 3-9

Appendix C Data Quality Control Records

Dany Quanty	Control Report - Non-Con	Proj 62735 DM02- [onitoring - 62599 DM01 Jm struction
ROLE: SSHO	-	DATE: 3-9-2021
NEATHER: Overcast/Mild		
. ONSITE PERSONNEL (including subcontracto	ors and government employee Organization	es)
Bernie Bostisch	EA - Site Manager/Supervisi	or
FAR Morse Mite Ma Very	EA - Site Health and Safetly	Office
Josh Messenger	EA GEOLOSIST	
Markbreen		
Forrest Chalden	10	
Llord Mahaffe y	1 ascade	-
Bryant Jours		
(JUN2) [
OPERATING EQUIPMENT		
Team #1	Team #2	Spare
h0003 Wh0001	ssional Plus 15K101396	YSI Professional Plus 15L100541 Wh0002
niRAE 3000 592-915778 MiniRAE 3000 592-915778 MiniRAE 30005	3000 592-915790	MiniRAE 3000 592-915579
ch 2100Q 15100C045034 Hach 210	00151000044633	Wh0006
10008 Wh0009	V	Wh0007
	ater Level Meter 253053	Solinst Water Level Meter 253056
DAILY SUMMARY (include QC samples collecte public and governmental employees, and prol	ed, deviations from planning d	locuments, converstations with the
public and governmental employees, and prol	blems encountered and remed	dies applied)
- Tripped out al	Lof the 113,	"" I will
- Placed growt		
- Pland chips f	10 m 34 - 28	= 16
- TOPPOLDEC b	201 01 20	DGS
- Topped off b.	al li	the second
for the	2 nallad an	I deep 4" wells
for grout ins	trusionia	one found
- EutoFf 4" We	ells and pier	20 meter below
JLADE		
- Cleaned up sit	te, novela	llesuioment
	in to Trum	An Yards
ORK PERFORMED "	description of work performe	ed by prime and/or subcontractors)
ORK PERFORMED (Indicate location, time, and		
ORK PERFORMED (Indicate location, time, and 10 Safety Drief		
ORK PERFORMED (Indicate location, time, and 10 Safety Drivef 20 Site set up for	grouting -	Took Mark to 106248
ORK PERFORMED (Indicate location, time, and 10 Safety Drief	growthing -	Took Mark to 106248

0....

Appendix C Data Quality Control Records

Reviewed by:

DQCR Page 1 of 73

Page 166 of 202

Initials:

Reviewed date: 5-25-2 [October 2021 Kirtland AFB Bulk Fuels Facility GWTS Expansion/Monitoring - 62735 DM0 2 Daily Quality Control Report - Non-Construction

AFB -10625 -9-2021 DATE: 4. WORK PERFORMED (Continued) 3/4 1130 5 1220 0 000 1235 645 4 1256 hallow 4" Well 1300 1312 abin 1401

1612 Finished Leaning so the stee loading 5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

AID

Initials;

Mille ME Name

6.

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

1520

DQCR Page 2 of 23

Reviewed date: 5-25-2 (

ni

Appendix C Data Quality Control Records

October 2021

2-53

30F3

A loss of the second second	DATE: 3/9/21
WORK PERFORMED (Con	
mater	ials and equipment to take to the
1 Cong	a Yard. Called Southwest Safety
To Pic	ik up unnecessary signs.
	hed an leading.
720 60000	Je stf 5.te.
1730 EA 261	C Site.
Λ	~
1	
· /	
Act	
1 /	
_/	
ł	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Milke NE

Signature

3453

EA Engineering, Science and Technology Inc., PBC

Reviewed by

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Reviewed date: 5-25-2 (

ATHER: Sunny wind	bcontractors and government employees)
ne	Organization
3. Bockisch	EA - Site Manager/Supervisor
M. M-Vey/E. M	erse
M. M-Vey/E. M.	
IL M. L. CE.	
ISYS TIMUNATIO	y) Eascade
Lloyd Markaffe Mark Green Bryant Jones	
Bryant Janes	. /
1	
OPERATING EQUIPMENT	
Steameleans	
218am 2189.0X	
. DAILY SUMMARY (include QC san	nples collected, deviations from plans, converstations with the public and
covernment on	anlowers and problems encountered and remedies applied)
covernment or	anlowers and problems encountered and remedies applied)
covernment on	anlowers and problems encountered and remedies applied)
nevernment on	nples collected, deviations from plans, converstations with the public and nployees, and problems encountered and remedies applied) an equipment, assemble casing, service
nevernment on	anlowers and problems encountered and remedies applied)
nevernment on	anlowers and problems encountered and remedies applied)
nevernment on	anlowers and problems encountered and remedies applied)
nevernment on	anlowers and problems encountered and remedies applied)
nevernment on	anlowers and problems encountered and remedies applied)
nevernment on	anlowers and problems encountered and remedies applied)
nevernment on	anlowers and problems encountered and remedies applied)
novernment on	anlowers and problems encountered and remedies applied)
covernment or	anlowers and problems encountered and remedies applied)
nevernment on	anlowers and problems encountered and remedies applied)
government en Steam cleo equipment	nployees, and problems encountered and remedies applied)
government en Steam clea equipment	ne, and description of work performed by prime and/or subcontractors)
government en Steam cle equipment 4. WORK PERFORMED (Indicate tim 0645 Cascade a	ne, and description of work performed by prime and/or subcontractors)
government en Steam cle equipment 4. WORK PERFORMED (Indicate tim 0645 Cascade a	ne, and description of work performed by prime and/or subcontractors)
A. WORK PERFORMED (Indicate time 0645 EA so of the	e, and description of work performed by prime and/or subcontractors)
A. WORK PERFORMED (Indicate time 0645 EA 2024 0725 Safety	e, and description of work performed by prime and/or subcontractors)

	DATE: 3/10/21
. WORK P	ERFORMED (Continued)
	pipe, and anzing. Subs will be aiming on
_	site to service rigand compressor,
-	change tires on compressor, and perform
	muintenages on other equipment as
	necessary.
0848	Purcell on site to change tices on the
	Compressor.
202	Rush Truch Centers (NMDor inspector) on site
1212	Purcell off site
	Earl Marse on site, M. MEVey aff
	Site
1320	Rush Truck Centers off STE
1400	Cascade assemblying short joints of 1134" pipe. Mark Green
1. 0	arrives back on-site, Working on compressor electrical
1600	Cascade continues to assembly casing joints and service
1745	equipment. Evenjone off-site
1/15	Cveryone off-SII
	bri
/	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

DQCR Page 2 of 2

-2 5-7

ROLE:SHO	DATE: 3-11-21
WEATHER: 100 605(°F); clear; br	eezy WELLID: KAFB-10625.
. ONSITE PERSONNEL (including subcontractor	
lame	Organization
15. Bockisch	EA - Site Manager/Supervisor
A. Messenger	EA - Site Health and Safetly Office
E. Chattin / B. Jenes	Cascada
Munal D. / Hugal T	CIE
F. Cordeva/farmandez 5.	116
A	116
A. Suman / S. Gridde	CCC
OPERATING EQUIPMENT	
-	
Forkeliff, concrete sow	
/	
. DAILY SUMMARY (include QC samples collecte government employees, and	ed, deviations from plans, converstations with the public and d problems encountered and remedies applied)
	le completed @ KAFB-106252
- We pad that vol	the completed of This Dis 202
\land	
	M
	M
A	M
	M
	M
	M
WORK PERFORMED (Indicate time, and descrip	Detion of work performed by prime and/or subcontractors)
	Detion of work performed by prime and/or subcontractors)
0730 Et ou site	
0730 Et ou site	
0730 Et ou sito	Detion of work performed by prime and/or subcontractors) = 0745 H&S Griefing helt + Cascade Gagen cleaning load will call inspector + let us (2A+Cascade

Brhv Reviewed by: 14

DQCR Page 1 of 2

31 17 Reviewed date:

2

3-11-21 DATE: 4. WORK PERFORMED (Continued) The will be out rector MS 1915 (ovide ho)e securit open 0945 0950 pictures took said 1005 good ê green 10 Long 0952 0758 COA m3 Dector 100 cal 1132 said CCE would 60 onste frades noon 207 complete cal. 1300 collapse scale TC 3.te 1310 site 1355 olles 5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above lessers shun IV Signature

Name

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date:

Appendix C Data Quality Control Records

ROLE: 55140	DATE:	3-12-21
WEATHER: low 603 (OF); partly cloudy		KAFB -106248
I. ONSITE PERSONNEL (including subcontractors and government e	employees)	
lame Organization		
B. Bockisch EA-Site Manager	r/Supervisor	
A. Messenger EA - Site Health an	nd Safetly Office	
B. Bockisch EA-Site Manager D. Messenger EA-Site Health and Lerry M. / Dallas F. HMCC	5	
OPERATING EQUIPMENT		
OPERATING EQUIPMENT		
Hudrovan Farrant		
14 y dro va - Equipment		
B. DAILY SUMMARY (include QC samples collected, deviations from government employees, and problems encount		
		and the second se
- Hydrovac completed (Hydro St Sme	KAFB - 106248	location
Qn		
A		
WORK PERFORMED (Indicate time, and description of work perfor	rmed by prime and/or sub	contractors)
0645 Met HM (6 & Trumen lay down 8706 6ft KAFB-106252 - 0714 arrived 0715 H#S Briefing - 0728 Hyde 0340 Reached depth ~/ hydrovac (14" diameter	10 400 10	
V.	2 FATB-1062	48 to pothole
0715 HAS Bring - 0728 Hyd	hovar began	48 to pothole @ KAFE-106248

K Bran 4 Reviewed by:

DQCR Page 1 of 2

3 Reviewed date:

WORKP	DATE: 3-12-21
	ERFORMED (Continued)
0913	EA + HM/6 of site to Troman faid
3922	Et + HMIG off site to Troman Pard At Troman Yord
9932	EA + HARLE Af site
-	
	Jet .
	/
-/	

5. CONTRACTOR'S VERIFICATION: 1 certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

55RA Name

Signature ſ

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date:

Appendix C Data Quality Control Records

ROLE:	SSHO		DATE:	3-13-21
WEATHER	: high 50 s (F); mostly sunn	4	WELL ID:	3-15-21 KAFB-106252
	PERSONNEL (including subcontracto			
Name	0	Organization		
	B. Bockisch	EA - Site Manager/Supervisor		
	A Messenger	EA - Site Health and Safetly C	Office	
D	S. Messenger anny Moore	Cascade		
1				
-				
		-		
_				
2. OPERAT	TING EQUIPMENT			
Pul	star Rig			
1 001	1 dig			
3. DAILY S	UMMARY (include QC samples collect government employees, ar	ted, deviations from plans, com	verstations w	ith the public and ied)
3. DAILY S	government employees, an	d problems encountered and re	verstations w emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi	b -106252	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of	d problems encountered and re	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of NO 155UES	b -106252	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of	b -106252	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of NO 155UES	b -106252	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of NO 155UES	b -106252	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of NO 155UES	b -106252	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of NO 155UES	b -106252	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of NO 155UES	b -106252	emedies appl	ith the public and ied)
3. DAILY S	government employees, an Swabbed + Bailed KAi - 110 gallons of NO 155UES	b -106252	emedies appl	ith the public and ied)
1 1	government employees, an Swabbed + Bailed KAi - 110 gallons of NO 155UES NO VISITURS	B-106252 White Contrinsized	emedies appl	ied)
4. WORK P	government employees, an Swabbed + Bailed KAR - 110 gallons of NO 155UES NO VISITURS ERFORMED (Indicate time, and descri	iption of work performed by pri	me and/or su	ied)
4. WORK P 064/5	government employees, an Swabbed + Bailed KAR - 110 gallons of NO 155UES NO VISITURS PERFORMED (Indicate time, and descri EX on site - 0-	interproblems encountered and re B-106252 Waste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized	me and/or su	ied)
4. WORK P 0645 0730	government employees, an Swabbed + Bailed KAR - 110 gallons of NO 155UES NO VISITURS PERFORMED (Indicate time, and descri EX on site - 0- Has briefing - 0735	interproblems encountered and re B-106252 Waste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized	me and/or su	ied)
4. WORK P 0645 0730	government employees, an Swabbed + Bailed KAR - 110 gallons of NO 155UES NO VISITORS ERFORMED (Indicate time, and description EA on site - 0- HAS briefing - 0735 Broom up	interproblems encountered and re B-106252 Waste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized Maste contrinsized	me and/or su	ied)

DQCR Page 1 of 2

WORK P	ERFORMED (Continued)
9905	S-Im 0925 Swelbing completed - schip to bail
0944	Begin Gailing
1000	Initial Good had ~ 20 mg/2 fire sand to for
1020	Volumes 1 # 2 had 2 2 mg/L fine sand 500 mg/h sitt on
1022	Cuscade switches to swabbing - 1054 Suching completed, switch to be
1100	Pumped waste to ES steel din - 1115 bailer deployed
1140	Switch beck to swabbing after 4 volumes (40 yel) - 1208 Swabbing comp
1215	Lunch - 1255 of lunch - 1256-1259 pumped waste to during
1300	bailer deployed - 1420 after Il volumes (110 gallons) bailedy
1	all parameters have stabelized and sediment reduced to 0.5 mg/L
1430	perpreter tagged @ 524,3 A TOC: site clean up
	Boom down - Cascade offsite @ 1510
1520	EA 16 site
-	
_	
-/	
/	CTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Name

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 2

Reviewed by: ____

October 2021

ROLE:	SSHO		DATE	3-16-21
	: mid Sos(4); sunny		WELL ID:	KHIB . 106252
1. ONSITE	PERSONNEL (including subcontrac	tors and government employees)		
Name	2.2	Organization		
	13. Beckisch	EA - Site Manager/Supervisor		
	Messenger	EA - Site Health and Safetly O	ffice	
	anny Moors	Cascade	_	
_				
. OPERAT				
0				
Pulst	or Development Rig			
10171	our opping 1 g			
DAILVO				and attack Con-
DAILY S	UMMARY (include QC samples colle government employees, a	cted, deviations from plans, conv and problems encountered and re	erstations v	with the public and
44				
	Cantinued well developped	ent & FATHS-106252 b	y punip	methodolog y
-	IDiv: Tumped 90 g	alons of water -	contain	nerized
-	Centinved well development I Siv : Pumped 90 g Could not get Gailer	s to depth in Sie	zomet	er
-	155UE3 : NONE	, ,		
-	VISITORS: NONE			
			_	
		an		
		X		
		0		
WORK P	ERFORMED (Indicate time, and desc	ription of work performed by prin	and/or ou	(hcontractors)
1700		- 0705 Has briefing		nocontractors)
0710	Site Sotup	0102 1172 61124-10	7	
1750	Boom 40 - 1810	pump renourted to	in her	N 55
1937	lucy tripped in to be	pump connected to in above of seven (= 463 f	by)	
	1 11 11 11 11	1000	1	

DQCR Page 1 of 2

-	DATE: 3-16 21
. WORK P	ERFORMED (Continued)
0943	DTW = 451.65 TOC
0950	pumping began
	pumping ended - began tripping out pump
	pump semoved & disconnected
1156	11/2" bailes attached to bail prezonates
1210	DTW = 451,25' TOC piezometer TD = 524,30' TOC
1222	
1227	11/2" PVC boiler couldn't make it to depth - switched to 1" 5,5, 6a
1232	1" s.s. bailes made it to 310.8 & TOL
1253	Well scared
1256	Boon down; site clean up
1324	Hoom down; site clear up Troffic control collapsed around well head - 5A +
	Casende off site
	A
/	
/	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Messenger Name

Signature

EA Engineering, Science and Technology Inc., PBC

DQCR Page 2 of 2

Reviewed by: _

October 2021

ROLE: 5540	DATE: 3/16/21
WEATHER: Partly cloudy, win	
1. ONSITE PERSONNEL (including subcontracto	
Name	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. M-Vey	EA - Site Health and Safetly Office
Forcest Chattin	\
Eloyd Mahaffay	Cascade
Mark Green	Cascade
Bryant Jones	1
J. Messenger	EA
2. OPERATING EQUIPMENT	
government employees, an	ted, deviations from plans, converstations with the public and ad problems encountered and remedies applied) advanced $13^{3}/\xi^{11}$ casing
	br
4. WORK PERFORMED (Indicate time, and descr	iption of work performed by prime and/or subcontractors)
0650 EA, Lastade on	Site at Truman Yard
0705 Safety meeting	
0720 Stabbing pip	e, lociding equipment and
delling	erials to take to 106248

ı Reviewed by:

DQCR Page 1 of 2

Reviewed date: _ 5-25-2 (

A WORK P	ERFORMED (Continued) DATE: 3/16/21
4. WURA P	(continuou)
	Well location.
1055	Mabrig, equipment, and materials to
	106248 well location and set up to begin
	Mab rig, equipment, and materials to 106248 well location and set up to begin drilling.
1245	Realacia control said for a 11'
1305	Replacing control switch for sand line Start Scilling
1721	Start drilling Drilled and advanced 133/2" casing to 200'.
	205'.
	EA, Cascale off site
	1
-	
	Ai'l

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M: Ke Name

Signature

EA Engineering, Science and Technology Inc., PBC

Appendix C Data Quality Control Records

DQCR Page 2 of 2 Page 180 of 202

ROLE: 5540	DATE: 3/17/21
NEATHER: Partly cloudy,	H: 56° WELL ID: 106248
	contractors and government employees)
Name 2 2 2 4 4 4 4 4 4	Organization EA - Site Manager/Supervisor
B. Bockisch	
M. MEVey	EA - Site Health and Safetly Office
Forregt Chatti	
Lloyd Mahaffa	
	Cascade
Bryant Jones	
Mark Green	
J. Messenger	EA
· · · · · · · · · · · · · · · · · · ·	
2. OPERATING EQUIPMENT	
1.2	C
ARCH Scilling ri	g, compressor, fork 1:ft
6	
3. DAILY SUMMARY (include QC sample	es collected, deviations from plans, converstations with the public and
	oyees, and problems encountered and remedies applied)
- David	1 1 37.11
- Ur. Hed an	12 advanced 11314" Easing
to 380'	655
	9
has a second second second	
	Λ
	h
	Ar
4. WORK PERFORMED (Indicate time, and	nd description of work performed by prime and/or subcontractors)
NHT FA LILL	22.57
0645 EA, Cuscade	
0710 Safety me 0740 Cleaning o 0750 Tripping	eting
0740 Cleaning 0	ut borehole
0750 Tainala	d loill also
pinge	our scul pipe.
	DQCR Page 1 of 2
(h. a.	
Reviewed by:	Reviewed date:

Appendix C Data Quality Control Records

DATE: 3/17/21 4. WORK PERFORMED (Continued) land 11314" 0935 At Truman Yard to 010 Rack on site at. Jri/ WR11 106 24 1027 ping in 11 he and insid Easing to 200' 655 1130 2 113/4" 595 a to loa ill pipe. + he Scillia 1215 1327 3/4" casia advance 1725 80 645 coll off 100 Yd3) and ready 70 Vard top roll off # RO2220 BWT has 2 to deliver and passe 1 Coll off 140 tomorro 1735 10 5: ean ad secure for the 5' +0 an f 1745 W

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M=Ve Mike Name

Signature

EA Engineering, Science and Technology Inc., PBC

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Page 182 of 202

Reviewed date: 5-25-21 October 2021

1. ONSITE PERSONNEL	y cloudy, H: 590	WELL ID: 106248
Name	L (including subcontractors and govern Organizati	
	EA Site N	Manager/Supervisor
B. Bocki	1ch	
M. MEVe	Y EA - Site H	lealth and Safetly Office
J. Messe	EA EA	
	Chattin	
	_	
Bayant	71	Cascade
Lloyd M	Tahaffay /	
Mark G	rees /	
2. OPERATING EQUIPM	/ENT	
ARCH Sril	ling ring, compres	stor, fork lift, casing
acky	- 0 -	
J		
DAILY SLIMMARY (in	aluda OC complex collected deviation	s from plans, converstations with the public and
	overnment employees, and problems e	
- 11	1 113/4"	asia to TRAS Sas
1	VANZED II I -	asing to TDaf 508'
60	5	
5		
5	mpleted clean	out of barehale
- 60		
- 60 - Wi	11 begin well	construction in
- 60 - Wi		
- 60 - Wi	11 begin well	
- 60 - Wi	11 begin well	
- 60 - Wi	11 begin well	
- 60 - Wi	11 begin well	
- 60 - Wi	11 begin well	
- 60 - Wi +6	e moraing.	construction in
4. WORK PERFORMED	(Indicate time, and description of work	
- 60 - W; - + 4 4. WORK PERFORMED 0655 EA	I begin well e morning. AM (Indicate time, and description of work (ascale on site	k performed by prime and/or subcontractors)
- 60 - W; - + 4 4. WORK PERFORMED 0655 EA	I begin well e morning. AM (Indicate time, and description of work (ascale on site	<pre>k performed by prime and/or subcontractors)</pre>
- Co - Wi + 4 4. WORK PERFORMED 0635 EA 0710 56 f	II begin well e morning. (Indicate time, and description of work Cascade on site Ety meeting	<pre>k performed by prime and/or subcontractors)</pre>
4. WORK PERFORMED 0655 EA, 0710 564 0740 544	II begin well e morning. (Indicate time, and description of work Cascade on site Ety meeting at scilling	k performed by prime and/or subcontractors)
4. WORK PERFORMED 0655 EA, 0710 564 0740 540	II begin well e morning. (Indicate time, and description of work Cascade on site Ety meeting at scilling	k performed by prime and/or subcontractors)
4. WORK PERFORMED 0655 EA, 0710 569 0740 574	(Indicate time, and description of work (Indicate time, and description of work (ascale on site Ety meeting at scilling mer shain bro	k performed by prime and/or subcontractors)

Appendix C Data Quality Control Records

V

DATE: 3/18/21 4. WORK PERFORMED (Continued) saile Hanner resuma empty 3 Dic 1 Up full ana CT2072 146 1040 0. 15000 1445 8 bore hole 1533 orchole 8 MONP 41 1540 14 1610 a dell_ 10 1730 JEGUE 0 0 1745 165

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

M; Ke Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: _ 5-25-21

Appendix C Data Quality Control Records

ROLE: 55H2	DATE: 3/14/21
WEATHER: JUDAY, 14:650	WELL ID: 106248
1. ONSITE PERSONNEL (including subcontractor	rs and government employees)
Name	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. MEVey	EA - Site Health and Safetly Office
J. Messenger	EA
Forrest Chattin	1
Bryant Jones	Cascade
Way & Mahaffey	1 CADZÃOE
Mark Green	/
2. OPERATING EQUIPMENT	
Fork 1: ft	compressor, casing jacks,
	ed, deviations from plans, converstations with the public and d problems encountered and remedies applied)
- Tripped put.	all 13318" casing from the
borehole	-
	is the deep well placed.
from 499.8'	- 450.6'bgs
- Lower bento	site chip seal placed
	- 445.6'bgs
- Upper filter	pack placed from
445.6'- 435	5.0'bys. Will finish
placing upp	per filter push in the
4. WORK PERFORMED (Indicate time, and descri	ption of work performed by prime and/or subcontractors)
0645 EA, GAJLade OA	
0705 Jafety meetic	
0728 J. Merzenger	tassing water level in
106252 (DTW	tagging water level in = 452.67'MRP)

Reviewed by:

DQCR Page 1 of 23

Reviewed date:

5-25-21

Appendix C Data Quality Control Records

	DATE: 3/19/21
4. WORK P	ERFORMED (Continued)
0737	Tagging water level in 106248
	(DTW = 440.62' bgs after injecting
-	300 gul yesterday a Fternoon)
0745	Tagging mater level in 106019
0749	(DTW = 479.01' MRP) Begin tripping in 4" PVC for the 106248 Jeep well
0155	Setting up casing jacks.
0930	Pulling one lo' joint of 11 3/4" Lading.
AY4X	Pullio 13'E Frank
1052	Acton site to pump Free liquid from
1115	Finished pulling the 13 3/8" cusing
	from the borchole.
1132	Act off site to dispose of the liquid
	in the 2,500 gal poly tank at the
	laydown yard by the GWTS.
1305	Act on site to pick up open top call aff
	# 22023 (3yd 3 soil cottings) and drop
	it off at the IDW yard
1400	FilterAfor the deep west placed from
	499.5 - 450.6 6 55
1403	Ast on site to pick up hard top roll
	off # 6001 (6 y) wet soil estings) and
	drop it off at the IDW yard.
1413	Tripping in 4" PVE for the 106248 shallow

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Mike M<Ve Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

DQCR Page 2 of 23

Reviewed date: 5-25-2/

Appendix C Data Quality Control Records

	DATE: 3/19/21
4. WORK P	ERFORMED (Continued)
	Well.
1620	Lower bestonite ship seal placed from 450.6'- 445.6'bas.
	450.6'- 445.6'bgs.
1715	Uppersonal park placed from
	445.6'- 435.0' bgs. Will Finith
	placing upper sand pack in the
	NISTALAG.
1717	Glass up site and secure for the
	night
1730	EA, Cascade off site
_	
	<u> </u>
	/ ¥
÷	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Milke Mevey Name

Signature

3 of

EA Engineering, Science and Technology Inc., PBC

Reviewed by

Reviewed date: 5-25-21

Appendix C Data Quality Control Records

DQCR Page 2 of 2

WEATHER: Partly cloudy,	DATE: 3/2=/2/
1. ONSITE PERSONNEL (including subcon Name	ntractors and government employees) Organization
	EA - Site Manager/Supervisor
B. Backisch	EA - Site Health and Safetly Office
M. Mevey	
J. Messenger	EA
Terrest Chattie	2
Bryant Janea) La scade
Lloyd Mahaffey) Laszade
Mark Green	
2. OPERATING EQUIPMENT	1
2 - 1	
ARCH Scilling ri	4, compressor, cusing jacks
Fook DEt	g, compressor, cusing jacks
DAILY SUMMARY (include OC complex)	collected, deviations from plans, converstations with the public and
	ees, and problems encountered and remedies applied)
- Installed Upper fi	Afer pack to 415, 8 flogs
VIN PRATIEN VINJ	Dear TO TO TO BAS
	seal to 378 ft bys
	+ to 200 4+ 6g3
	9
	9
	9
	9
	9
	9
	9
- Installed grow	+ to 200 4+ 633
- Installed grad	t to 200 6t 653
- Installed grow	t to 200 6t 6g3 Add I description of work performed by prime and/or subcontractors)
- Installed grow	t to 200 5t bgs A description of work performed by prime and/or subcontractors)) e on 5', te
- Installed grow	t to 200 5t bgs A description of work performed by prime and/or subcontractors)) e on 5', te
- Installed grow	t to 200 6t 653

Reviewed by:

Reviewed date: 5-25-21

3-20-21 DATE: 4. WORK PERFORMED (Continued) began installing Seal UPPEr 2835 ascan water break 0 85 of water fea 1010 37 \$ 1020 040 scale water 050 133/5 vate 100 1158 1320 bore ho 1651 378'-200' Will Finish ness 693 le. 655 nt o no 44 e 705 Securina 701 up wi WS ter 1730 Se off site. 45/6 0

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date:

5-25-21

Appendix C Data Quality Control Records

ROLE: <u>SSH0</u>	-	DATE: 3/21/21
VEATHER: Martly sunny, Hi	66°	WELL ID: 106248
. ONSITE PERSONNEL (including subcontracto	ors and government em	ployees)
lame	Organization	
B. Backisch	EA - Site Manager/S	upervisor
M. M-Vey	EA - Site Health and	Safetly Office
J. Messenger	EA	
Forrest Chattin	1	
Bryant Jones	Casa	cale
Lloyd Mahaffey		
Mark Green	/	
OPERATING EQUIPMENT		
A2. 1 10111	and course	and the second s
ARCH Scilling cig, . Fork lift	compress	or, curing jacks,
TOLIG I I + T		
DAILY SUMMARY (include QC samples collect		
government employees, a	nd problems encounter	ed and remedies applied)
- Grout instal	led from	200'- 23'695
		from 23'bys to
ground sur		
		noterials demoke
from the s		-
		fuce completion
- for 10624	8 tomar	row
	m	
	/	
WORK PERFORMED (Indicate time, and desc	ription of work perform	ed by prime and/or subcontractors)
650 EA, Lascade on	site	
1710 Safety meeting	9	
725 Setting up to	resume	graving
1747 Resume growt:	25	
0	DQCR Page 1 of 2	

Reviewed by:

Reviewed date: 5-25-21

3/21/21 DATE: 4. WORK PERFORMED (Continued) Grout placed from 200'- 15'bys; 1113 Settle. 1120 up with 2215 230 Va sin 1314 G walls 10 14 rus. 494. 1330 renoving 64510 equipment excess mate and ci n 1537 +0 Unload Jeson equipme 15 1 at Srill pine 1715 off site

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

< Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

DQCR Page 2 of 2

Reviewed date: 5-25-21

Appendix C Data Quality Control Records

ROLE: 55H0	DATE: 3/22/21
WEATHER: Cloudy, cool, c)	base of showers WELLID: 106248
1. ONSITE PERSONNEL (including subc	
Name	Organization
B. Bockisch	EA - Site Manager/Supervisor
M. M-Vey	EA - Site Health and Safetly Office
Forrest Chatti.	2
Bryant Jones) Caseade
Hoyd Mahaffey	, /
Mark Green	/
2. OPERATING EQUIPMENT	
Forklift, Stear	n cleaner, sement mixer
	es collected, deviations from plans, converstations with the public and byees, and problems encountered and remedies applied)
- Finished	surface completion for
106248	
- Cascade	will Finish Jemobing all .
eguipme	at and materials from the
	Yard tomorrow
11	
	Δ
	Am
4. WORK PERFORMED (Indicate time, an	nd description of work performed by prime and/or subcontractors)
0645 EA, Lasaac	le on site
0710 Jafaty nec	ting
Jenoball	equipment and materials

Reviewed by:

DQCR Page 1 of 2

Reviewed date: 5-25-21

DATE: 3/22/21 4. WORK PERFORMED (Continued) man Yard site to install suffice 0750 20 -1208 nole oal. ield trailer to GWT5 the wel 1400 rom the coned and Jeconed. W:11 1635 verything morrow for transpo 1645 as cade aft site

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Milie MEYP Name

Signature

EA Engineering, Science and Technology Inc., PBC

Appendix C Data Quality Control Records

DQCR Page 2 of 2 Page 193 of 202

Reviewed date: 5-25-21

ROLE: 55410	DATE: <u>3/23/21</u>
VEATHER: Parting cloudy,	(20) WELL ID: 106248
	contractors and government employees)
ame	Organization
8. Backisch	EA - Site Manager/Supervisor
M. Ma Vey	EA - Site Health and Safetly Office
Mark Green	×
Bayant Jones	Carcade
Forrest Chatt:	~ /
Lloyd Mahaffe	y /
OPERATING EQUIPMENT	
Fock lift	
IOCK I.TT	
DAILY SUMMARY (include QC samp	les collected, deviations from plans, converstations with the public and
- Will fin Jrikl pi Truman	joh remaining remaining pe and sasing from the Yard tomorrow.
	0
	An
WORK PERFORMED (Indicate time, a	and description of work performed by prime and/or subcontractors)
645 Cascade on	
Too EA on site	; Safety meeting
	oading equipment and materials
1823 Sem! with f	Tatled trailer on site to load
030 Seni with f	DQCR Page 1 of 2
	Reviewed date: 5 - 25 -

Appendix C Data Quality Control Records

	DATE: 3/23/21
4. WORK P	ERFORMED (Continued)
1208	Semi with flatbed truiler back on site to load
1230	Forrest Chattin on Site with trailer to
	load
1340	Forrest chattin off site with loaded pipe
10.00	truck and loaded trailer
	Semi with flatbed trailer back on site to
	pick up another load
1227	Lloyd Mahaffey off site with loaded
1547	Semi with flatbed off site with load;
	M. Green, B. Jones off site
1730	Forrest Chattin on site with trailer
	10/042
1820	EA, Forcest Chattin alfaite
	Just
	1
	AX
	- At/
Carriel I.	V

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

4Ve M Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

DQCR Page 2 of 2

Reviewed date:

5-25-21

Appendix C Data Quality Control Records

October 2021

ROLE: <u>5540</u>	DATE: 3/25/21
NEATHER: <u>Cloudy, cold</u>	WELL ID: N/A
1. ONSITE PERSONNEL (including subcontrac	
Name	Organization
B. Bankisch	EA - Site Manager/Supervisor
M. MEVER	EA - Site Health and Safetly Office
M. Mevey Forcest Chattin	
2 1 T) Kushaida
Bryant Jones	
2. OPERATING EQUIPMENT	
Fork lift	
Fork Litt	
3 DAILY SUMMARY (include OC samples colle	ected, deviations from plans, converstations with the public and
	and problems encountered and remedies applied)
	at tal la ab C Ta
Laszade Es	mplated demob from Transa
Yacd.	
	A M
	W
	H
4. WORK PERFORMED (Indicate time, and des	cription of work performed by prime and/or subcontractors)
0700 EA. Casade an	Site
0705 Safet nec	1.
	litems from the Transa Yard
1000 EA, Cascade off	K up ports-potty and sink
1000 EA, Cascade off	5.4e.
1000 EA, Cascade off	JCR Page 1 of 2

Reviewed by: _______ Appendix C Data Quality Control Records Reviewed date: _5-25-21

ROLE:	SSHO		DATE:	3-26-21
WEATHER	· low - mid 50s ("F); cloudy			KAFB-106248
	PERSONNEL (including subcontractors	s and government employees)		
Name		Organization		
	B. Bockisch	EA - Site Manager/Supervisor		
	J. Messenger	EA - Site Health and Safetly C	office	
D	anny Moore	Cascade		
. OPERAT	ING EQUIPMENT			
Pulst	an Development Rig			
	1 0			
	UMMARY (include OC complex collector	d deviations from plans, asso	antellana v	with the sublic and
DAILT 3	UMMARY (include QC samples collecte government employees, and	problems encountered and r		
1	Began development @KAFI	3-106248: Noticed 1	cell was a	drying up ~ I well
	volume, decided to go back	to swallbail till y	htter fach	h becomes uncloged
-	Generated ~ 60 gallons 1.	DW - containerized	in steel	dums
-	Mark Phaneuf visited s	He (USACE)		
-	U			
	0 ~	1		
	Y			
WORK P	ERFORMED (Indicate time, and descrip	tion of work performed by pri	me and/or s	ubcontractors)
0700	EA + Cascade on site -	1 11 1		
0757				bing
0855	Boom up - 0830 began Bailed about 6 gallons - su	itched to swabbing		0
0910	Swabbing began	9		

n Reviewed by:

DQCR Page 1 of 2

Reviewed date:

2 UZ

Appendix C Data Quality Control Records

October 2021

WORK	DATE: 3-26-21
	ERFORMED (Continued)
	Swabbing complete - switch to bailing
0952	Began bailing - post-swab initial the 70 mg/L sediment
1016	Switching to swabbing - 1025 swabbing began
1040	Swallbing ended - switched back to bailing
1045	Bailing began - 1057 bailing ended - switched to swallbing
1100	Swabbing began - 1117 Swabbing ended - switched to bailing
1123	Bailing Began - 1144 after multiple failures to retrieve water, Danny
	decide to set primp
1350	Pump tripped in to 2496.5A
14,4	Mark Phound on site / Danny got water level meter tied up # 296 ft
	- can't record drawdown during pumping; will get
1417	- can't record drawdown during pumping; will get Pumping began - 1435 pumping stopped; rested pump twelk for 10 min
1447	Purp back on - 1459 lost purge
1511	Called Bunie and discussed what was happening - relayed to
	Danny that we need to go back to surbbing screen to undog
	filter pack
1520	began tipping out pump
1600	Maph Phanenf of site
1655	Rump tripped out
1705	Boom down
1730	EA + Cascade off site
	(VV)
/	

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

2 Silvo Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by

DQCR Page 2 of 2

Reviewed date:

202

Appendix C Data Quality Control Records

October 2021

	SSHO				7-21
WEATHE	R: 100 60 s (F); mostly sunn	y breezy W	ELL ID:	14AFB	106248
	E PERSONNEL (including subcontra	ctors and government employees)			
vame	20111	Organization			
	B. Bockisch	EA - Site Manager/Supervisor			
	J. Messenger	EA - Site Health and Safetly Office	9		
	J. Messenger Danny Moore	Cascade			
	1				
					-
		-			
OPERA	TING EQUIPMENT			_	
~	2				
fuls	star Development K.	in-			
	- ferral	· · ·			
			_		
. DAILY S	SUMMARY (include QC samples colle	cted, deviations from plans, converst	tations wit	th the publ	ic and
DAILY S	government employees, a	and problems encountered and remed	dies applie	ed)	
DAILY S	government employees, i Completed bailing/Swa	bling portion of well de	dies applie	ed)	
~	Completed bailing/Swa KAFB-106248 @	bling portion of well de 1.5 mg/L sediment	dies applie evelopm	ed) rent a	
DAILYS	Completed bailing/Swa KAFB-106248 @	bling portion of well de	dies applie evelopm	ed) rent a	
~	Completed bailing/Swa KAFB-106248 @	bling portion of well de 1.5 mg/L sediment	dies applie evelopm	ed) rent a	
	Generated 190 gallo	bling portion of well de 1.5 mg/L sediment	dies applie evelopm	ed) rent a	
	government employees, Completed bailing/Swa KAFB-106242 @ Ganerated 190 gallo No 155083	bling portion of well de 1.5 mg/L sediment	dies applie evelopm	ed) rent a	
	government employees, Completed bailing/Swa KAFB-106242 @ Ganerated 190 gallo No 155083	and problems encountered and remed bling portion of well de 1.5 mg/L sediment ns of IDW - contain	dies applie evelopm	ed) rent a	
	government employees, Completed bailing/Swa KAFB-106242 @ Ganerated 190 gallo No 155083	bling portion of well de 1.5 mg/L sediment	dies applie evelopm	ed) rent a	
	government employees, Completed bailing/Swa KAFB-106242 @ Ganerated 190 gallo No 155083	and problems encountered and remed bling portion of well de 1.5 mg/L sediment ns of IDW - contain	dies applie evelopm	ed) rent a	
	government employees, Completed bailing/Swa KAFB-106242 @ Ganerated 190 gallo No 155083	and problems encountered and remed bling portion of well de 1.5 mg/L sediment ns of IDW - contain	dies applie evelopm	ed) rent a	
	government employees, i Completed bailing/Swa KAFB-106242 @ Generated 190 galls NO 1550ES ND VISITORS	And problems encountered and remed bling portion of well de 1.5 mg/L sediment ms of IDW - contain AM	ines.ze	d	
WORK P	government employees, i Completed bailing/Swa KAFB-106248 @ Generated 190 gallo NO 155083 NO VISITORS CERFORMED (Indicate time, and desc	nd problems encountered and remed bling portion of well de 1.5 mg/L sediment ns of IDW - contain ms of IDW	ines.ze	d	
WORK P	government employees, i Completed bailing/Swa KAFB-106242 @ Generated 190 gallo NO 155083 NO USITORS ERFORMED (Indicate time, and desc EA + Cascade on site	nd problems encountered and remed bling portion of well de 1.5 mg/L sediment ns of IDW - contain ms of IDW	ines.ze	d	
WORK P	government employees, i Completed bailing/Swa KAFB-106248 @ Generated 190 gallo NO 155083 NO VISITORS CERFORMED (Indicate time, and desc	nd problems encountered and remed bling portion of well de 1.5 mg/L sediment ns of IDW - contain ms of IDW	ines.ze	d	
	government employees, i Completed bailing/Swa KAFB-106242 @ Generated 190 gallo NO 155083 NO USITORS ERFORMED (Indicate time, and desc EA + Cascade on site	nd problems encountered and remed bling portion of well de 1.5 mg/L sediment ns of IDW - contain ms of IDW	ines.ze	d	

Appendix C Data Quality Control

DQCR Page 1 of 2

Reviewed date: 5/4/Bctober 2021

-27-21 DATE: 4. WORK PERFORMED (Continued) 0 800 Switch 0838 Can't get sulab to swabbing W/new Tobber seal \$ 200 getting stuch despend notches 0845 played to deport. - swabbing began - 0915 Switch to bailing 0956 Sunkbing ! DTW = 480.4 volumes TOL milin Sw. 1030 - switched to bailing molete 1145 to swabbing - 1205 bailed - Switz switch og, line last bail 25 mg/L sediment, switched to Swabbing 1250 ng complete -1315 Complete, switch to beiling valling - DTW = 480.4 TOC TD = 497.9 TOL 1403 Complete, switch to bailing - 1637 bailing complete @ 1.5 mg/L sediment 1435 walking Complete : switch TOC 1648 = 480.3' STWPOST hail development devilgement = 497.9 TOC 1653 Boom down cleanus site EA + Cascada 5.10

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Wlessenger Name

Signature

EA Engineering, Science and Technology Inc., PBC

IC R/m Appendix C Data Quality Control Records

DQCR Page 2 of 2

Reviewed date: 5/4/2021

Page 200 of 202

ROLE:	,	DATE	3-2	8-21
WEATHER: mid 60s(F); SUNNY				- 106 248
1. ONSITE PERSONNEL (including subcontract	ctors and government employe	ees)		
Name	Organization			
15 Bockisch	EA - Site Manager/Superv	visor		
J. Messerger	EA - Site Health and Safet	tly Office		
B. Bockisch J. Messenger Danny Moore	Cascade			
,				
2. OPERATING EQUIPMENT				
0				
Pulstar Development R) i YA			
	8			
DAIL V DUBABA DV //				
. DAILY SUMMARY (include QC samples colle government employees, a	cted, deviations from plans, co and problems encountered and	onverstations wi d remedies appli	th the public ed)	and
- Completed will develop				de Plan
- Generated 95 gallows	INIJ (340 bill	aller	g to M	Jun / www.
	1000 (210 40102	Janon's)		
- NO ISSUES			_	
- NO VISITORS				
			/	
	Δ			
	hn			
ł	The			
	/			
	(
WORK DEDEODMED (Indicate time and does	windless of words and formed to			
WORK PERFORMED (Indicate time, and desc		prime and/or sub	contractors)	
	site			
	site set up			
1718 Boom Up				
1745 Begin tripping in pur	hn			

Repender & Data Quality Control Records

DQCR Page 1 of 2

Reviewed date: 5/4/ October 2021

Page 201 of 202

3-28-21 DATE: 4. WORK PERFORMED (Continued) 0915 4976A TOL R UMP tripped in to 480.48 ' TOC . 0928 = DTU downhole TO can't record TD Dury in well be LILL SE assured to 60 last TD measure at TOL yester day completed after 0934 Pumping begen 481,9'TOL @ DTW dropped to ater Ø Supace 12pm pump rate 480. 16 TOK = DTW 178.15 Dru Im meter got stuck again; cannot 0953 level (elor 1112 Parameters stabilized Ong/ sediment TUS IIIS umping ender 1252 tripped out umo -DTW = 480.46 TOC TD=497.9 1257 TOC ost development 1315 down site clean up DOOM ascade 1330 site

5. CONTRACTOR'S VERIFICATION: I certify that to the best of my knowledge the above report is complete and correct. All equipment used, and work performed during this reporting period is in compliance with the contract plans and specifications noted above.

Name

Signature

EA Engineering, Science and Technology Inc., PBC

Reviewed by:

Appendix C Data Quality Control Records

DQCR Page 2 of 2

Reviewed date: 5-/4/2021 October 2021

Page 202 of 202

APPENDIX D

LITHOLOGIC LOGS

EA Engineering, Science, and Technology, Inc., PBC Project: 62735DM02 Location: Kirtland AFB, New Mexico Start Date: 3-16-2021 Completion Date: 3-22-2021								Well ID: KA	ELL LOG FB-106248 f 13
Drilling Drill Bi Driller	Metho t: Tric Mark		Rotary C		g Hammer tin	Boring Depth (ft): 508 Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	Seal Materia		Bentonite Chips; s Bentonite Grout
(ii)	(vmqq) DIQ	Samples Collected	uscs	Lithology		Sample Description		C-	ompletion Details) (2)
5					Hydrovac for bgs.	utilities clearance to 8 ft bgs. Not logged	above 10 ft		Neat Portland Cement, 0-23 ft bgs
10	1.2	3			clay; 5% fine sand; suban	/3, brown; soft; slightly moist; nonplastic; 8 -medium sand (70% fine, 30% medium); t gular-subrounded; sand is quartz, feldspar lote: clay exists as nodules to 3/8"; very st	race coarse	4.5" OD Sch 80 PVC Blank 0-418.5 It bgs	4.5" OD Sch. PVC Blank 0-452.5 ft bgs
20	1.4		ML		80% silt; 20% coarse sand feldspar, cali	d: 7.5YR 5/4, brown; soft; slightly moist; no 6 fine-medium sand (30% fine, 70% mediu ; trace clay; subangular-subrounded; sand iche, and lithic fragments. At 25 ft, no trace , strong brown.	im); trace is quartz, e clay. At 30	High Solids Bentonite Grout, 23-378 ft bgs	
30	0.8								
40					silt; 10% fine	/6, strong brown; soft; slightly moist; nonpl e-medium sand (30% fine, 70% medium); subrounded; sand is quartz, feldspar, calic	1.5.1.5.1		

(2) KAFB-106248-452: 4.5" OD Sch. 80 PVC: blank riser, 0-452.5 ft bgs: 0.01" slot screen, 452.5-492.5 ft bgs bgs = below ground surface

ft = foot(feet) N/A = not applicable

EA Engineering, Science,					Start Date:	735DM02 Kirtland AFB, New Mexico 3-16-2021 Date: 3-22-2021	WELL LOG Well ID: KAFB-106248 Page: 2 of 13		
illing ill Bi iller:	g Metho it: Tric Mark		Rotary C Forrest		g Hammer tin	Boring Depth (ft): 508 Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	Seal Materia	rial: See Notes Section (s): Cement; Bentonite Chips High Solids Bentonite Grou 10/20 Silica Sand	
(tt)	(vmqq)	Samples Collected	nscs	Lithology		Sample Description		Completion Details	
5	2.0		ML		85% silt; trad medium); tra subangular-s fragments; g 15% fine to r sand; 5% gra cuttings are	d: 7.5YR 5/4, brown; soft; slightly moist; no ce clay; 15% fine-medium sand (30% fine, ce coarse sand; trace gravel to 1/2", trace subrounded; sand is quartz, feldspar, calic ravel is lithic fragments. At 45 ft, 70% silt; nedium sand (50% fine, 50% medium); tra avel to 1 1/8"; gravel is caliche and lithic fr hard nodules to 1". At 50 ft, 20% fine to co 0% medium, 10% coarse); no gravel.	70% e clay; the, and lithic 10% clay; ace coarse agments;		
5			SM		nonplastic; 5 (20% fine, 6 subangular t	5YR 5/4, brown; loose; slightly moist; 80% % clay, hard, slightly plastic; 60% fine to o 5% medium, 15% coarse); trace coarse sa o subrounded; sand is quartz, feldspar, ar lay exists and nodules to 1".	coarse sand and;		
0	2.7		ML	1-1-1-1	nonplastic; 5 (40% fine, 6 subrounded;	d: 7.5YR 5/4, brown; soft; slightly moist; 80 % clay, hard, slightly plastic; 15% fine to r 0% medium); trace coarse sand; subangul clay is present as nodules to 1/2"; sand is I lithic fragments.	medium sand lar to		
5			SW- SM		85% fine to a gravel to 1/2	sand with silt: 7.5YR 5/3, brown; soft; slig coarse sand (20% fine, 65% medium, 15% "; subangular to subrounded; 20% silt, nor tz, feldspar, and lithic fragments; gravel is nts.	o coarse); 5%		
0 5	0.6		ML		nonplastic; 2 coarse); 5% quartz, felds fragments. A	5YR 5/6; strong brown; soft; slightly moist 5% fine to coarse sand (40% fine, 50% m gravel to 1/2"; subangular to subrounded; par, and lithic fragments; gravel is quartz a t 75 ft, 7.5YR 6/4, light brown; 65% silt; 25 ; 10% gravel to 1".	edium, 10% sand is and lithic		

(1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs
(2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs
bgs = below ground surface

ft = foot(feet)

EA Engineering, Science, and Technology, Inc., PBC					735DM02 Kirtland AFB, New Mexico 3-16-2021 Date: 3-22-2021		WELL LOG Well ID: KAFB-106248 Page: 3 of 13	
Drilling Me Drill Bit: T i Driller: Ma		Rotary Ca		g Hammer tin	Boring Depth (ft): 508 Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	al: See Notes Section s): Cement; Bentonite Chips; High Solids Bentonite Grout 0/20 Silica Sand		
(ft) PID PID	Samples Collected	uscs	Lithology		Sample Description		Completion Details	
1.3 85 90 1.3 95 1.3 100 1.3 105 1.3 110 1.3 115 120		ML		nonplastic; 2 coarse); 10% quartz, feldsj fragments. Silt: 7.5YR 5. clay, very stit 60% medium to subrounde feldspar, and 90% silt; 10% coarse sand; gravel to 5/8° fine to coars 7.5YR 5/6, st sand (35% fi Sandy silt: 7. nonplastic; 1 (30% fine, 70 subrounded; lithic fragmen Silty sand: 7. fine to mediu trace gravel	5YR 5/6, strong brown; loose, soft, slightly im sand (30% fine, 70% medium); trace co to 1/2"; subangular to subrounded; 30% si and is quartz, feldspar, and lithic fragment	edium, 10% ; sand is ind lithic inplastic; 5% d (40% fine, subangular juartz, . At 90 ft; dium); no ce lithic o 3/8"; 10% e). At 105 ft, to medium silt, im sand ar to dspar, and o moist; 70% barse sand; it,		

Notes: (1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs

> (2) KAFB-106248-452: 4.5" OD Sch. 80 PVC: blank riser, 0-452.5 ft bgs: 0.01" slot screen, 452.5-492.5 ft bgs bgs = below ground surface

ft = foot(feet) N/A = not applicable

EA Engineering, Science, and Technology, Inc., PBC					Start Date:	2735DM02 Kirtland AFB, New Mexico 3-16-2021 n Date: 3-22-2021	WELL LOG Well ID: KAFB-106248 Page: 4 of 13		
)rilling)rill Bil)riller:	Metho t: Tric Mark		totary C Forrest		g Hammer lin	Boring Depth (ft): 508 Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	Seal Material	ial: See Notes Section (s): Cement; Bentonite Chips High Solids Bentonite Grout 10/20 Silica Sand	
(H)	(vmqq) QIq	Samples Collected	uscs	Lithology		Sample Description		Completion Details	
	2.2		SM		fine to media trace gravel	5YR 5/6, strong brown; loose, soft, slightly um sand (30% fine, 70% medium); trace co to 1/2"; subangular to subrounded; 30% si and is quartz, feldspar, and lithic fragment nts.	barse sand; lt,	(1) (2)	
125 130 135	2.6		ML		nonplastic; 5 quartz, felds	/6, strong brown; soft; slightly moist; 95% 5% fine sand, subangular to subrounded; s par, and lithic fragments. At 130 ft, 7.5YR htly plastic; 5% fine sand. At 135 ft, 85% s a sand.	and is 5/3, 90% silt;		
140	3.6		sc		fine to coars subangular t	: 7.5YR 5/4, brown; loose; soft; slightly pla e sand (25% fine, 60% medium, 15% coar o subrounded; 25 % clay, slightly plastic; s par, and lithic fragments.	se);		
145					clay; 30% fir	7.5YR 5/3, brown; soft; slightly to medium te to medium sand (40% fine, 60% mediun ; subangular to subrounded; sand is quart; gments.	n); trace		
150	2.3		CL		slightly mois medium); tra	5/4, brown; medium to very stiff; medium p t; 90% clay; 10% fine to medium sand (50° nce coarse sand; subangular to subrounde par, and lithic fragments.	% fine, 50%		
155	Ċ.		ML		Silt: 7.5YR 5 silt; trace fin	/6, strong brown; soft; nonplastic; slightly r e sand.	noist; 100%		
160	111	ł			J		-		

(1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs
(2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs
bgs = below ground surface
ft = foot(feet)

EA Engineering, Science, and Technology, Inc., PBC						735DM02 Kirtland AFB, New Mexico 3-16-2021 Date: 3-22-2021	WELL LOG Well ID: KAFB-106248 Page: 5 of 13		
Drilling Drill Bi Driller:	Metho t: Tric Mark		Rotary C		g Hammer tin	Boring Depth (ft): 508 Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	Seal Materia	erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(ft)	(vmqq) OId	Samples Collected	nscs	Lithology		Sample Description		Completion Details	
	2.3				Silt: 7.5YR 5 silt; trace fine	/6, strong brown; soft; nonplastic; slightly r e sand.	noist; 100%	(1) (2)	
165 170	2.8		ML		nonplastic; 7 medium); tra	DYR 5/6, yellowish brown; soft; slightly mo 0% silt; 30% fine to medium sand (25% fir ce coarse sand; subangular to subrounde par, and lithic fragments.	ne, 75%		
175			SM		moist; 60% fi subangular te	DYR 4/4, dark yellowish brown; soft; loose ine to medium sand (25% fine, 75% mediu o subrounded; 40% silt, nonplastic; sand i c fragments, and caliche.	um);		
180	2.5		SP- SM		90% fine to r sand; subang	d sand with silt: 10YR 5/3, brown; loose; s nedium sand (30% fine, 70% medium); tra gular to subrounded; 10% silt, nonplastic; par, and lithic fragments.	ce coarse		
185			sc		coarse sand 1"; subanbul plasticity, me	: 10YR 5/3, brown; loose; slightly moist; 65 (20% fine, 65% medium, 15% coarse); 5% ar to subrounded; 30% clay to 1 1/4", med edium stiff; sand is quartz, feldspar, and litt ravel is quartz and lithic fragments; clay is	6 gravel to lium hic		
190	0.9		SP- SM		90% fine to n sand; subang	d sand with silt: 10YR 5/3, brown; loose; s nedium sand (30% fine; 70% medium); tra gular to subrounded; 10% silt, nonplastic; par, and lithic fragments.	ice coarse		
195			sw- sc		loose; slightly medium, 20% subrounded;	sand with clay and gravel: 10YR 5/4, yello y moist; 75% fine to coarse sand (20% fine 6 coarse); 15% gravel to 1 1/4"; subangula 10% clay, medium stiff, medium plasticity par, and lithic fragments; gravel is lithic fra 1".	e, 60% ar to ; sand is		

 Notes:
 (1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs

 (2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs

 bgs = below ground surface

 ft = foot(feet)

N/A = not applicable

EA Engineering, Science, and Technology, Inc., PBC					Start Date:	735DM02 Kirtland AFB, New Mexico 3-16-2021 Date: 3-22-2021	WELL LOG Well ID: KAFB-106248 Page: 6 of 13	
vrilling vrill Bit vriller:	Metho t: Tric Mark	oany: Cas od: Air Re one Green / F Messeng	otary C orrest			Boring Depth (ft): 508 Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	Seal Materia	rial: See Notes Section I(s): Cement; Bentonite Chips High Solids Bentonite Grout 10/20 Silica Sand
(Ħ)	(vmqq)	Samples Collected	uscs	Lithology		Sample Description		Completion Details (1) (2)
205 210 215	1.1		SP		95% fine to r subrounded; fragments. F medium san	ed sand: 10YR 6/3, pale brown; loose; sligh nedium sand (40% fine, 60% medium); su 5% silt, nonplastic; sand is quartz, feldsp rom 205 to 210 ft, 10YR 5/3, brown; 100% d (30% fine, 70% medium); trace coarse s ncludes caliche.	bangular to ar, and lithic fine to	
220	4.0		SW		fine to coars	sand: 10YR 6/3, pale brown; loose; slight e sand; sand is quartz, feldspar, and lithic	fragments.	
225			GC		1/2"; 20% fin coarse); sub gravel is lithi	el: 5Y 6/3, pale olive; slightly moist, 50% g e to coarse sand (20% fine, 60% medium angular to subrounded; 30% clay, medium c fragments and caliche; sand is quartz, fe	, 20% n plasticity; eldspar, lithic	
230	4.5		SP		Poorly grade 95% fine to r	nd caliche; clay is present as a coating on d sand: 10YR 6/3, pale brown; loose; sligl nedium sand (40% fine, 60% medium); su 5% silt, nonplastic; sand is quartz, feldsp	ntly moist; ibangular to	
			GW	•	moist; 70% g medium, 109	gravel with sand: 10YR 6/3, pale brown; lo gravel to 1"; 30% fine to coarse sand (20% % coarse); subangular to subrounded; gra eldspar, and lithic fragments.	fine, 70%	
235			sw		Well-graded slightly mois 15% coarse) clay, mediun feldspar, and	sand with gravel: 10YR 5/4, yellowish bro t; 65% fine to coarse sand (20% fine, 65% ; 30% gravel to 1/2"; subangular to subrount plastic, medium stiff; sand and gravel and t lithic fragments; clay is nodules to 3/8". A ravel to 5/8"; 5% silt, nonplastic.	medium, unded; 5% e quartz,	

(1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs
(2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs
bgs = below ground surface
ft = foot(feet)

N/A = not applicable

EA	Engir d Tech	neering, S	Science, Inc., PBC	Start Date:	2735DM02 Kirtland AFB, New Mexico 3-16-2021 n Date: 3-22-2021	and the second second	WELL LOG Well ID: KAFB-106248 Page: 7 of 13		
Drilling Drill Bi Driller:	Metho t: Tric Mark	one	Rotary Ca Forrest C	sing Hammer hattin	Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A		erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
(H)	(nudd) Old	Samples Collected	nscs	Lithology	Sample Description		Completion Details		
	3.1		sw				(1) (2)		
245 250	3.2		GW	moist; 65% (medium, 20	gravel with sand: 10YR 6/3, pale brown; lo gravel to 1/2"; 35% fine to coarse sand (20 % coarse); subangular to subrounded; gra artz, feldspar, and lithic fragments.	% fine, 60%			
255 260	4.8		sw	to coarse sa to 1/2"; suba	sand: 10YR 5/3, brown; loose; slightly mo nd (25% fine, 50% medium, 25% coarse); angular to subrounded; 5% silt, nonplastic; uartz, feldspar, lithic fragments, and calich	10% gravel sand and			
265				coarse sand	ed sand: 10YR 6/2, light brownish gray; loc fine to medium sand (35% fine, 65% med ; subangular to subrounded; sand is quart	um); trace			
270	4.7		SP	and lithic fra	gments.				
275			sw	slightly mois 15% coarse	sand with gravel: 10YR 5/4, yellowish bro e; 65% fine to coarse sand (25% fine, 60%); 30% gravel to 1"; subangular to subroun and and gravel are quartz, feldspar, and li	mediume, ded; 5% silt,			

 Notes:
 (1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs

 (2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs

 bgs = below ground surface

 ft = foot(feet)

		neering, S nology, I			Start Date:	Kirtland AFB, New Mexico	WELL LOG Well ID: KAFB-106248 Page: 8 of 13		
Drilling Company: Cascade Drilling Method: Air Rotary Casing Hammer Drill Bit: Tricone Driller: Mark Green / Forrest Chattin Geologist: J. Messenger						nmer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Materia DTW After Completion (ft bgs): N/A N/A		erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(ft)	(vmqq)	Samples Collected	nscs	Lithology		Sample Description		Completion Details	
285	2.6		SP		90% fine to r sand; 10% g sand is quart fragments; cl 10YR 6/2, lig	d sand: 10YR 6/3, pale brown; loose; sligh nedium sand (30% fine, 70% medium); tra ravel to 1 1/8"; subangular to subrounded; z, feldspar, lithic fragments, and caliche; g ay is present as a coating on the gravel. A ht browninsh gray; 100% fine to medium s edium); trace coarse sand; no gravel or cla	ce coarse trace clay; gravel is lithic t 285 ft, and (20%	(1) (2)	
290	1.7		CL		slightly moist fine to mediu	vel and sand: 10YR 5/3, brown; soft to me ; 50% clay, medium plasticity; 30% gravel m sand (50% fine, 50% medium); trace co and are quartz, feldspar, and lithic fragmer	to 1"; 20% arse sand;		
295 300	1.5		SP		90% fine to n sand; 5% gra nonplastic; s	d sand: 10YR 6/3, pale brown; loose; sligh nedium sand (25% fine, 75% medium); tra avel to 3/8"; subangular to subrounded; 5% and is quartz, feldspar, and lithic fragment hic fragments.	ce coarse silt,		
305 310	1.5		CL		60% clay, me 80% medium to subrounde	7.5YR 4/2, brown; soft to medium stiff; slig edium plasticity; 40% fine to coarse sand (i); trace coarse sand; trace gravel to 3/8"; ed; sand is quartz, feldspar, and lithic fragr lithic fragments	20% fine, subangular		
315			sc		medium sand subangular to plasticity; san	10YR 5/3, brown; loose; slightly moist; 85 d (20% fine, 80% medium); trace coarse s o subrounded; 15% clay, medium stiff, me nd is quartz, feldspar, and lithic fragments; odules to 1/2".	and; dium		

(1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs
(2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs
bgs = below ground surface
ft = foot(feet)

N/A = not applicable

Notes;

		neering, S			Start Date:	2735DM02 Kirtland AFB, New Mexico 3-16-2021 n Date: 3-22-2021	WELL LOG Well ID: KAFB-106248 Page: 9 of 13		
Drilling Company: Cascade Drilling Method: Air Rotary Casing Hammer Drill Bit: Tricone Driller: Mark Green / Forrest Chattin Geologist: J. Messenger						Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A		erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(H)	(vmqq) DIA	Samples Collected	nscs	Lithology		Sample Description		Completion Details	
	0.6		SP- SM		95% fine to r sand; suban	ed sand with silt: 10YR 5/3, brown; loose; s nedium sand (30% fine, 70% medium); tra gular to subrounded; 5% silt, nonplastic; sa par, and lithic fragments.	ce coarse	(1) (2)	
325			SP		fine to media subangular t	ed sand: 10YR 5/3, brown; loose; slightly m um sand (30% fine, 70% medium); trace co o subrounded; 5% silt, nonplastic; sand is d lithic fragments.	arse sand;		
330 335	0.8		sw		slightly mois 20% coarse)	sand with gravel: 10YR 5/4, yellowish brow t; 70% fine to coarse sand (20% fine, 60% ; 30% gravel to 1/2"; subangular to subrou re quartz, feldspar, and lithic fragments.	medium,		
340	0.4		SP		100% fine to	ed sand: 10YR 6/3, pale brown; loose; sligh medium sand (30% fine, 70% medium); tr gular to subrounded; sand is quartz, feldsp	ace coarse		
345					100% fine to	sand: 10YR 6/3, pale brown; loose; slightl coarse sand (25% fine, 60% medium, 15% o subrounded; sand is quartz, feldspar, an	% coarse);		
350	0.3		sw						
355			GW		moist; 50% g 55% mediun	gravel with sand: 10YR 6/3, pale brown; lo gravel to 1 1/2"; 20% fine to coarse sand (3 n, 15% coarse); subangular to subrounded artz, feldspar, and lithic fragments.	30% fine,		

(1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs
(2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs
bgs = below ground surface
ft = foot(feet)

N/A = not applicable

Notes;

EA	Engli d Tech	neering, S nology, Ir	cience, nc., PB	c	Start Date:	2735DM02 Kirtland AFB, New Mexico 3-16-2021 n Date: 3-22-2021	WELL LOG Well ID: KAFB-106248 Page: 10 of 13		
Drilling Drill Bi Driller:	Metho t: Tric Mark	oany: Cas od: Air R cone Green / F . Messeng	otary C			Boring Depth (ft): 508 Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	Seal Materia	erial: See Notes al(s): Cement; B High Solids E 10/20 Silica San	entonite Chips; 3entonite Grout
(H)	(vmqq)	Samples Collected	uscs	Lithology		Sample Description		D	npletion etails
365 370 375 380	1.1		SP	ç s s v fi	Well-graded ine to coars gravel to 1/2 guartz, felds	sand: 10YR 6/4, pale brown; loose; slight medium sand (35% fine, 65% medium); tra gular to subrounded; 5% silt, nonplastic.	y moist; 90% se); 10% avel are		(2) Hydrated 3/8" Bentonite Chip 378-415.8 if b
385	3.2		SW	2000 9	5% fine to	ed sand: 10YR 6/4, pale brown; loose; sligh medium sand (35% fine, 65% medium); tra			378-415.8 ft b
395			sw	V n c n	Well-graded noist; 80% f coarse); 15%	gular to subrounded; 5% silt, nonplastic. sand with gravel: 10YR 6/3, pale brown; lo fine to coarse sand (20% fine, 65% mediun & gravel to 1"; subangular to subrounded; s and and gravel are quartz, feldspar, and li	n, 15% 5% silt,		
400				fi	ine to coars gravel to 3/8	sand: 10YR 6/3, pale brown; loose; slightl e sand (20% fine, 65% medium, 15% coar "; subangular to subrounded; sand and gra par, and lithic fragments.	se); 10%		

Notes; (1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs (2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs

bgs = below ground surface

ft = foot(feet)

N/A = not applicable

EA	Engir d Tech	eering, S nology, Ir	cience, nc., PB0	c	Start Date:	2735DM02 Kirtland AFB, New Mexico 3-16-2021 n Date: 3-22-2021		WELL LOG Well ID: KAFB-106248 Page: 11 of 13		
Drilling Company: Cascade Drilling Method: Air Rotary Casing Hammer Drill Bit: Tricone Driller: Mark Green / Forrest Chattin Geologist: J. Messenger						mer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Materia DTW After Completion (ft bgs): N/A N/A		al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
(LL)	(vmqq) DIA	Samples Collected	nscs	Lithology		Sample Description			Completion Details	n
	3.2		SP		moist; 95% f	ed sand: 10YR 6/2, light brownish gray; lo ine to medium sand (30% fine, 70% med ; subangular to subrounded; 5% silt, non	ium); trace			
405 410 415 420	3.5		sw		15% coarse) silt, nonplast fragments. A	t; 60% fine to coarse sand (25% fine, 60% ; 35% gravel to 5/8"; subangular to subro ic; sand and gravel are quartz, feldspar, t 410 ft, 10YR 6/2, light brownish gray; 8 ", 5% silt. At 420 ft, 75% sand; 20% grav	ounded; 5% and lithic 0% sand; 15%	4.5" OD Sch 80 PVC Screen, 0.010" Slots, 418.5-443.5 /t bgs		10/20 Silica Sand, 415.8-445.6 bgs
425					moist; 95% f coarse); 5%	sand: 10YR 6/2, light brownish gray; loo ine to coarse sand (25% fine, 55% media gravel to 3/8"; subangular to subrounded avel are quartz, feldspar, and lithic fragma	um, 20% I; trace silt;			
430	8.1				slightly mois 20% coarse)	sand with gravel: 10YR 6/2, light brownis t; 80% fine to ocarse sand (25% fine, 55% ; 15% gravel to 5/8"; subangular to subro d gravel are quartz, feldspar, and lithic fra	% medium, bunded; 5%			
435			SW- SM		loose; slightl medium, 10 ^o subrounded;	sand with silt and gravel: 10YR 5/4, yello y moist; 75% fine to coarse sand (30% fi % coarse); 15% gravel to 3/4"; subangula 10% silt, nonplastic; sand and gravel are d lithic fragments.	ne, 60% Ir to			

Notes: (1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs (2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs

bgs = below ground surface

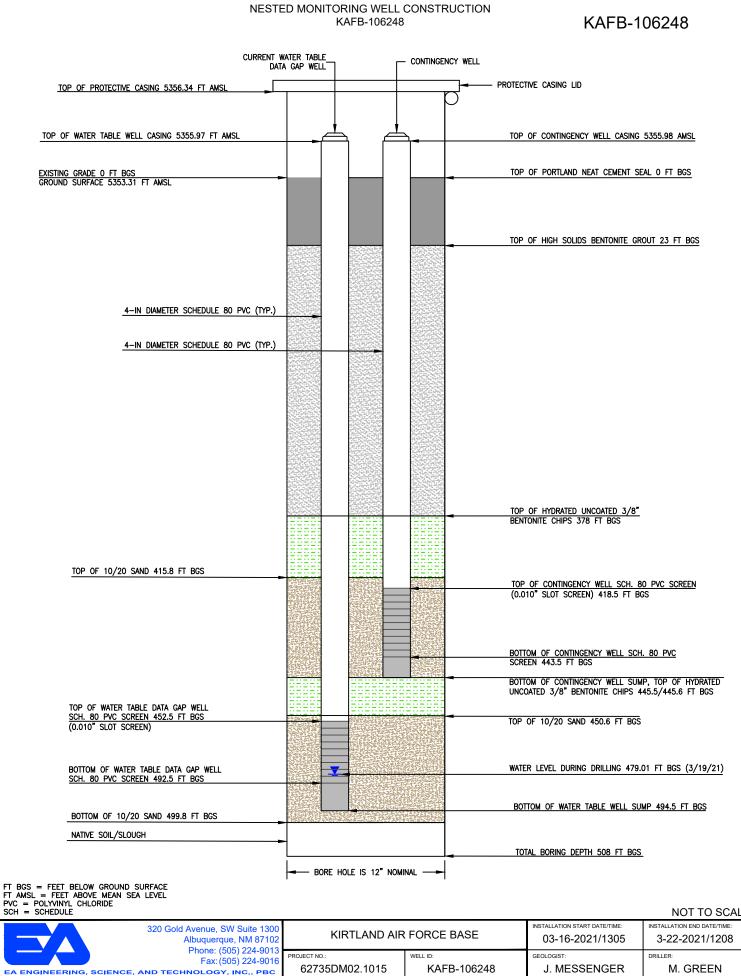
ft = foot(feet)

N/A = not applicable

		neering, s			Start Date:	(irtland AFB, New Mexico	WELL LOG Well ID: KAFB-106248 Page: 12 of 13			
Drilling Drill Bi Driller:	Metho t: Tric Mark		Rotary C Forrest		I Hammer in	nmer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Materia DTW After Completion (ft bgs): N/A Seal Materia		al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
(iii)	(nudd) Did	Samples Collected	uscs	Lithology		Sample Description		Completion Details		
	0.9		sw		moist; 80% fi	sand with gravel: 10YR 6/3, pale brown; lo ne to coarse sand (30% fine, 60% mediur gravel to 1"; subangular to subrounded; t	n, 10%	(1) (2) 4.5" OD Sch. 80 PVC Sump,		
445 450 6.5 SW- SM			loose; slightly medium, 10% subrounded;	sand with silt and gravel: 10YR 5/4, yellow y moist; 75% fine to coarse sand (30% fine 6 coarse); 15% gravel to 5/8"; subangular 10% silt, nonplastic; sand and gravel are l lithic fragments.	443.5-445.5 it bgs Hydrated 3 Bentonite C 445.6-450.1 bgs 10/20 Silica Sand. 450.6-493.8 it bgs PVC Scree					
455			sw		moist; 90% fi coarse); 10%	sand: 10YR 6/2, light brownish gray; loose ne to coarse sand (20% fine, 65% mediur gravel to 5/8"; subangular to subrounded aartz, feldspar, and lithic fragments	n, 15%	0.010" Slot 452:5-492:9 bgs		
460 465	3.8		SP		moist; 90% fi coarse sand; nonplastic; s	d sand: 10YR 6/2, light brownish gray; loo ne to medium sand (30% fine, 70% mediu 5% gravel to 3/8"; subangular to subroun and is quartz, feldspar, and lithic fragment hic fragments. At 460 ft, 95% sand; 5% si	um); trace ded; 5% silt, s; gravel is			
470	2.2									
475			sw		slightly moist 15% coarse)	sand with gravel: 10YR 5/2, grayish browr ; 60% fine to coarse sand (25% fine, 60% ; 40% gravel to 5/8"; subangular to subrou re quartz, feldspar, and lithic fragments.	medium,			

(1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs
 (2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs
 bgs = below ground surface
 B = bas(feet)

ft = foot(feet) N/A = not applicable


Notes:

		neering, S			Location: Start Date	2735DM02 Kirtland AFB, New Mexico : 3-16-2021 n Date: 3-22-2021		Well ID:	WELL LO KAFB-1062 13 of 13	
Drilling Drill B Driller	g Meth it: Tric Mark		Rotary C Forrest		l Hammer In	Boring Diameter (in):14" nominalWell Diameter:See Notes SectionDTW After Completion (ft bgs):N/A		rial(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
Depth (ft)	(vmqq) DIQ	Samples Collected	nscs	Lithology		Sample Description			Completion Details	ו
	4.0		sw		slightly mois 15% coarse	I sand with gravel: 10YR 5/2, grayish brown st; 60% fine to coarse sand (25% fine, 60%); 40% gravel to 5/8"; subangular to subrou are quartz, feldspar, and lithic fragments.	medium,		(1) (2)	
485			SP		fine to medi subangular	ed sand: 10YR 5/2, grayish brown; loose; n um sand (50% fine, 60% medium); trace co to subrounded; 5% silt, nonplastic; sand is d lithic fragments.	oarse sand;			
490	3.0		SP- SM		moist; 90% coarse sand	ed sand with silt: 10YR 5/2, grayish brown; fine to medium sand (40% fine, 60% mediu l; subangular to subrounded; 10% silt, non ldspar, and lithic fragments.	um); trace			4.5" 0D Sch. 8 PVC Sump, 492.5-494.5 ft bgs
500	1.0		ML			/6, yellowish brown; soft; slightly moist; nor tic; 90% silt; 10% clay.	nplastic to	Native Backfill / Slough 499.8-508 ft bgs		
505	0.8		SM		sand (35% f	7.5YR 4/3, brown; loose; soft; moist; 0% fin fine, 65% medium); trace coarse sand; sub ; 30% silt, nonplastic; sand is quartz, felds	angular to			

(1) KAFB-106248-418: 4.5" OD Sch. 80 PVC; blank riser, 0-418.5 ft bgs; 0.01" slot screen, 418.5-443.5 ft bgs
(2) KAFB-106248-452: 4.5" OD Sch. 80 PVC; blank riser, 0-452.5 ft bgs; 0.01" slot screen, 452.5-492.5 ft bgs
bgs = below ground surface
ft = foot(feet)

N/A = not applicable

Notes:

C:\Users\

Ë

8

- 5:26an

NOT TO SCALE

		Su	nda nsulting l	nce	5		LOG OF BORIN	G KAFB-10			
	KAFB-1 E SWI	0624 Bulk F MUs	oring Wel 8 to KAFE uels Facil ST-106/S , Albuque	3-106252 ity S-111	on	Started : 1/22/21 / 1255 Drilling Co. : Cascade Drilling L. Completed : 2/7/21 / 1400 Lead Driller : Forrest Chattin-Eva Rig : Speedstar 50K Geologist : Justin Fitch Casing Diam : 13-3/8" (0-200')/11-3/4" (to TD) Northing (Grid) : 1473604.18 Drilling Method : ARCH (rotary/under-reamer bit) Easting (Grid) : 1542864.62					
Depth in Feet	USCS USCS PID (ppm) Grain Size Distribution Mineralogy Q/F/L GRAPHIC				GRAPHIC	W			Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27		
0						Surface disturbe	ed via hydrovac pot-holing.				
	AR										
	ML		0% CL 20% F 15G	70% Q 15% F 15% L		Silt with sand ar plasticity; 65% s	nd gravel (ML), 7.5 YR 6/3; soft; 6 silt; 20% fine sands; 15% gravel (dry; medium (up to 4cm)			
		0	95% CL 5% F Tr-G	80% Q 10% F 10% L		Clay (CL); 7.5 Y 5% fine sand; tr	/R 5/4; soft; dry; medium plasticit ace gravel	y; 95% clay;	— Portland Cement		
- - - - - - - - - - - - - - - - - - -			95% CL 5% F	80% Q 10% F 10% L		Clay (CL); 7.5 Y 5% fine sand	/R 5/4; soft; dry; medium plasticit	y; 95% clay;			
20-		0.2	85% CL 15% F Tr-G	80% Q 10% F 10% L		plasticity; 85% c sub-rounded to moisture provide	(CL); 7.5 YR 4/4; soft; moist; med clay; 15% fine sand; trace gravel; sub-angular. Notes: clay present ed by dust suppression system using dust suppression				
25-	CL		70% CL 20% F 5% M 5% C	50% Q 30% F 20% L		70% clay; 20%	(CL); 7.5 YR 4/6; firm; moist; higł fine sand; 5% medium sand; 5% ded to sub-angular	n plasticity; coarse	FVC		
30-		0.1	55% CL 25% F 10% M 10% C	70% Q 20% F 10% L		Sandy clay (CL) 55% clay; 25% sand; angular to); 7.5 YR 4/6; soft; moist; mediun fine sand; 10% medium sand; 10 o sub-angular	n plasticity; % coarse	- Bentonite Grout		
35			55% CL 45% F	60% Q 30% F 10% L); 7.5 YR 4/6; soft; moist; mediun fine sand; sub-rounded	n plasticity;			
40-											

05-16-2021 U:\Geographics Logging\From Marc\KAFB-106249_JDF.bor

	- C	Su	nda	nce	5	LOG OF BORING KAFB-106249				
Da	KAFB-1	10624	oring Wel 8 to KAFE	3-106252	on	Started : 1/22/21 / 1255 Drilling Co. Completed : 2/7/21 / 1400 Lead Driller	(Page 2 of 13) : Cascade Drilling L.P. : Forrest Chattin-Evans			
			uels Facil ST-106/S	•		Rig: Speedstar 50KGeologistCasing Diam: 13-3/8" (0-200')/11-3/4" (to TD)Northing (Grid)	: Justin Fitch : 1473604.18			
		-	, Albuque			Drilling Method : ARCH (rotary/under-reamer bit) Easting (Grid)	: 1542864.62			
Depth in Feet					GRAPHIC	DESCRIPTION	Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27			
40	SM	0.1	30% ML 70% F	80% Q 10% F 10% L		Silty sand (SM); 7.5 YR 4/6; moist; loose; 30% silt; 70% fine sand; sub-rounded				
45	CL		95% CL 5% F	25% Q 10% F 65% L		Clay (CL); 7.5YR 4/4; moist; hard; high plasticity; 95% clay; 5% fine sand; sub-rounded				
50	SW-SM	0.2	15% ML 55% F 25% M 5% C	40% Q 30% F 30% L		Well-graded sand with silt (SW-SM); 7.5 YR 4/4; moist; loose; 15% silt; 55% fine sand; 25% medium sand; 5% coarse sand; sub-rounded to sub-angular				
55	GC			40% Q 20% F 40% L		Clayey gravel with sand (GC); 7.5 YR 4/4; moist; compact; 40% clay; 5% fine; 5% medium; 10% coarse; 40% gravel; Sub-angular to sub-rounded sand; Sub-angular gravel; well-graded	4" Sch. 80 PVC			
60	CL	0.1	70% CL 30% F	50% Q 20% F 30% L		Clay with sand (CL); 7.5 YR 4/4; firm, moist, medium plasticity; 70% clay; 30% fine sand; sub-rounded	- Bentonite Grout - 4" Sch. 80 PVC			
65			30% CL 20% F 20% M 20% C 10% G	40% Q 30% F 30% L		Clayey sand (SC); 7.5 YR 4/4; moist; loose; 30% clay; 20% fine sand; 20% medium sand; 20% coarse sand; 10% gravel; sub-rounded to sub-angular; Note: clay balls .25-1.5" cm in diameter.				
70	SC	0.1	20% CL 70% F 5% M 5% C Tr-G	60% Q 25% F 15% L		Clayey sand (SC); 7.5 YR 4/4; moist; loose; 20% clay; 70% fine sand; 5% medium sand; 5% coarse sand; Trace gravel; Sub-angular to sub-rounded sand; Sub-rounded to rounded gravel	- 4" Sch. 80 PVC			
75	SW-SM		15% ML 65% F 15% M 5% C	60% Q 30% F 10% L		Well-graded sand with silt (SW-SM); 7.5 YR 4/6, moist, loose, 15% silt; 65% fine sand; 15% medium sand; 5% coarse sand; sub-rounded to sub-angular				
-										

05-16-2021 U:\Geographics Logging\From Marc\KAFB-106249_JDF.bor

.

		Su	nda	nce	5		LOG OF BORIN	NG KAFB-10)6249
	1120	Co	nsulting II	nc.	PEARS				(Page 3 of 13)
Da			toring Wel 8 to KAFE	l Installati 3-106252	on	Started Completed	: 1/22/21 / 1255 : 2/7/21 / 1400	Drilling Co. Lead Driller	: Cascade Drilling L.P. : Forrest Chattin-Evans
			uels Facil ST-106/S			Rig Casing Diam	: Speedstar 50K : 13-3/8" (0-200')/11-3/4" (to TD)	Geologist Northing (Grid)	: Justin Fitch : 1473604.18
	Kirtland	AFB	, Albuque	rque, NM		Drilling Method	: ARCH (rotary/under-reamer bit)	Easting (Grid)	: 1542864.62
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27
80		0.3	10% ML 50% F 40% M	50% Q 35% F 15% L			nd with silt (SW-SM); 7.5 YR 4/ , 50% fine sand; 40% medium s		
85-	SW-SM		10% ML 50% F 40% M	50% Q 35% F 15% L		Same as above	e (80 ft)		
90-		2.2	10% ML 50% F 40% M	50% Q 35% F 15% L		Same as above	e (80 ft)		
95	SP-SM		10% ML 80% F 10% M	50% Q 40% F 10% L		loose; 10% silt; sub-rounded to sample, driller h cyclone and ho	sand with silt (SP-SM); 7.5 YR 4 ; 80% fine sand; 10% medum sa sub-angular; Note: after collect had to pause to clear clay plugs se I to clean clay plugs out of cyclo	and; ting this out of	4" Sch. 80 PVC
100		0.9	75% CL 10% F 5% M 5% C 5% G	50% Q 25% F 25% L		75% clay, 10%	(CL); 7.5 YR 4/4; moist; hard; h fine sand; 5% medium sand; 5 ⁶ el; sub-rounded to sub-angular;	% coarse	- Bentonite Grout - 4" Sch. 80 PVC
105-	CL		75% CL 10% F 10% M 5% C	50% Q 25% F 25% L		75% clay; 10%	(CL); 7.5YR 4/4; moist, firm, hig fine sand; 10% medium sand; { ded to sub-angular; Note: clay i	5% coarse	
110	SC	2.5	25% CL 40% F 20% M 10% C 5% G	50% Q 40% F 10% L		fine sand; 20% sub-rounded sa	SC); 7.5 YR 4/6; moist; loose; 25 medium sand; 10% coarse san and; sub-rounded to sub-angula Clay present in balls <3cm	d; 5% gravel;	
115-	ML		50% ML 40% F 10% M	50% Q 40% F 10% L			; 7.5 YR 5/6; moist; soft; mediur ine sand; 10% medium sand; su		
120-				I					6455 H 1855

05-16-2021 U:\Geographics Logging\From Marc\KAFB-106249_JDF.bor

	1	Su	nda nsulting li	nce	5		LOG OF BORIN	G KAFB-10		
	ata Car	Monit		Unstallati	CEARS?	Start-1	: 1/22/21 / 1255	Drilling Co.	(Page 4 of 13)	
Da	KAFB-1	0624	oring Wel 8 to KAFE	3-106252	on	Started Completed	: Cascade Drilling L.P. : Forrest Chattin-Evans			
			uels Facil ST-106/S	•		Rig: Speedstar 50KGeologist: Justin FitchCasing Diam: 13-3/8" (0-200')/11-3/4" (to TD)Northing (Grid): 1473604.18				
	Kirtland	AFB	, Albuque	rque, NM		Drilling Method	: ARCH (rotary/under-reamer bit)	Easting (Grid)	: 1542864.62	
Depth in Feet	nscs	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27	
120-		1.6	10% ML 20% F	50% Q 30% F	[]]]]	Well-graded sar	nd with clay (SW-SC); 7.5 YR 4/4	1; moist;		
-	sw-sc		70% M	20% L		sub-rounded to	r; 20% fine sand; 70% medium sa sub-angular	and;		
					////	NOTE: Paused	to clean clay plugs out of cyclone	e/hose		
125			25% CL 5% F	50% Q 25% F		Clavev sand (St	C); 7.5 YR 4/4; moist; loose; 25%	6 clav: 5%		
-			20% M 50% C	25% L		fine sand; 20% i sub-rounded to	medium sand; 50% coarse sand	;		
	SC				1111		J.			
130-		0.9	90% CL	40% Q	////					
-			10% F	20% F 40% L		Clay (CL); 7.5 Y 10% fine sand; s	′R 4/4; moist; firm; high plasticity sub-rounded to sub-angular	; 90% clay;		
135	CL		90% CL 10% F	40% Q 20% F 40% L		Same as above	(130 ft)		4" Sch. 80 PVC	
140		2.4	80% CL 10% F 10% M	40% Q 20% F 40% L		plasticity; 80% c	(CL); 7.5 YR 4/4, moist, firm, med clay, 10% fine sand, 10% mediur ote: clay in 1-5mm balls	dium n sand;	- Bentonite Grout - 4" Sch. 80 PVC	
145-			0% CL 80% ML 20% F	34% Q 33% F 33% L		Silt with sand (M plasticity; 80% s	/IL); 7.5 YR 4/6; moist; soft; medi silt; 20% fine sand; sub-rounded	ium to		
-			0% M 0% C 0% G			sub-angular; No from above	te: some <3mm clay balls, possi	ibly remnants		
150- - - - - - - - -	ML	1.8	80% ML 10% F 10% M Tr-C	60% Q 20% F 20% L		Silt with sand (M plasticity; 80% s coarse sand; Su	/L); 7.5 YR 4/6; moist; soft; medi silt; 10% fine sand; 10% medium ıb-angular	ium sand; Trace		
			80% ML 10% F 10% M Tr-C	60% Q 20% F 20% L		Same as above	(150 ft)			
160-										

		0.0	nda nsulting li	ne.	FEARS			(Page 5 of 13)
	KAFB-	10624	oring Wel 8 to KAFE uels Facil		on	Started : 1/22/21 / 1255 Completed : 2/7/21 / 1400 Rig : Speedstar 50K	Drilling Co. Lead Driller Geologist	: Cascade Drilling L.P. : Forrest Chattin-Evans : Justin Fitch
	SW	MUs	ST-106/S , Albuque	S-111	I	Casing Diam : 13-3/8" (0-200')/11-3/4" (to TD) Drilling Method : ARCH (rotary/under-reamer bit)	Northing (Grid) Easting (Grid)	: 1473604.18 : 1542864.62
Depth in Feet	nscs	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		Well1: KAFB-106249-45 Well2: KAFB-106249-41 Elev.: 5353.27
160		0.9	80% ML 10% F 10% M Tr-C	60% Q 20% F 20% L		Same as above (150 ft)		
- 165 - - - - - - - - - - - - - - - - - - -	ML		58% ML 30% F 10% M 2% C	30% Q 10% F 60% L		Sandy silt (ML); 7.5 YR 4/4; soft; dry; Low plasticit silt; 30% fine sand; 10% medium sand; 2% coarse Sub-rounded to sub-angular	y; 58% sand;	
- 170 - - - - - - - - - - -		1.6	95% F 5% M	60% Q 25% F 15% L		Poorly-graded sand (SP); 10 YR 5/3; dry; loose; 9 sand; 5% medim sand; Sub-rounded to sub-angul	5% fine ar	
175 - - - - - - - - -	SP		95% F 5% M	60% Q 25% F 15% L		Same as above (170 ft)		4" Sch. 80 PVC
- - - - - - - - - - - - - - - - - - -		0.6	95% F 5% M	60% Q 25% F 15% L		Same as above (170 ft)		- Bentonite Grout - 4" Sch. 8 PVC
185 - - - - - - - - - - - - - -		-	70% F 10% M 10% C 10% G	75% Q 15% F 10% L		Well-graded sand (SW); 10 YR 5/4; moist; loose; 7 sand; 10% medium sand; 10% coarse sand, 10% Sub-rounded to sub-angular; Note: Gravel < 1cm	70% fine gravel;	
- 190 - - - - - - - - - - - - - - - - - - -	SW	0.5	70% F 10% M 10% C 10% G	75% Q 15% F 10% L		Same as above (185 ft)		
195 			70% F 10% M 10% C 10% G	75% Q 15% F 10% L		Same as above (185 ft)		

Sundanc	e
Consulting Inc.	
	FEAR

LOG OF BORING KAFB-106249

(Page 6 of 13)

Da	KAFB-1 E SW	0624 Bulk F MUs \$	oring Wel 8 to KAFE uels Facil ST-106/SS , Albuquei	3-106252 ity S-111	on	Started: 1/22/21 / 1255Drilling CoCompleted: 2/7/21 / 1400Lead DrilleRig: Speedstar 50KGeologistCasing Diam: 13-3/8" (0-200')/11-3/4" (to TD)Northing (CoDrilling Method: ARCH (rotary/under-reamer bit)Easting (Co	er : Forrest Chattin-Evans : Justin Fitch Grid) : 1473604.18
Depth in Feet	uscs	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27
200		1.4	50% F 50% M	60% Q 20% F 20% L		Poorly-graded sand (SP); 10 YR 5/4; moist; loose; 50% fine sand; 50% medium sand; Sub-rounded NOTE: Stopped using dust suppression	
205	SP		50% F 50% M	60% Q 20% F 20% L		Same as above (200 ft)	
210		1	40% F 50% M 5% C 5% G	60% Q 30% F 10% L		Well-graded sand (SW); 10 YR 5/4; moist; loose; 40% fine sand; 50% medium sand; 5% coarse sand; 5% gravel; Sub-rounded	
215	SW		70% F 20% M 5% C 5% G	60% Q 30% F 10% L		Well-graded sand (SW); 10 YR 5/4; moist; loose; 70% fine sand; 20% medium sand; 5% coarse sand; 5% gravel; Sub-rounded	
220	CL	2.1	60% CL 25% F 5% M 5% C 5% G	60% Q 20% F 20% L		Sandy clay (CL); 10 YR 5/4; moist; soft; medium plasticity; 60% clay; 25% fine sand; 5% medium sand; 5% coarse sand; 5% gravel (< 2cm); sub-rounded sand; sub-rounded to rounded gravel;	- Bentonite Grout - 4" Sch. 80 PVC
225			10% CL 40% F 40% M 10% C Tr-% G	50% Q 30% F 20% L		Well-graded sand with clay (SW-SC); 10 YR 5/4; moist; loose; 10% clay; 40% fine sand; 40% medium sand; 10% coarse sand; trae gravel; sub-rounded to sub-angular	
	SW	2.3	65% F 25% M 10% C	70% Q 10% F 20% L		Well-graded sand (SW); 10 YR 5/4; moist; loose; 65% fine sand; 25% medium sand; 10% coarse sand; sub-rounded to sub-angular	
	SW-SM		35% ML 30% F 10% M 15% C 10% G	80% Q 10% F 10% L		Silty sand (SM); 10 YR 6/3; dry; loose; 35% silt; 30% fine sand; 10% medium sand; 15% coarse sand; 10% gravel (< 1 cm); sub-angular to subrounded sand; sub-rounded gravel	
240-							

	And C	Su	nda	nce	5		LOG OF BORIN	G KAFB-10	06249
		Co	nsulting I	nc.	PEARS				(Page 7 of 13)
	KAFB- I SW	a Gap Monitoring Well Installation (AFB-106248 to KAFB-106252 Bulk Fuels Facility SWMUs ST-106/SS-111 (irtland AFB, Albuquerque, NM				Completed Rig Casing Diam	: 1/22/21 / 1255 : 2/7/21 / 1400 : Speedstar 50K : 13-3/8" (0-200')/11-3/4" (to TD) : ARCH (rotary/under-reamer bit)	Drilling Co. Lead Driller Geologist Northing (Grid) Easting (Grid)	: Cascade Drilling L.P. : Forrest Chattin-Evans : Justin Fitch : 1473604.18 : 1542864.62
	Trituane		, Aibuque			2			
Depth in Feet	nscs	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27
240		1.7	60% F 20% M 10% C 10% G	70% Q 15% F 15% L		sand; 20% mediu	d (SW); 10 YR 5/4; moist; loose; um sand; 10% coarse sand; 10% sub-angular sand; sub-angular g	6 gravel;	
245			70% F 20% M 10% C	70% Q 20% F 10% L		Well-graded san sand; 20% medit sub-angular	d (SW); 10 YR 5/3; moist; loose; um sand; 10% coarse sand; sub	70% fine -rounded to	
250 - - - - - - -	SW	1.3	70% F 20% M 10% C	70% Q 20% F 10% L		Same as above ((245 ft)		
255			90% F 8% M 2% C	80% Q 10% F 10% L		Well-graded san sand; 8% mediur sub-angular	d (SW); 10 YR 5/3; moist; loose; m sand; 2% coarse sand; sub-ro	90% fine unded to	
260	SP	0.4	90% F 10% M	90% Q 5% F 5% L			and (SP); 10 YR 6/3; dry; loose; um sand; sub-angular to sub-rou		- Bentonite Grout
265	SW		45% F 20% M 10% C 25% G	70% Q 20% F 10% L		Well-graded san 45% fine sand; 2 gravel; sub-round	d with gravel (SW); 10 YR 4/4; n 20% medium sand; 10% coarse s ded	noist; loose; sand; 25%	PVC
270	SC	0.3	20% CL 55% F 5% M 5% C 15% G	85% Q 10% F 5% L		clay; 55% fine sa	n gravel (SC); 10 YR 5/3; moist; l and; 5% medium sand; 5% coars cm); sub-rounded; Note: clay pre 5cm	se sand;	
275	sw		80% F 10% M 10% G	70% Q 20% F 10% L		sand; 10% mediu	d (SW); 10 YR 5/3; moist; loose; um sand; 10% gravel (< 2cm); si and; sub-rounded to rounded gra	ub-rounded	
280-									

4

05-16-2021 U:\Geographics Logging\From Marc\KAFB-106249_JDF.bor

Sundance Consulting Inc.	
Consulting Inc.	
	FEAR

LOG OF BORING KAFB-106249

(Page 8 of 13)

Da	KAFB- I SW	10624 Bulk F MUs :	oring Wel 8 to KAFE uels Facil ST-106/SS , Albuque	3-106252 lity S-111	on	Completed : 2/7 Rig : Sp Casing Diam : 13	22/21 / 1255 7/21 / 1400 eedstar 50K -3/8" (0-200')/11-3/4" (to TD) RCH (rotary/under-reamer bit)	Drilling Co. Lead Driller Geologist Northing (Grid) Easting (Grid)	: Cascade Drilling L.P. : Forrest Chattin-Evans : Justin Fitch : 1473604.18 : 1542864.62
Depth in Feet	SUSS	PID (ppm)	A %05 Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27
200	sw	0.4	50% F 25% M 10% C 15% G	60% Q 20% F 20% L		50% fine sand; 25% gravel; sub-rounded	ith gravel (SW); 10 YR 5/3; n medium sand; 10% coarse : to sub-angular	sand; 15%	
285	CL	-	90% CL 5% F 5% G	50% Q 20% F 30% L			4; moist; soft; medium plastic 5% gravel; sub-angular to su		
290		1.9	10% CL 70% F 10% M 10% C	50% Q 25% F 25% L		loose; 10% clay; 70	ith clay (SW-SC); 10 YR 4/4; % fine sand; 10% medium sa unded to sub-angular	; moist; and; 10%	
295	SW		60% F 15% M 15% C 10% G	60% Q 20% F 20% L		sand; 15% medium	SW); 10 YR 5/4; moist; loose; sand; 15% coarse sand; 10% o sub-rounded sand; sub-rou	∕₀ gravel (<	4" Sch. 80 PVC
300	CL	0	75% CL 5% F 5% M 10% C 5% G	50% Q 25% F 25% L		plasticity; 75% clay; coarse sand; 5% gra	; 10 YR 5/3; soft; moist; med 5% fine sand; 5% medium s avel (< 0.5cm); sub-angular s lar gravel; Note: clay loose a	and; 10% sand;	- Bentonite Grout - 4" Sch. 80 PVC
305		-	75% F 10% M 10% C 5% G	70% Q 20% F 10% L		sand; 10% medium	SW); 10 YR 5/3; moist; loose; sand; 10% coarse sand; 5% ed to sub-angular sand; sub-a	gravel (<	
310	sw	0	50% F 50% M	60% Q 20% F 20% L			SW); 10 YR 5/3; dry; loose; 5 sand; sub-angular to sub-rou		PVC
315			40% F 35% M 20% C 5% G	50% Q 20% F 30% L		sand, 35% medum s sub-rounded sand; s	SW); 10 YR 5/3; moist; loose; sand; 20% coarse sand; 5% sub-angular to angular grave ss. 60' drive casing pulled ba	gravel; I	
320-							led with under-reamer bit. Co		

SWIRE O		
DATE DATE SU	undan	ce.
Co	nsulting Inc.	
	See all real real sectors.	A PEAR

LOG OF BORING KAFB-106249

(Page 9 of 13)

Da	KAFB-7	10624 Bulk F MUs \$	oring Wel 8 to KAFE uels Facil ST-106/SS , Albuque	ity S-111	on	Completed Rig Casing Diam	: 1/22/21 / 1255 : 2/7/21 / 1400 : Speedstar 50K : 13-3/8" (0-200')/11-3/4" (to TD) : ARCH (rotary/under-reamer bit)	Drilling Co. Lead Driller Geologist Northing (Grid) Easting (Grid)	: Cascade Drilling L.P. : Forrest Chattin-Evans : Justin Fitch : 1473604.18 : 1542864.62
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27
320	SP	0.3	90% M 10% C	70% Q 15% F 15% L			and (SP); 10 YR 6/3; dry; loose um sand; sub-angular to sub-ro		
325	sw		50% F 20% M 20% C 10% G	60% Q 20% F 20% L			d (SW); 10 YR 6/3, dry, loose, { um sand; 20% coarse sand; 10 ub-rounded		
330	GW	0.5	15% F 5% M 15% C 65% G	80% Q 15% F 5% L		15% fine sand; 5	vel with sand (GW); 10 YR 6/3; 5% medium sand; 15% coarse s sub-rounded sand; sub-roundec vel	sand; 65%	
335			30% F 15% M 15% C 40% G	85% Q 10% F 5% L		30% fine sand; 1	d with gravel (SW); 10 YR 6/3; I5% medium sand; 15% coarse sub-rounded to rounded sand; s	sand; 40%	
340	SW	0.1	10% F 45% M 45% C Tr-G	30% Q 30% F 40% L			d (SW); 10 YR 6/3; dry; loose; um sand; 45% coarse sand; tra		4" Sch. 80 PVC
345			10% F 45% M 45% C Tr-G	30% Q 30% F 40% L		Same as above	(340 ft)		
345	GW	0.3	30% F 10% C 60% G	70% Q 20% F 10% L			vel with sand (GW); 10 YR 6/3; 10% coarse sand; 60% gravel (• ub-rounded		
355	sw		15% F 15% M 30% C 40% G	70% Q 20% F 10% L		15% fine sand; 1	d with gravel (SW); 10 YR 6/3; 15% medium sand; 30% coarse sub-rounded sand; sub-rounder /el	sand; 40%	
360-									

	Sundance				5	LOG OF BORING KAFB-1	06249
		Co	nsulting li	nc.	FEARS		(Page 10 of 13)
	KAFB- I SW	10624 Bulk F MUs \$	oring Wel 8 to KAFE uels Facil ST-106/SS , Albuque	lity S-111	on 	Started: 1/22/21 / 1255Drilling Co.Completed: 2/7/21 / 1400Lead DrillerRig: Speedstar 50KGeologistCasing Diam: 13-3/8" (0-200')/11-3/4" (to TD)Northing (GridDrilling Method: ARCH (rotary/under-reamer bit)Easting (Grid	
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27
360	SP	1.6	100% F	70% Q 20% F 10% L		Poorly-graded sand (SP); 10 YR 6/4; dry; loose; 100% fine sand; sub-rounded to rounded	
365	SW		50% F 50% M	60% Q 25% F 15% L		Well-graded sand (SW); 10 YR 6/4; dry; loose; 50% fine sand; 50% medium sand; sub-rounded to sub-angular	
370		0.4	100% F	70% Q 20% F 10% L		Poorly-graded sand (SP); 10 YR 6/4; dry; loose; 100% fine sand; sub-rounded to rounded	Bentonite Grout
375	SP		100% F	70% Q 20% F 10% L		Same as above (370 ft)	4" Sch. 80 PVC
380		1.7	60% F 20% M 20% C	75% Q 15% F 10% L		Well-graded sand (SW); 10 YR 6/3; dry; loose; 60% fine sand; 20% medium sand; 20% coarse sand; sub-rounded to rounded	
385			40% F 30% M 30% C Tr-G	70% Q 20% F 10% L		Well-graded sand (SW); 10 YR 5/3; moist; loose; 40% fine sand; 30% medium sand; 30% coarse sand; trace gravel (< 0.75cm); sub-rounded to sub-angular sand; sub-angular gravel	
390-	SW	1.8	25% F 25% M 20% C 30% G	60% Q 20% F 20% L		Well-graded sand with gravel (SW); 10 YR 6/2; dry; loose; 25% fine sand; 25% medium sand; 20% coarse sand; 30% gravel (< 0.5cm); sub-rounded to sub-angular	– Hydrated Granular Bentonite
395			40% F 20% M 15% C 25% G	80% Q 15% F 5% L		Well-graded sand with gravel (SW); 10 YR 6/3; dry; loose; 40% fine sand; 20% medium sand; 15% coarse sand; 25% gravel (< 0.5 cm); sub-rounded to sub-angular	
400-							

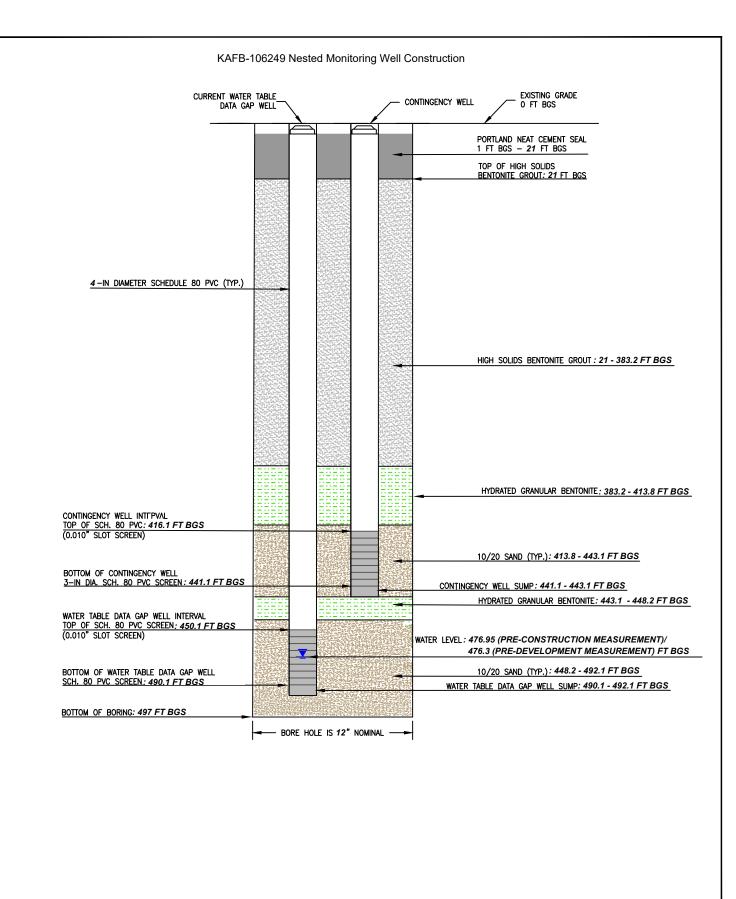
4

SWEE O	
Sundance	
Consulting Inc.	
	PEAS

LOG OF BORING KAFB-106249

(Page 11 of 13)

	Data Gap Monitoring Well Installation KAFB-106248 to KAFB-106252 Bulk Fuels Facility SWMUs ST-106/SS-111 Kirtland AFB, Albuquerque, NM					KAFB-106248 to KAFB-106252 Completed : 2/7/21 / 1400 Lead Driller Bulk Fuels Facility Rig : Speedstar 50K Geologist SWMUs ST-106/SS-111 Casing Diam : 13-3/8" (0-200')/11-3/4" (to TD) Northing (Grid					Lead Driller			
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27					
400-	-	0.6	10% F 40% M 30% C 20% G	50% Q 30% F 20% L		10% fine sand;	nd with gravel (SW); 10 YR 6/3; dr 40% medium sand; 30% coarse s sub-rounded to sub-angular							
405			10% F 35% M 35% C 20% G	60% Q 25% F 15% L		10% fine sand;	nd with gravel (SW); 10 YR 6/3; dr 35% medium sand; 35% coarse s sub-rounded to sub-angular sand avel	and; 20%	4" Sch. 80 PVC Hydrated Granular Bentonite					
410-	-	0.3	10% F 35% M 35% C 20% G	60% Q 25% F 15% L		Same as above	e (405 ft)							
415-	sw		10% F 45% M 40% C 5% G	70% Q 20% F 10% L		sand; 45% med	nd (SW); 10 YR 6/3; dry; loose; 10 lium sand; 40% coarse sand; 5% g inded to sub-angular)% fine gravel (<						
420-		2.5	50% F 50% M	75% Q 15% F 10% L			nd (SW); 10 YR 6/3; moist; loose; lium sand; sub-rounded to sub-ang							
425-			10% F 40% M 50% C	50% Q 30% F 20% L		Well-graded sa 40% medium sa sub-angular	nd (SW); 10 YR 6/3; moist; 10% fi and; 50% coarse sand; sub-rounde	ne sand; ed to	PVC Sand Pack					
430-	SP	0.3	95% F 5% M	75% Q 15% F 10% L		Poorly-graded s sand; 5% medi	sand (SP); 10 YR 6/3; dry; loose; S um sand; sub-rounded to rounded	95% fine	PVC Screet					
425-	sw		10% F 30% M 30% C 30% G	60% Q 25% F 15% L		10% fine sand;	nd with gravel (SW); 10 YR 6/3; di 30% medium sand; 30% coarse s sub-rounded to sub-angular sand avel	and; 30%						


SNUCCE O	
Sunda	ince
Consulting	Inc.
	PEAB

LOG OF BORING KAFB-106249

(Page 12 of 13)

	KAFB-1 E SW	10624 Bulk F MUs \$	8 to KAFE Tuels Facil ST-106/S Albuque	lity S-111		Started : 1/22/21 / 1255 Drilling Co. : Cascade Drilling L.P. Completed : 2/7/21 / 1400 Lead Driller : Forrest Chattin-Evans Rig : Speedstar 50K Geologist : Justin Fitch Casing Diam : 13-3/8" (0-200')/11-3/4" (to TD) Northing (Grid) : 1473604.18 Drilling Method : ARCH (rotary/under-reamer bit) Easting (Grid) : 1542864.62
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27 DESCRIPTION
440 — - - - - - - -		0.3	80% F 20% M	85% Q 10% F 5% L		Well-graded sand (SW); 10 YR 6/3; dry; loose; 80% find sand; 20% medium sand; sub-rounded PVC Screer Well Sump
445 	sw		80% F 20% M	85% Q 10% F 5% L		Same as above (440 ft) Granular Bentonite -4" Sch. 80 PVC
450 	SP	0.6	100% F	80% Q 10% F 10% L		Poorly-graded sand (SP); 10 YR 6/2; dry; loose; 100% fine sand; sub-rounded
455— - - - - -			10% F 20% M 40% C 30% G	40% Q 30% F 30% L		Well-graded sand with gravel (SW); 10 YR 6/3; dry; loose; 10% fine sand; 20% medium sand; 40% coarse sand; 30% gravel (< 1 cm); sub-angular; Note: Most gravel < 0.5cm
460 		0.3	25% F 25% M 20% C 30% G	50% Q 30% F 20% L		Well-graded sand with gravel (SW); dry; loose; 25% fine sand; 25% medium sand; 20% coarse sand; 30% gravel (< 1cm); sub-angular to sub-rounded sand; sub-rounded to rounded gravel
465 	sw		25% F 25% M 20% C 30% G	50% Q 30% F 20% L		Same as above (460 ft)
470		0.1	20% F 25% M 35% C 20% G	40% Q 30% F 30% L		Well-graded sand with gravel (SW); dry; loose; 20% fine sand; 25% medium sand; 35% coarse sand; 20% gravel; sub-angular to sub-rounded
475— 			80% F 15% M 5% C	80% Q 15% F 5% L		Well-graded sand (SW); 10 YR 5/3; moist; loose; 80% fine sand; 15% medium sand; 5% coarse sand; rounded to sub-rounded
- - - 480-						NOTE: First moist cuttings at 475'; Static water level later confirmed via a water level meter at 476.95'

			Su	nda nsulting I	nce	5	LOG OF	BORING	KAFB-10	
	Da	KAFB-	10624	toring Wel 8 to KAFE Fuels Faci		On	Started : 1/22/21 / 1255 Completed : 2/7/21 / 1400		Drilling Co. Lead Driller	(Page 13 of 13) : Cascade Drilling L.P. : Forrest Chattin-Evans
-		SW	MUs	ST-106/S , Albuque	S-111		Rig: Speedstar 50KCasing Diam: 13-3/8" (0-200')/11-3Drilling Method: ARCH (rotary/under-	8/4" (to TD)	Geologist Northing (Grid) Easting (Grid)	: Justin Fitch : 1473604.18 : 1542864.62
	Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIP	ΓΙΟΝ		Well1: KAFB-106249-450 Well2: KAFB-106249-416 Elev.: 5353.27
	480		1.3	75% F 15% M 10% C	75% Q 15% F 10% L		Well-graded sand (SW); 10 YR 5/3; sand; 15% medium sand; 10% coar ounded	moist; loose; 75 se sand; sub-rou	% fine Inded to	
	485	sw		80% F 15% M 5% C	75% Q 15% F 10% L		Well-graded sand (SW); 10 YR 5/3; sand; 15% medium sand; 5% coars	moist; loose; 80' e sand; sub-roun	% fine ided	4" Sch. 80 PVC Screen Sand Pack
	490		0.9	80% F 15% M 5% C	75% Q 15% F 10% L		Same as above (485 ft)			Well Sump
	495 - - -			80% F 15% M 5% C	75% Q 15% F 10% L		Same as above (485 ft) NOTE: Flooded well with approx. 44	00 gal water		
	500									
3-106249_JDF.bor										
05-16-2021 U:\Geographics Logging\From Marc\KAFB-106249_JDF.bor	510									
021 U:\Geographics Lc	515 - - - - - - -									
05-16-2(520-									

~	Northing: 1473604.18				
ē	Easting: 1542864.62 Elev: 5353.27				NOT TO SCALE BGS=BELOW GROUND SURFACE FT=FEET
ŝ	DATA GAP MONITORING WELL INSTALLATION			INSTALLATION START DATE/TIME:	INSTALLATION END DATE/TIME:
_	KAFB-106248 TO KAFB-106252 BULK FUELS FACILITY	KIRTLAND AIR	FORCE BASE	01/22/2021 - 1255 Hours	02/10/2021 - 1400 Hours
	SOLID WASTE MANAGEMENT UNITS ST-106/SS-111	Contract NO .:	WELL ID:	GEOLOGIST:	DRILLER:
GAD F	KIRTLAND AIR FORCE BASE, NEW MEXICO	W912PP-17-C-0028	KAFB-106249	Justin Fitch	Forrest Chattin-Evans

4:39pm

	<u> </u>	Su	nsulting I	nce	5	LOG OF BORING	KAFB-10		
	KAFB-1 E SW	10624 Bulk F MUs	toring Wel 8 to KAFE Fuels Facil ST-106/SS , Albuque	3-106252 ity 5-111	on	Started: 2/11/21 / 0800Drilling Company: Cascade DrillingCompleted: 2/18/21 / 1600Lead Driller: Mark GreenRig: Speedstar 50KGeologist: Justin FitchCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Northing (Grid): 1473154.90Drilling Method: ARCH (tri-cone bit)Easting (Grid): 1542509.92			
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55	
0 	AR	0.8	80% ML	70% Q		The upper 10' were not logged due to disturbance du utility locate activities. Silt with sand (ML); 7.5 YR 5/6; soft; moist; medium	uring	-Portland Cement	
15	ML		10% F 5% M 5% C 80% ML 10% F Tr-M 5% C 5% G	15% F 15% L 70% Q 15% F 15% L		Silt with sand (ML); 7.5 YR 5/6; soft; moist; medium sand 5% coarse sands; sub-angular to sub-rounded. Silt with sand (ML); 7.5 YR 5/6; soft; moist; medium plasticity; 80% silt; 10% fine sands; 5% coarse sands; gravel sub-angular to sub-rounded. Note: Trace amo of medium sands and gravel (< 2cm). Gravel Q/F/L: 25/25/50.	s; 5%		
20	CL	1.3	95% CL 5% F Tr-G	85% Q 5% F 10% L		Clay (CL); 7.5 YR 5/6; firm; moist; high plasticity; 955 5% fine sands; rounded to sub-rounded. Note: Trace amounts of gravel (< 0.75cm) and clay clumps (< 0.5 Gravel100% lithics.	,	PVC 4" Sch. 80 PVC Bentonite Grout	
25			40% CL 45% ML 10% F 5% C	80% Q 10% F 10% L		Silt with sand (ML); 7.5 YR 5/6; firm; moist; medium plasticity; 40% clay; 45% silt; 10% fine sands; 5% co sands; sub-angular to sub-rounded. Note: Clay clum to 2cm.	arse		
30	ML	1	70% ML 10% F 5% M 5% C 10% G	60% Q 20% F 20% L		Silt with sand (ML); 7.5 YR 5/6; soft; moist; low plast 70% silt; 10% fine sands; 5% medium sands; 5% co sands; 10% gravel; sub-angular to angular. Note: Gr 3cm. Gravel 100% lithics.	arse		
35			85% ML 10% F 5% M	70% Q 10% F 20% L		Silt with sand (ML); 7.5 YR 5/6; soft; moist; low plast 85% silt; 10% fine sands; 5% medium sands; sub-an to angular.	icity; igular	Bentonite Grout	
40-									

	<u> </u>	Su	nda nsulting l	nce	5	LOG OF BORING	KAFB-10			
Da	KAFB-1 E SWI	0624 Bulk F MUs 3	oring Wel 8 to KAFE uels Facil ST-106/SS , Albuque	ity S-111	on	Started : 2/11/21 / 0800 Drilling Company : Cascade Drilling L.P. Completed : 2/18/21 / 1600 Lead Driller : Mark Green Rig : Speedstar 50K Geologist : Justin Fitch Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Northing (Grid) : 1473154.90 Drilling Method : ARCH (tri-cone bit) Easting (Grid) : 1542509.92				
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55		
40	CL	1.5	75% CL 10% F 5% M 10% C Tr-G	70% Q 20% F 10% L		Clay with sand (CL): 7.5 YR 4/6; firm; moist; mediu plasticity; 75% clay; 10% fine sands; 5% medium s 10% coarse sands; sub-angular to sub-rounded. N Trace amounts of gravel (< 1.5 cm). Gravel 100%	ands; ote:			
45	ML		85% ML 10% F 5% M Tr-C	70% Q 20% F 10% L		Silt with sand (ML); 7.5 YR 4/6; soft; moist; low pla 85% silt; 10% fine sands; 5% medium sands; sub- to angular. Note: Trace amounts of coarse sands.				
50	CL	1.2	40% CL 30% ML 15% F 10% M 5% C	60% Q 25% F 15% L		Clay with sand (CL): 7.5 YR 4/6; soft; moist; low pl 40% clay; 30% silt; 15% fine sands; 10% medium 5% coarse sands; sub-angular to sub-rounded. No clumps up to 4 cm, but most approx 1 cm.	sands;			
55	ML		10% CL 55% ML 15% F 10% M 10% C	80% Q 15% F 5% L		Sandy silt (ML); 7.5 YR 4/6; firm; moist; medium pl 10% clay; 55% silt; 15% fine sands; 10% medium s 10% coarse sands; sub-angular to sub-rounded.	asticity; sands;	Grout		
60		0.3	10% ML 15% F 5% M 20% C 50% G	60% Q 20% F 20% L		Well-graded gravel with silt (GW-GM); 7.5 YR 4/6; moist; 10% silt; 15% fine sands; 5% medium sands sub-angular to sub-rounded. Note: Gravel Q/F/L: 20/20/60.		- 4" Sch. 80 PVC - 4" Sch. 80 PVC		
65	GW-GM		10% ML 15% F 5% M 20% C 50% G	60% Q 20% F 20% L		Same as above (65 ft).				
70		2.7	40% ML 25% F 20% M 15% C	40% Q 20% F 40% L		Silty sand (SM); 7.5 YR 5/6; loose; moist; 40% silt; fine sands; 20% medium sands; 15% coarse sands sub-angular to sub-rounded.				
75	SM		40% ML 25% F 20% M 15% C	40% Q 20% F 40% L		Same as above (70 ft).				
- - 80-										

	<u> </u>	Su	nda	nce	5	LOG OF BORING KAFB-	-106250
	1000	60	nsulting II	nc.	FEARS		(Page 3 of 13)
Da	KAFB-1 E SWI	0624 Bulk F MUs	8 to KAFE uels Facil ST-106/S	lity S-111	on	Completed: 2/18/21 / 1600Lead DrillerRig: Speedstar 50KGeologistCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Northing (G	: Justin Fitch Grid) : 1473154.90
	Kirtland	AFB	, Albuque	rque, NM		Drilling Method : ARCH (tri-cone bit) Easting (Gr	id) : 1542509.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55
80		0.3	55% ML 15% F 10% M 15% C 5% G	60% Q 10% F 30% L		Silt with sand (ML); 7.5 YR 4/6; soft; moist; low plasticity; 55% silt; 15% fine sands; 10% medium sands; 15% coarse sands; 5% gravel; sub-angular to angular. Note: Gravel < 0.5 cm. Gravel Q/F/L: 33/33/34.	
85-			90% ML 10% F	90% Q 5% F 5% L		Silt (ML); 7.5 YR 4/6; firm; moist; medium plasticity; 90% silt; 10% fine sands; sub-rounded.	
90-	ML	1.7	95% ML 3% F 2% M	80% Q 10% F 10% L		Silt (ML); 7.5 YR 5/6; firm; moist; medium plasticity; 95% silt; 3% fine sands; 2% medium sands; sub-rounded.	
95			15% CL 55% ML 15% F 10% M 5% C	50% Q 25% F 25% L		Silt with sand (ML); 7.5 YR 5/6; firm; moist; medium plasticity; 15% clay; 55% silt; 15% fine sands; 10% medium sands; 5% coarse sands; sub-angular to angular. Note: Clay clumps up to 1cm.	- Bentonite Grout
100		1.1	95% ML 3% F 2% MG	80% Q 10% F 10% L		Silt (ML); 7.5 YR 5/6; firm; moist; medium plasticity; 95% silt; 3% fine sands; 2% medium sands; sub-angular to sub-rounded.	
105			5% ML 70% F 20% M 5% C	80% Q 15% F 5% L		Poorly-graded sand with silt (SP-SM); 7.5 YR 4/6; loose; moist; 5% silt; 70% fine sands; 20% medium sands; 5% coarse sands; sub-angular to sub-rounded.	
	SP-SM	1.4	5% ML 70% F 20% M 5% C	80% Q 15% F 5% L		Same as above (105 ft).	
			5% ML 70% F 20% M 5% C	80% Q 15% F 5% L		Same as above (105 ft).	
120-							

	KAFB-1 E SW	10624 Bulk F MUs :	toring Well 8 to KAFE Fuels Facil ST-106/SS , Albuquer	8-106252 ity 6-111	on	Started: 2/11/21 / 0800Drilling ComCompleted: 2/18/21 / 1600Lead DrillerRig: Speedstar 50KGeologistCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Northing (GDrilling Method: ARCH (tri-cone bit)Easting (Griteria)	npany : Ca : M : Ju :rid) : 14	age 4 of 13) ascade Drilling L.P. ark Green ustin Fitch 473154.90 542509.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB	-106250-447 -106250-413 5349.55
120		2.1	90% ML 5% F 3% M 2% C	85% Q 10% F 5% L		Silt (ML); 7.5 YR 5/6; soft; moist; medium plasticity; 90% silt; 5% fine sands; 3% medium sands; 2% coarse sands; sub-rounded to sub-angular.		
125			95% ML 5% F	85% Q 10% F 5% L		Silt (ML); 7.5 YR 5/6; soft; moist; medium plasticity; 95% silt; 5% fine sands; sub-rounded to sub-angular.		
130	ML	0.6	100% ML	N/A		Silt (ML); 7.5 YR 5/6; soft; moist; medium plasticity; 100% silt; sub-rounded to sub-angular.		Bentonite Grout
135			100% ML	N/A		Same as above (130 ft).		
- 140 - - - - - - - -		1.3	90% ML 5% F 5% M	90% Q 10% F Tr% L		Silt (ML); 7.5 YR 5/6; firm; moist; medium plasticity; 95% silt; 5% fine sands; 5% medium sands; sub-rounded to sub-angular.		-4" Sch. 80 PVC 4" Sch. 80 PVC
145	CL		100% CL	N/A		Clay (CL); 7.5 YR 5/6; firm; moist; high plasticity; 100% clay.		
150		0.9	98% ML 2% F Tr-C	90% Q 10% F Tr% L		Silt (ML); 7.5 YR 5/6; soft; moist; medium plasticity; 98% silt; 2% fine sands; sub-rounded. Trace amounts of coarse sands.		
155	ML		100% ML	N/A		Silt (ML); 7.5 YR 5/6; soft; moist; low plasticity; 100% silt.		

	KAFB- I SW	10624 Bulk F MUs \$	8 to KAFE uels Faci ST-106/S	S-111	on	Completed: 2/18/21 / 1600Lead DrillerRig: Speedstar 50KGeologistCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Northing (G	: Justin Fitch Grid) : 1473154.90
	Kirtland	AFB	, Albuque	rque, NM		Drilling Method : ARCH (tri-cone bit) Easting (Gri	id) : 1542509.92
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55
160		0.6	90% ML 8% F 2% M	80% Q 5% F 15% L		Silt (ML); 7.5 YR 5/4; soft; moist; low plasticity; 90% silt; 8% fine sands; 2% medium sands; sub-rounded.	
165 	ML		85% ML 10% F 5% M	80% Q 5% F 15% L		Silt with sand (ML); 7.5 YR 5/4; soft; moist; low plasticity; 85% silt; 10% fine sands; 5% medium sands; sub-rounded.	
170 - - - - - - - -		0.3	90% F 10% M Tr-C	80% Q 10% F 10% L		Poorly-graded sand (SP); 10 YR 5/4; loose; moist; 90% fine sands; 10% medium sands; sub-rounded to sub-angular. Note: Trace amounts of coarse sands.	- Bentonite
175 - - - - - - -	SP		90% F 10% M Tr-C	80% Q 10% F 10% L		Same as above (170 ft).	Grout
180 - - - - - - -		0.1	90% F 10% M Tr-C	80% Q 10% F 10% L		Same as above (170 ft).	
185 - - - - - - - - - - -	SW		50% F 20% M 15% C 15% G	90% Q 5% F 5% L		Well-graded sand (SW); 10 YR 6/4; loose; moist; 50% fine sands; 20% medium sands; 15% coarse sands; 15% gravel; sub-rounded to sub-angular. Note: Gravel < 2cm. Gravel Q/F/L: 20/20/60.	
190 - - - - - - - - - -	SP	1.2	95% F 5% M	90% Q 5% F 5% L		Poorly-graded sand (SP); 10 YR 6/4; loose; moist; 95% fine sands; 5% medium sands; sub-rounded.	
195 - - - - - -	SW	-	65% F 15% M 15% C 5% G	80% Q 10% F 10% L		Well-graded sand (SW); 10 YR 6/4; loose; moist; 65% fine sands; 15% medium sands; 15% coarse sands; 5% gravel; sub-rounded to sub-angular. Gravel 100% lithics.	

SNUG	
Sundance	
Consulting Inc.	
	FEARS

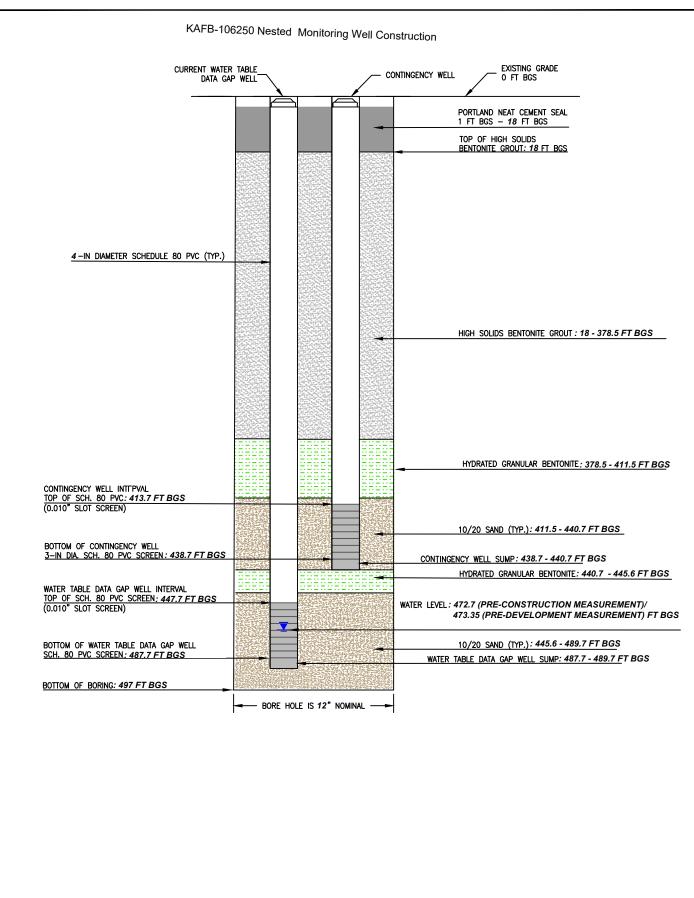
LOG OF BORING KAFB-106250

		60	nsulting l	nc.	PEARS		(Page 6 of 13)
Da	KAFB-1 E	0624 Bulk F	oring Wel 8 to KAFE uels Facil ST-106/S	lity	on	Started : 2/11/21 / 0800 Drilling C Completed : 2/18/21 / 1600 Lead Dri Rig : Speedstar 50K Geologis Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Northing	t : Justin Fitch
			, Albuque			Drilling Method : ARCH (tri-cone bit) Easting	. ,
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55
200		2.5	50% F 25% M 15% C 10% G	60% Q 20% F 20% L		Well-graded sand (SW); 10 YR 6/4; loose; moist; 65% fine sands; 15% medium sands; 15% coarse sands; 5% gravel; sub-rounded to sub-angular. Note: Gravel Q/F/L: 15/15/70.	
205			20% F 35% M 40% C 5% G	40% Q 30% F 30% L		Well-graded sand (SW); 10 YR 5/4; loose; moist; 20% fine sands; 35% medium sands; 40% coarse sands; 5% gravel; sub-rounded to sub-angular. Note: Gravel Q/F/L: 30/35/35.	
210	SW	0.5	50% F 25% M 25% C Tr-G	60% Q 15% F 25% L		Well-graded sand (SW); 10 YR 5/4; loose; moist; 50% fine sands; 25% medium sands; 25% coarse sands; sub-rounded to sub-angular. Note: Trace amounts of gravel (50/50 quartz/lithic).	Bentonite
215			20% F 40% M 40% C Tr-G	35% Q 30% F 35% L		Well-graded sand (SW); 10 YR 5/4; loose; moist; 20% fine sands; 40% medium sands; 40% coarse sands; sub-rounded to sub-angular. Note: Trace amounts of gravel (50/50 quartz/lithic).	Grout
220-	CL	1.3	60% CL 20% F 15% M 5% C	35% Q 30% F 35% L		Sandy clay (CL); 10 YR 4/4; hard; moist; high plasticity; 60% clay; 20% fine sands; 15% medium sands; 5% coarse sands; sub-rounded to sub-angular. Note: Clay stuck together in large clumps.	
225	sw		45% F 40% M 15% C Tr-G	40% Q 40% F 20% L		Well-graded sand (SW); 10 YR 5/4; loose; moist; 45% fine sands; 40% medium sands; 15% coarse sands;sub-rounded to sub-angular. Note: Gravel < 0.5 cm. Gravel 100% lithic.	
230	SC	0.3	20% CL 30% M 20% C 30% G	40% Q 40% F 20% L		Clayey sand with gravel (SC); 10 YR 4/4; loose; moist; 20% clay; 30% medium sands; 20% coarse sands; 30% gravel; sub-rounded to sub-angular. Note: Gravel < 1 cm. Gravel Q/F/L: 20/30/50.	
235	GW		15% F 15% M 20% C 50% G	60% Q 15% F 25% L		Well-graded gravel with sand (GW); 10 YR 5/4; loose; moist; 15% fine sands; 15% medium sands; 20% coarse sands; 50% gravel; sub-rounded to sub-angular. Note: gravel < 2.5 cm. Gravel Q/F/L: 20/30/50.	
240-				I	alatatatatat		(\$293) H (\$29

05-16-2021 U:\Geographics Logging\From Marc\KAFB-106250_JDF.bor

		60	nsulting I	ne.	PEARS			(Page	7 of 13)
	KAFB-	10624 Bulk F	toring Wel 8 to KAFE uels Faci ST-106/S	lity	on	Completed : 2/18/21 / 1600 Lead I Rig : Speedstar 50K Geolo	Driller	 Cascac Mark G Justin F 147315 	Fitch
			, Albuque				g (Grid)	: 154250	
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	ĸ	AFB-106 AFB-106 lev:: 5349	250-413
240 <u>-</u> -		1.9	60% ML 40% F	90% Q 5% F 5% L		Sandy silt (ML); 7.5 YR 5/4; firm; moist; low plasticity; 60% silt; 40% fine sands; sub-rounded.			
	ML		75% 01						
245 - - - - - - -	CL		75% CL 25% M	75% Q 15% F 10% L		Clay with sand (CL); 10 YR 4/4; firm; moist; medium plasticity; 75% clay; 25% medium sands. Note: Clay clumps <1cm.			
250 -		0.9	75% F 25% M	75% Q 15% F 10% L		Poorly-graded sand (SP); 10 YR 5/3; loose; dry; 75% fine sands;2 5% medium sands; sub-rounded to sub-angular.			
	SP			10 % L		sanus,2 5% medium sanus, sub-rounded to sub-angular.			Bentonite
255	SW		40% F 30% M 30% C	80% Q 10% F 10% L		Well-graded sand (SW); 10 YR 5/3; dry; moist; 40% fine sands; 30% medium sands; 30% coarse sands; sub-rounded to sub-angular.			Grout
260-		0.5	60% CL	70% Q					4" Sch. 80 PVC
			5% F 10% M 25% G	15% F 15% L		Clay with sand with gravel (CL); 10 YR 4/4; firm; moist; high plasticity; 60% clay; 5% fine sands; 10% medium sands; 25% gravel. Note: Clay clumps up to 2.5 cm and gravel < 1cm. Gravel Q/F/L: 20/20/60.		-	4" Sch. 80 PVC
265 - - - - - - -			85% CL 10% F 5% M	60% Q 10% F 30% L		Clay with sand (CL); 10 YR 5/4; hard; moist; high plasticity; 85% clay; 10% fine sands; 5% medium sands. Note: Clay clumps up to 3 cm.			
270 -	CL	2.1	55% CL 15% F 15% M 15% C Tr-G	40% Q 30% F 30% L		Sandy clay (CL); 10 YR 6/4; firm; moist; 55% clay; 15% fine sands; 15% medium sands; 15% coarse sands; sub-rounded to sub-angular. Note: Trace amounts of lithic gravel.			
- - 275 - - - - - - -			55% CL 15% F 15% M 15% C Tr-G	40% Q 30% F 30% L		Same as above (270 ft).			

		Su	undar nsulting Ir	nce	5	LOG OF BORING			
D;	KAFB-1 E	0624 Bulk F	toring Wel 8 to KAFE Fuels Facil ST-106/SS	3-106252 ity	on	Started : 2/11/21 / 0800 Drilling Company : Cascade Drilling L.P. Completed : 2/18/21 / 1600 Lead Driller : Mark Green Rig : Speedstar 50K Geologist : Justin Fitch Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Northing (Grid) : 1473154.90			
			, Albuquei			Drilling Method : ARCH (tri-cone bit)	- , ,	42509.92	
Depth in Feet	nscs	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB	-106250-447 -106250-413 5349.55	
280-		1.7	10% ML 60% F 20% M 10% C	50% Q 35% F 15% L		Well-graded sand with silt (SW-SM); 10 YR 5/4; loo moist; 10% silt; 60% fine sands; 20% medium sand coarse sands; sub-rounded to sub-angular.	se; s; 10%		
285-	SW-SM		10% ML 60% F 20% M 10% C	50% Q 35% F 15% L		Same as above (280 ft).			
290-	SM	0.8	30% ML 35% F 15% M 10% C 10% G	50% Q 20% F 30% L		Silty sand (SM); 10 YR 4/4; loose; moist; 30% silt; 3 fine sands; 15% medium sands; 10% coarse sands gravel; sub-angular to sub-rounded. Note: Gravel Q 10/20/70.	10%	-Bentonite Grout	
295-	ML		100% ML	N/A		Silt (ML); 10 YR 5/4; soft; dry; low plasticity; 100% s sub-rounded.			
300-	SP	0.6	100% F	40% Q 20% F 40% L		Poorly-graded sand (SP); 10 YR 5/4; loose; dry; 100 sands; sub-rounded.	1% fine	PVC 	
305-	sw		80% F 15% M 5% C	60% Q 15% F 25% L		Well-graded sand (SW); 10 YR 4/4; dry; loose; 80% sands; 50% medium sands; 5% coarse sands; sub-rounded to sub-angular.	i% fine fine ; 10% Jlar. I Q/F/L: fine o		
305-	CL	2.2	60% CL 10% C 30% G	10% Q 25% F 65% L		Gravelly clay (CL); 10 YR 4/4; hard; moist; 60% clay coarse sands; 30% gravel; sub-rounded to sub-ang Note: Clay clumps < 2 cm and gravel < 2 cm. Grave 10/25/65.	; 10% Jlar. I Q/F/L:		
315	sw		85% F 15% M Tr-C	70% Q 20% F 10% L		Well-graded sand (SW); 10 YR 5/4; dry; loose; 85% sands; 15% medium sands; coarse grains are 70% quartz, 20% feldspar and 10% lithics; sub-rounded sub-angular. Note: Trace amounts of coarse sands.	fine o		
320-									


	KAFB- I SW	10624 Bulk F MUs \$	8 to KAFI uels Faci ST-106/S	S-111	on	Completed: 2/18/21 / 1600Lead DrillerRig: Speedstar 50KGeologistCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Northing (G	: Justin Fitch Grid) : 1473154.90
	Kirtland	AFB	, Albuque	rque, NM		Drilling Method : ARCH (tri-cone bit) Easting (Gr	rid) : 1542509.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55
320		0.3	40% F 30% M 20% C 10% G	40% Q 30% F 30% L		Well-graded sand (SW); 10 YR 5/4; dry; loose; 40% fine sands; 30% medium sands; 20% coarse sands; 10% gravel; sub-rounded to sub-angular. Note: Gravel Q/F/L: 30/30/40.	
325	SW		40% F 30% M 20% C 10% G	40% Q 30% F 30% L		Same as above (320 ft).	
330	GW	0.5	5% F 95% G	40% Q 30% F 30% L		Well-graded gravel (GW); 10 YR 4/4; loose; dry; 5% fine sands; 95% gravel; sub-rounded to sub-angular. Note: Gravel < 3 cm. Gravel Q/F/L: 10/10/80.	- Bentonite Grout
335 - - - - - - -			30% F 10% M 10% C 50% G	70% Q 20% F 10% L		Well-graded sand with gravel (SW); 10 YR 4/4; dry; loose; 30% fine sands; 10% medium sands; 10% coarse sands; 50% gravel; sub-rounded to sub-angular. Note: Gravel Q/F/L: 25/35/40.	
340		0.2	30% F 10% M 10% C 50% G	70% Q 20% F 10% L		Same as above (335 ft).	PVC
345 - - - - - - - - - - -	SW		30% F 10% M 10% C 50% G	70% Q 20% F 10% L		Same as above (335 ft).	
350 - - - - - - - - - - - -		0.5	60% F 20% M 10% C 10% G	60% Q 20% F 20% L		Well-graded sand (SW); 10 YR 5/3; dry; loose; 60% fine sands; 20% medium sands; 10% coarse sands; 10% gravel; sub-rounded to sub-angular. Note: Gravel Q/F/L: 20/40/40.	
355 - - - - - - -			60% F 20% M 10% C 10% G	60% Q 20% F 20% L		Same as above (350 ft).	

	KAFB-	10624		ll Installati 3-106252 lity	On	Started: 2/11/21 / 0800Drilling CorCompleted: 2/18/21 / 1600Lead DrillerRig: Speedstar 50KGeologist	mpany : Casca	
			ST-106/S			Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Northing (G Drilling Method : ARCH (tri-cone bit) Easting (Gr	,	
	Kiruano		, Albuque	rque, NM			10) . 13423	09.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB-10 KAFB-10 Elev:: 534	6250-413
60 	SW	0.3	70% F 15% M 15% C	75% Q 15% F 10% L		Well-graded sand (SW); 10 YR 5/4; moist; loose; 70% fine sands; 15% medium sands; 15% coarse sands; sub-rounded to sub-angular.		-Bentonite Grout
365 - - - - - - - - - - -			20% F 10% M 10% C 60% G	60% Q 20% F 20% L		Well-graded gravel with sand (GW); 10 YR 4/4; loose; moist; 20% fine sands; 10% medium sands; 10% coarse sands; 60% gravel; sub-rounded to sub-angular. Note: Gravel <1.5cm. Gravel Q/F/L: 15/20/65.		
370 - - - - - - - - - - - - -	GW	0.3	20% F 10% M 10% C 60% G	60% Q 20% F 20% L		Same as above (365 ft).		
975 - - - - - - - -			60% F 20% M 10% C 10% G	70% Q 15% F 15% L		Well-graded sand (SW); 10 YR 6/3; dry; loose; 60% fine sands; 20% medium sands; 10% coarse sands; 10% gravel; sub-rounded to sub-angular. Note: Gravel Q/F/L: 20/40/40.		
80 - - - - - - - - - - - - - - -		1.5	80% F 15% M 5% C	80% Q 10% F 10% L		Well-graded sand (SW); 10 YR 5/4; dry; loose; 80% fine sands; 15% medium sands; 5% coarse sands; sub-rounded to sub-angular.		-4" Sch. 80 PVC 4" Sch. 80 PVC
- 85 - - - - - - - - - -	SW		30% F 10% M 15% C 45% G	50% Q 30% F 20% L		Well-graded sand with gravel (SW); 10 YR 5/3; dry; loose; 30% fine sands; 10% medium sands; 15% coarse sands; 45% gravel; sub-rounded to sub-angular. Note: Gravel Q/F/L: 10/20/70.		– Hydrated Granular Bentonite
- 390 - - - - - - - - - - - - - -		0.8	30% F 10% M 15% C 45% G	50% Q 30% F 20% L		Same as above (385 ft).		
- 395 - - - - - - -	sw-sc		5% CL 70% F 15% M 10% C	75% Q 10% F 15% L		Well-graded sand with clay (SW-SC); 10 YR 6/3; loose; dry; 5% clay; 70% fine sands; 15% medium sands; 10% coarse sands; sub-rounded to sub-angular. Note: Clay clumps observed.		

		Su	nda nsulting I	nce	5	LOG OF BORING	KAFB-106250 (Page 11 of 13)
Da	KAFB-7	10624 Bulk F MUs \$		S-111	on	Started : 2/11/21 / 0800 Completed : 2/18/21 / 1600 Rig : Speedstar 50K Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Drilling Method : ARCH (tri-cone bit)	Drilling Company : Cascade Drilling L.P. Lead Driller : Mark Green Geologist : Justin Fitch Northing (Grid) : 1473154.90 Easting (Grid) : 1542509.92
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55
400	sw	0.6	50% F 30% M 20% C	50% Q 30% F 20% L		Well-graded sand (SW); 10 YR 6/3; dry; loose; 50% sands; 30% medium sands; 20% coarse sands; sub-rounded to sub-angular.	6 fine Hydrated Granular Bentonite
405	SP		80% F 20% M	70% Q 20% F 10% L		Poorly-graded sand (SP); 10 YR 6/4; loose; dry; 80 sands; 20% medium sands; sub-rounded to sub-an	9% fine ngular.
410	sw	1.6	75% F 10% M 10% C 5% G	70% Q 20% F 10% L		Well-graded sand (SW); 10 YR 5/4; moist; loose; 75 sands; 10% medium sands; 10% coarse sands; 5% gravel; sub-rounded to sub-angular. Note: Gravel < Gravel Q/F/L: 25/25/50.	6
415			90% F 10% M	65% Q 25% F 10% L		Poorly-graded sand (SP); 10 YR 5/4; loose; dry; 90 sands; 10% medium sands; sub-rounded to sub-an)% fine ngular.
420-		0.8	50% M 50% C	40% Q 30% F 30% L		Poorly-graded sand (SP); 10 YR 5/4; loose; dry; 50 medium sands; 50% coarse sands; sub-rounded to sub-angular.	9% 9
425-	SP		50% F 50% M	50% Q 30% F 20% L		Poorly-graded sand (SP); 10 YR 5/4; loose; dry; 50 sands; 50% medium sands; sub-rounded to sub-an	9% fine ngular Sand Pack
430		1.1	50% F 50% M	50% Q 30% F 20% L		Same as above (425 ft).	
425	sw		85% F 10% M 5% C	70% Q 20% F 10% L		Well-graded sand (SW); 10 YR 6/4; dry; loose; 85% sands; 10% medium sands; 5% coarse sands; sub-rounded to sub-angular.	6 fine
440-							Well Sump

		Su	nda	nce	5	LOG OF BORING KAFE	3-106250
		Co	nsulting I	n C.	FEARS		(Page 12 of 13)
Da	KAFB- I SW	Monitoring Well Installation 106248 to KAFB-106252 Bulk Fuels Facility /MUs ST-106/SS-111 d AFB, Albuquerque, NM				Started: 2/11/21 / 0800Drilling CCompleted: 2/18/21 / 1600Lead DrilRig: Speedstar 50KGeologisCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)NorthingDrilling Method: ARCH (tri-cone bit)Easting (t : Justin Fitch (Grid) : 1473154.90
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55
440		1.3	20% F 30% M 45% C 5% G	50% Q 30% F 20% L		Well-graded sand (SW); 10 YR 5/3; dry; loose; 20% fine sands; 30% medium sands; 45% coarse sands; 5% gravel;sub-rounded to sub-angular. Note: Gravel Q/F/L: 30/30/40.	——————————————————————————————————————
445	sw		80% F 15% M 5% C	60% Q 25% F 15% L		Well-graded sand (SW); 10 YR 5/3; dry; loose; 80% fine sands; 15% medium sands; 5% coarse sands; sub-rounded to sub-angular.	PVC Hydrated Granular Bentonite
450	SP	0.8	100% F	75% Q 15% F 10% L		Poorly-graded sand (SP); 10 YR 6/3; loose; dry; 100% fine sands; sub-rounded.	
455		-	65% F 20% M 10% C 5% G	65% Q 20% F 15% L		Well-graded sand (SW); 10 YR 6/3; dry; loose; 35% fine sands; 20% medium sands; 10% coarse sands; 5% gravel; sub-rounded to sub-angular. Gravel Q/F/L: 25/35/40.	
460	SW	0.9	85% F 5% M 5% C 5% G	80% Q 15% F 5% L		Well-graded sand (SW); 10 YR 6/3; dry; loose; 85% fine sands; 5% medium sands; 5% coarse sands; 5% gravel; sub-rounded to sub0angular. Gravel Q/F/L: 25/25/50.	Sand Pack 4" Sch. 80
			100% F	80% Q 15% F 5% L		Poorly-graded sand (SP); 10 YR 6/4; loose; moist; 100% fine sands; sub-rounded. Note: Hydrocarbon smell.	PVC Screen
	SP	1.2	100% F	80% Q 15% F 5% L		Poorly-graded sand (SP); 10 YR 5/4; loose; moist; 100% fine sands; sub-rounded. Note: Hydrocarbon smell.	
465 467 467 467 467 470 471 471 471 471 471 471 471 471 471 471			100% F	80% Q 15% F 5% L		Same as above (470 ft).	

		Su	nda nsulting l	nce	5	LOG OF BORING	KAFB-10)6250 (Page 13 of 13)
	KAFB- I SW	10624 Bulk F MUs	toring Wel 8 to KAFE Fuels Facil ST-106/SS , Albuque	3-106252 lity S-111	on	Started : 2/11/21 / 0800 Completed : 2/18/21 / 1600 Rig : Speedstar 50K Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Drilling Method : ARCH (tri-cone bit)	Drilling Compar Lead Driller Geologist Northing (Grid) Easting (Grid)	y : Cascade Drilling L.P. : Mark Green : Justin Fitch : 1473154.90 : 1542509.92
Depth in Feet	SOSU	(mdd) DID	Grain Size	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		KAFB-106250-447 KAFB-106250-413 Elev:: 5349.55
480	SP	1.4	100% F	80% Q 15% F 5% L 80% Q 15% F 5% L		Same as above (470 ft). Same as above (470 ft).		4" Sch. 80 PVC Screen - Sand Pack
490		1.3	100% F 75% F	80% Q 15% F 5% L 70% Q		Same as above (470 ft).	5	Well Sump
05-16-2021 U:\Geographics Logging/From MarctKAFB-106250_JDF.bor 2021 0:\Geographics Logging/From MarctKAFB-106250_JDF.bor 2021 0:10 0:00 0:00 0:00 0:00 0:00 0:00	SW		10% M 10% C 5% G	70% Q 15% F 15% L		Well-graded sand (SW); 10 YR 5/; wet; loose; 75% sands; 10% medium sands; 10% coarse sands; 5% gravel; sub-rounded to sub-angular. Note: Hydrocar smell. Gravel Q/F/L: 20/25/55.	fine	

Northing: 1473154.90 Easting: 1542509.92 Elev: 5349.55

NOT TO SCALE BGS=BELOW GROUND SURFACE FT=FEET

DATA GAP MONITORING WELL INSTALLATION KAFB-106248 TO KAFB-106252 BULK FUELS FACILITY	KIRTLAND AIR	FORCE BASE	INSTALLATION START DATE/TIME: 02/11/2021 - 0730 Hours	INSTALLATION END DATE/TIME: 02/21/2021 - 1700 Hours
SOLID WASTE MANAGEMENT UNITS ST-106/SS-111	Contract NO.:	WELL ID:	GEOLOGIST:	DRILLER:
KIRTLAND AIR FORCE BASE, NEW MEXICO	W912PP-17-C-0028	KAFB-106250	Justin Fitch	Mark Green

₹.

4:39pr

	<u> </u>	Su	nda	nce	5	LOG OF BORING KAFB	-106251
		Col	nsulting Ir	nc.	FEARS		(Page 1 of 13)
	KAFB-1 E SWI	0624 Bulk F MUs \$	oring Wel 8 to KAFE uels Facil ST-106/SS , Albuquei	ity S-111	on	Date/Time Started: 1/6/21 / 0815Drilling CorDate/Time Completed: 1/11/21 / 1730Lead DrilleRig: Speedstar 50KGeologistCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Northing (CDrilling Method: ARCHEasting (G	r : Forrest Chattin-Evans : Justin Fitch Grid) : 1472784.57
	Kirtiand	AFB	, Albuquei	rque, NM		Dhining Method . Arch Easung (G	iiu) . 154 1950.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
0	AR	0.7	000% MI	0001 0		No samples collected due to pot-holing of drill site to 7'.	
10	ML	0.7	90% ML 10% F Tr-M 60% ML 30% F 10% M	30% Q 20% F 50% L 30% Q 10% F 60% L		Silt (ML): 7.5 YR 4/4; firm; moist; low plasticity; 10% fine sands; trace medium sands; sub-rounded to rounded. Sandy Silt (ML): 7.5 YR 4/4; firm; moist; low platicity; 30% fine sands, 10% medium sands; sub-rounded.	- Portland Cement
20	SM	0.4	30% ML 40% F 20% M 10% C	40% Q 30% F 30% L		Silty Sand (SM): 7.5 YR 4/4; moist; loose; 30% silt; 40% fine sands; 20% medium sands; 10% coarse sands; sub-angular;	4" Sch. 80 PVC Bentonite Grout
	SW-SM		10% ML 20% F 20% M 30% C 20% G	10% Q 20% F 70% L		Well-graded sand with silt (SW-SM): 7.5 YR 5/4; dry; loose; 10% silt; 20% fine sands; 20% medium sands; 30% coarse sands; 20% gravel; sub-angular.	Bentonite Grout
Ics Logging/rTom Mark		18.6	80% ML 20% F	50% Q 30% F 20% L		Silt with sand (ML): 7.5 YR 4/4; soft; moist; low plasticity; 80% silt; 20% fine sands; sub-rounded to sub-angular.	
25 - 27	ML		80% ML 20% F	50% Q 30% F 20% L		Same as above (30 ft).	
40-							

.

		00	insurring in		FEARS				(Page 2 of 13)
	KAFB-1	10624 Bulk F	toring Wel 8 to KAFE Fuels Facil	3-106252 lity	on	Date/Time Started Date/Time Completed Rig	: 1/6/21 / 0815 : 1/11/21 / 1730 : Speedstar 50K	Drilling Company Lead Driller Geologist	 Cascade Drilling L.P. Forrest Chattin-Evan Justin Fitch
			ST-106/SS , Albuque			Casing Diameter Drilling Method	: 13-3/8" (0-200')/11-3/4" (to TD) : ARCH	Northing (Grid) Easting (Grid)	: 1472784.57 : 1541930.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
40	ML	5.5	80% ML 20% F Tr-M	20% Q 10% F 70% L		Silt with sand (ML): 7 80% silt; 20% fine sa to sub-angular.	.5 YR 4/4; soft; moist; low plas nds; trace medium sands; sub	ticity; -rounded	
45			90% CL 5% F 5% M Tr-C	20% Q 10% F 70% L		Clay (CL): 7.5 YR 4/4 5% fine sands; 5% m sub-rounded to sub-a	l; hard; moist; high plasticity; 9 edium sands; trace coarse sar angular.	0% clay, nds;	
50	CL	0.1	50% CL 10% F 10% M 20% C 10% G	20% Q 10% F 70% L		clay; 10% fine sands; sands; 10% gravel; s	YR 4/6; hard; dry; high plastic ; 10% medium sands; 20% coa ub-angular to sub-rounded. No Gravel Q/F/L: 20/10/70	arse	
55			55% ML 20% F 25% M Tr-C	65% Q 10% F 25% L		Sandy Silt (ML): 7.5) silt; 20% fine sands; 2 sands; sub-angular to	YR 4/4; soft; moist; low plastici 25% medium sands; trace coa o sub-rounded.	ty; 55% rse	-Bentonite Grout
60	ML	1.6	55% ML 20% F 25% M Tr-C	65% Q 10% F 25% L		Same as above (55 f	t).		
65	SW-SM		15% ML 12.5% F 12.5% M 50% C 10% G	30% Q 10% F 60% L		15% silt; 12.5% fine s	h silt (SW-SM): 7.5 YR 4/6; dr sands; 12.5% medium sands; 2 ravel; sub-angular. Note: Grav	20%	
70	SM	36.5	20% ML 10% F 10% M 50% C 10% G	30% Q 10% F 60% L		sands; 10% medium	YR 4/6; dry; soft; 20% silt; 10% sands, 50% coarse sands; 10° ravel Q/F/L: 30/10/60.	b fine % gravel;	
75	ML		60% ML 10% F 10% M 20% C Tr-G	40% Q 20% F 40% L		silt; 10% fine sands;	YR 4/6; dry; soft; low plasticity; 10% medium sands; 20% coar sub-angular. Note: Gravel Q/F/	se	

					PEARS			(Page 3 of 13)
	KAFB-	10624	toring Wel 8 to KAFE Fuels Facil		on	Date/Time Started: 1/6/21 / 0815Date/Time Completed: 1/11/21 / 1730Rig: Speedstar 50K	Drilling Compan Lead Driller Geologist	y : Cascade Drilling L.P. : Forrest Chattin-Evan : Justin Fitch
			ST-106/S , Albuque			Casing Diameter : 13-3/8" (0-200')/11-3/4" (to Drilling Method : ARCH	TD) Northing (Grid) Easting (Grid)	: 1472784.57 : 1541930.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		Well1: KAFB-106251-44 Well2: KAFB-106251-40 Elev:: 5345.06
80		3.9	80% ML 20% F	70% Q 20% F 10% L		Silt with Sand (ML): 7.5 YR 4/6; soft; dry; med 80% silt; 20% fine sands; sub-rounded to sub-	ium plasticity; -angular.	
85			75% ML 20% F 5% G	70% Q 20% F 10% L		Silt with Sand (ML): 7.5 YR 4/6; soft; dry; med 75% silt; 20% fine sands; 5% gravel; sub-roun sub-angular.	ium plasticity; ided to	
90	ML	28.1	75% ML 20% F 5% G	70% Q 20% F 10% L		Same as above (85 ft).		
95			75% ML 20% F 5% G	70% Q 20% F 10% L		Same as above (85 ft).		- Bentonite Grout
00 		- 1.3	20% ML 80% F Tr-M	50% Q 30% F 20% L		Silty Sand (SM): 7.5 YR 5/4; dry; loose; 20% s sands, trace medium sands; sub-rounded.	silt; 80% fine	- 4" Sch. 80 PVC
05	SM		20% ML 80% F Tr-M	50% Q 30% F 20% L		Same as above (100 ft).		
10 - - - - - - - - - - -		1.6	45% ML 30% F 10% M 10% C 5% G	50% Q 30% F 20% L		Silty Sand (SM): 7.5 YR 6/4; moist; loose; 45% sands; 10% medium sands; 10% coarse sand sub-rounded. Note: Gravel Q/F/L: 5/0/95.	% silt; 30% fine s; 5% gravel;	
15 	ML		95% ML 2.5% M 2.5% C	50% Q 30% F 20% L		Silt (ML): 7.5 YR 6/6; soft; dry; medium plastic 2.5% medium sands; 2.5% coarse sands; sub	ity; 95% silt; -rounded.	

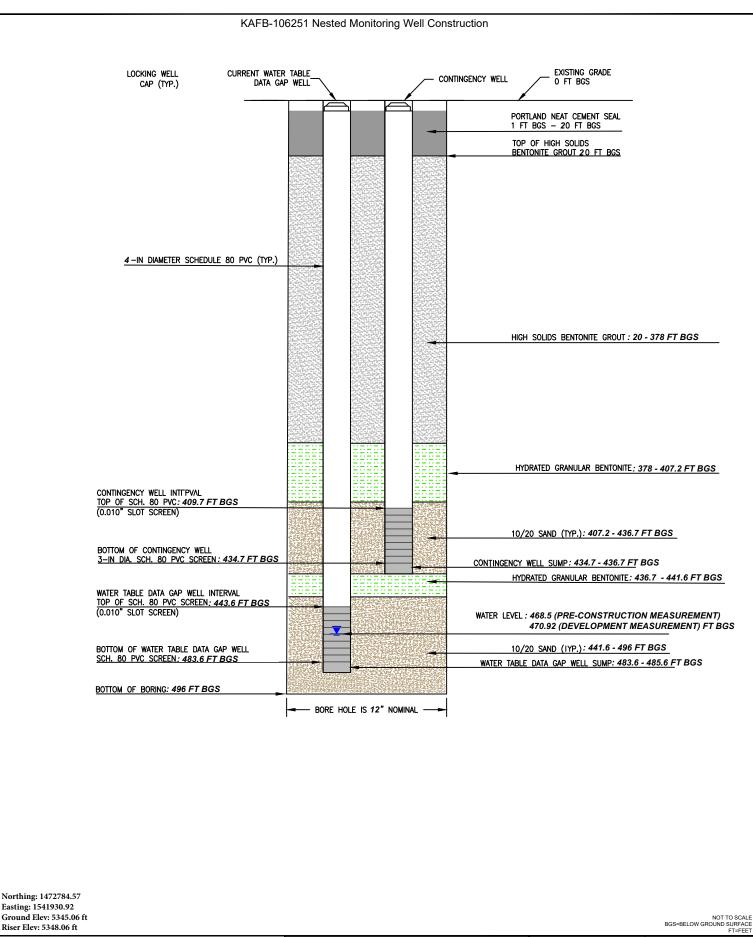
Da	ita Gan	Monit	oring Wel		TEARS	Date/Time Started : 1/6/21 / 0815 Drilling Compa	(Page 4 of 13) any : Cascade Drilling L.P.
	KAFB-	10624	8 to KAFE	3-106252	on	Date/Time Completed : 1/11/21 / 1730 Lead Driller	: Forrest Chattin-Evans
	SW	MUs	ST-106/S	S-111		Rig : Speedstar 50K Geologist Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Northing (Grid	
	Kirtland	I AFB	, Albuque	rque, NM		Drilling Method : ARCH Easting (Grid)	: 1541930.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
120-		2.3	95% ML 2.5% M 2.5% C	50% Q 30% F 20% L		Same as above (115 ft).	
125	ML		95% ML 2.5% M 2.5% C	50% Q 30% F 20% L		Same as above (115 ft).	
130		2.2	95% CL 5% ML	N/A		Clay (CL): 7.5 YR 5/4; hard; moist; high plasticity; 95% clay;	
	CL					5% silt.	Bentonite Grout
135			N/A	N/A		No Sample - Clay Plug in casing/hammer - Pumped 200 gal water to clean it out	
-	N/A						
140	SW	1.3	5% F 45% M 45% C 5% G	60% Q 20% F 20% L	*****	Well-graded sand (SW): 10 YR 4/4; wet; loose; 5% fine sands; 45% medium sands; 45% coarse sands; 5% gravel; sub-angular to angular. Note: Cuttings are wet from water injection to remove clay plug.	
145		-	20% F 80% M	60% Q 20% F		Poorly-graded sand (SP): 10 YR 4/3; wet; loose; 20% fine	
	SP			20% L		sands; 80% medium sands; sub-rounded to sub-angular.	
150		0.1	20% CL 75% F	70% Q 10% F	7777	Clayey sand (SC): 10 YR 5/4; moist; loose; 20% clay; 75%	
	SC		2.5% M 2.5% C Tr-G	20% L		fine sands; 2.5% medium sands; 2.5% coarse sands; trace gravel; sub-rounded; well-graded.	
155			50% CL 35% F	60% Q 15% F	////	Sandy Clay (CL): 10 YR 4/4; moist; firm; medium plasticity;	
-	CL		10% M 5% C Tr-G	25% L		50% clay; 35% fine sands; 10% medium sands; 5% coarse sands; trace gravel; sub-angular to sub-rounded.	

		Su	nda	nce	5	LOG OF BORING KAFB-1	06251
		Co	nsulting li	nc.	FEARS		(Page 5 of 13)
D:	KAFB-1 E SW	0624 Bulk F MUs 3	oring Wel 8 to KAFE uels Facil ST-106/S , Albuque	lity S-111	on	Date/Time Started : 1/6/21 / 0815 Drilling Compa Date/Time Completed : 1/11/21 / 1730 Lead Driller Rig : Speedstar 50K Geologist Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Northing (Grid) Drilling Method : ARCH Easting (Grid)	: Forrest Chattin-Evans : Justin Fitch) : 1472784.57
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4,			
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
160-		3.9	100% F	55% Q 30% F		Poorly-graded sand (SP): 10 YR 6/3; dry; loose; 100% fine	
165	SP		100% F	15% L 55% Q 30% F 15% L		sands, sub-rounded. Same as above (160 ft).	
170-	-	2.5	5% ML 95% F	55% Q 30% F		Poorly-graded sand with silt (SP-SM): 10 YR 4/4; moist;	
	SP-SM			15% L		loose, 5% silt; 95% fine sands; sub-rounded.	Bentonite
175	sw		95% F 5% M Tr-C Tr-G	70% Q 20% F 10% L		Well-graded sand (SW): 10 YR 4/4; moist; loose; 95% fine sands; 5% medium sands; trace coarse sands; trace gravel. Note: Gravel is 100% lithic.	Grout
180-	•	3	100% F	55% Q 30% F		Poorly-graded sand (SP): 10 YR 4/4; moist; loose; 100% fine	4" Sch. 80
				15% L		sands, sub-rounded.	PVC
	SP		100% F	55% Q 30% F 15% L		Same as above (180 ft).	
190		1	5% ML 90% F 5% M	50% Q 40% F 10% L		Poorly-graded sand with silt (SP-SM): 10 YR 5/3; moist; loose; 5% silt; 90% fine sands; 5% medium sands; sub-rounded.	
195	SP-SM		5% ML 95% F	70% Q 20% F 10% L		Poorly-graded sand with silt (SP-SM): 10 YR 5/3; moist; loose; 5% silt; 95% fine sands; sub-rounded.	
200-	-						

		Su	nda nsulting I	nce	PEARS		LOG OF BORING	KAFB-10	6251 (Page 6 of 13)
Da	KAFB-1 E SWI	0624 Bulk F MUs \$	8 to KAFE uels Faci ST-106/S		on	Date/Time Completed Rig	: 1/6/21 / 0815 : 1/11/21 / 1730 : Speedstar 50K : 13-3/8" (0-200')/11-3/4" (to TD) : ARCH	Drilling Company Lead Driller Geologist Northing (Grid) Easting (Grid)	y : Cascade Drilling L.P. : Forrest Chattin-Evans : Justin Fitch : 1472784.57 : 1541930.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
200	SW-SM	9.9	5% ML 90% F 5% G	70% Q 20% F 10% L			h silt (SW-SM): 10 YR 5/4; mo ds; 5% gravel; sub-angular to Gravel Q/F/L: 5/0/95	ist; loose;	
205	SP		3% ML 97% F	70% Q 20% F 10% L			SP): 10 YR 5/4; moist; loose; rounded to sub-angular. Note:		
210	SW-SM	0.6	5% ML 85% F 5% M 5% C	60% Q 30% F 10% L		loose; 5% silt; 85% fi	th silt (SW-SM): 10 YR 6/3; mo ne sands; 5% medium sands; igular to sub-rounded. Note: S it.	5%	- Bentonite
215	SP-SM		5% CL 5% ML 85% F 5% M Tr-C	50% Q 35% F 15% L		5% silt; 85% fine san	SP): 10 YR 6/4; moist; loose; { ds; 5% medium sands; trace c o sub-angularNote: Some pun	oarse	Grout
220	SW-SM	1.7	5% CL 20% F 65% M 10% C	30% Q 30% F 40% L		20% fine sands; 65%	W): 10 YR 4/4; moist; loose; 5 ⁶ medium sands; 10% coarse s ounded. Note: Some pumice gi	sands;	
225	SC		20% CL 60% F 10% M 5% C 5% G	50% Q 25% F 25% L		fine sands; 10% med	0 YR 4/4; moist; loose; 20% cla ium sands; 5% coarse sands; o sub-rounded. Note: Some pu el Q/F/L: 10/10/80.	5%	
230		1.6	3% ML 82% F 10% M 5% C	70% Q 20% F 10% L		fine sands; 10% med	W): 10 YR 6/4; dry; loose; 3% ium sands; 5% coarse sands; bunded. Note: Some pumice gi		
235-	SW		3% ML 62% F 15% M 15% C 5% G	35% Q 30% F 35% L		fine sands; 15% med	W): 10 YR 6/4; dry; loose; 3% ium sands; 15% coarse sands o sub-roundedNote: Some pur el Q/F/L: 10/10/80.	; 5%	
240									

		Co	nda nsulting li	nc.	PEARS			(Page 7 of 13)
	KAFB-1 E SW	0624 Bulk F MUs :	oring Wel 8 to KAFE uels Facil ST-106/SS , Albuque	lity S-111	on	Date/Time Started: 1/6/21 / 0815Date/Time Completed: 1/11/21 / 1730Rig: Speedstar 50KCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Drilling Method: ARCH	Drilling Company Lead Driller Geologist Northing (Grid) Easting (Grid)	 Cascade Drilling L.P. Forrest Chattin-Evans Justin Fitch 1472784.57 1541930.92
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
240	SP	3.5	3% ML 97% F	80% Q 10% F 10% L		Poorly-graded sand (SP): 10 YR 6/4; dry; loose; 3% 97% fine sands; sub-rounded.	o silt;	
245			70% CL 30% G	N/A		Clay with gravel (CL): 10 YR 5/4; dry; hard; high pla 70% clay; 30% gravel. Note: Gravel is 100% lithic.	asticity;	
250	CL	4.5	90% CL 10% G	N/A		Clay (CL): 10 YR 5/4; dry; firm; medium plasticity; 9 10% gravel; sub-rounded. Note: Gravel is 100% lith	0% clay; ic.	
255			90% CL 10% F Tr-C	40% Q 40% F 20% L		Clay (CL): 10 YR 5/4; moist; soft; medium plasticity clay; 10% fine sands; trace coarse sands; sub-angu sub-rounded. Note: Trace amounts of coarse sands predominately pumice.	ular to	- Bentonite Grout
260		1.5	15% ML 80% F 5% M	40% Q 40% F 20% L		Poorly-graded sand with silt (SP-SM): 10 YR 6/4; di 15% silt; 80% fine sands; 5% medium sands; sub-ri Note: Most larger grains are rounded pumice.	ry; loose; ounded.	4" Sch. 80 PVC
265	SP-SM		15% ML 80% F 5% M	40% Q 40% F 20% L		Same as above (260 ft).		
270		0.7	15% ML 80% F 5% M	40% Q 40% F 20% L		Same as above (260 ft).		
275	SM		25% ML 70% F 5% C Tr-G	40% Q 40% F 20% L		Silty Sand (SM): 10 YR 5/4; moist; loose; 25% ML; sands; 5% coarse sands; trace gravel; sub-angular sub-rounded.		

			nsulting I	nce	PEARS		LOG OF BORING KAFB-106251 (Page 8 of 13)				
Da	KAFB-1 E SW	10624 Bulk F MUs \$	oring Wel 8 to KAFE uels Facil ST-106/S , Albuque	lity S-111	on	Date/Time Started Date/Time Completed Rig Casing Diameter Drilling Method	Drilling Company Lead Driller Geologist Northing (Grid) Easting (Grid)	 Cascade Drilling L.P. Forrest Chattin-Evans Justin Fitch 1472784.57 1541930.92 			
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06		
280-		1.3	70% CL 10% F 10% M 5% C 5% G	60% Q 20% F 20% L		70% clay; 10% fine s	10 YR 5/4; moist; firm; high pla ands; 10% medium sands; 5% b-angular to sub-rounded. Not	coarse			
285-	CL		90% CL 5% C 5% G	60% Q 20% F 20% L		5% coarse grains; 5%	; dry; firm; medium plasticity; 9 6 gravel; sub-angular to sub-ro Clay present in tight balls. Gra	ounded.			
290	SC	0.7	40% CL 60% F Tr-M Tr-C	50% Q 20% F 30% L		Clayey sand (SC): 10 fine sands; trace mec sub-angular. Note: Cl) YR 5/4; moist; loose; 40% cla lium/coarse sands; sub-rounde ay balls up to 0.5 cm.	ay; 60% ed to			
295-	sw-sc		15% CL 70% F 10% M 5% C Tr-G	40% Q 30% F 30% L		loose; 15% clay; 70%	h clay (SW-SC): 10 YR 5/4; m fine sands; 10% medium san gravel. Note: Clay balls up to 0).	ds; 5%	- Bentonite Grout		
300-		0.9	80% F 10% M 5% C 5% G	60% Q 30% F 10% L	1111	sands; 10% medium sub-angular to sub-ro	W): 10 YR 5/4; moist; loose; 8(sands; 5% coarse sands; 5% g unded sand; rounded to sub-r < 1.5cm. Gravel Q/F/L: 10/40/5	gravel; ounded	- 4" Sch. 80 PVC		
305-	sw		80% F 10% M 5% C 5% G	70% Q 20% F 10% L		sands; 10% medium	W): 10 YR 5/4; moist; loose; 8(sands; 5% coarse sands; 5% s gravel < 2 cm. Gravel Q/F/L: 2(gravel;			
310-		• 1.3	5% CL 80% F 10% M 5% C Tr-G	40% Q 40% F 20% L		loose; 5% clay; 80%	h clay (SW-SC): 10 YR 5/4; m fine sands; 10% medium sand gravel; sub-rounded to sub-ang 0.5 cm.	s; 5%			
315-	SW-SC		5% CL 45% F 25% M 25% C	40% Q 30% F 30% L		loose; 5% clay; 45%	h clay (SW-SC): 10 YR 4/4; m fine sands; 25% medium sand unded to sub-angular.	oist; s; 25%			


		00	auring 1		FEARS			(Page 9 of 13)
	KAFB-	10624 Bulk F	8 to KAFE uels Faci		on	Date/Time Started: 1/6/21 / 0815Date/Time Completed: 1/11/21 / 1730Rig: Speedstar 50K	Drilling Company Lead Driller Geologist	: Forrest Chattin-Evan : Justin Fitch
			ST-106/S , Albuque			Casing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Drilling Method: ARCH	Northing (Grid) Easting (Grid)	: 1472784.57 : 1541930.92
Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
320		1.2	75% F 10% M 10% C 5% G	50% Q 20% F 30% L		Well-graded sand (SW): 10 YR 5/4; moist; loose; 75 sands; 10% medium sands; 10% coarse sands; 5% sub-rounded to sub-angular.		
325	SW		75% F 10% M 10% C 5% G	50% Q 20% F 30% L		Same as above (320 ft).		
330	GW	2.9	30% F 10% M 10% C 50% G	50% Q 25% F 25% L		Well-graded gravel (GW): 10 YR 5/4; moist; loose; 3 sands; 10% medium sands; 10% coarse sands; 50% sub-rouned to sub-angular sands; sub-rounded to ro gravel. Note: Gravel up to 3cm. Gravel Q/F/L: 20/30	% gravel; ounded	Bentonite
335		-	60% F 20% M 20% C Tr-G	40% Q 30% F 30% L		Well-graded sand (SW): 10 YR 6/3; dry; loose; 60% sands; 20% medium sands; 20% coarse sands; trac gravel; sub-rounded to sub-angular sand; sub-angul angular gravel. Note: Gravel Q/F/L: 30/30/40.	ce 🛛	Grout
340		0.4	75% F 15% M 5% C 5% G	70% Q 20% F 10% L		Well-graded sand (SW): 10 YR 5/4; moist; loose; 75 sands; 15% medium sands; 5% coarse sands; 5% g sub-rounded to sub-angular sands; sub-rounded gra Note: Gravel Q/F/L: 10/10/80.	gravel;	4" Sch. 80 PVC
345	SW		75% F 15% M 5% C 5% G	70% Q 20% F 10% L		Same as above (340 ft).		
350		0.7	55% F 15% M 15% C 15% G	60% Q 20% F 20% L		Well-graded sand (SW): 10 YR 5/4; moist; loose; 55 sands; 15% medium sands; 15% coarse sands; 15% sub-rounded to sub-angular. Note: Gravel Q/F/L: 10	% gravel;	
355 - - - - - - -	GW	-	30% F 10% M 10% C 50% G	60% Q 20% F 20% L		Well-graded gravel (GW): 10 YR 4/4; moist; loose; 3 sands; 10% medium sands; 10% coarse sands; 50% Note: Gravel Q/F/L: 10/10/80. Gravel up to 3 cm; lar grains are all lithic.	% gravel;	

_		00	is utting 1		FEARS			(Page 10 of 13)
Da	KAFB-	10624 Bulk F	8 to KAFI uels Faci	lity	on	Date/Time Started: 1/6/21 / 0815Date/Time Completed: 1/11/21 / 1730Rig: Speedstar 50K	Drilling Compan Lead Driller Geologist	: Forrest Chattin-Evan : Justin Fitch
			ST-106/S , Albuque			Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD Drilling Method : ARCH	Northing (Grid) Easting (Grid)	: 1472784.57 : 1541930.92
Depth in Feet	nscs	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		Well1: KAFB-106251-44 Well2: KAFB-106251-40 Elev:: 5345.06
360		0.4	70% F 10% M 10% C 10% G	70% Q 15% F 15% L		Well-graded sand (SW): 10 YR 6/4; dry; loose; 70 sands; 10% medium sands; 10% coarse sands; 1 sub-rounded to sub-angular sands; sub-rounded of Note: Gravel Q/F/L: 20/20/60.	0% gravel;	- Bentonite Grout
365			55% F 15% M 10% C 20% G	50% Q 20% F 30% L		Well-graded sand (SW): 10 YR 4/4; dry; loose; 55 sands; 15% medium sands; 10% coarse sands; 2 sub-rounded to sub-angular. Note: Gravel up to 2 Q/F/L: 0/20/80.	0% gravel;	
370 - - - - - - - - - - - - - -	sw	0.5	60% F 10% M 15% C 15% G	50% Q 20% F 30% L		Well-graded sand (SW): 10 YR 6/4; dry; loose; 60 sands; 10% medium sands; 15% coarse sands; 1 sub-rounded to sub-angular. Note: Gravel up to 1 Q/F/L: 20/20/60.	5% gravel;	- Bentonite Grout
375 - - - - - - - - - - - - - -			35% F 20% M 10% C 35% G	50% Q 20% F 30% L		Well-graded sand (SW): 10 YR 4/4; dry; loose; 35 sands; 20% medium sands; 10% coarse sands; 3 sub-rounded to sub-angular. Note: Gravel up to 3 Q/F/L: 10/20/70.	5% gravel;	
380 - - - - - - - - - - - - - - - -		- 0.6	35% F 10% M 5% C 50% G	50% Q 25% F 25% L		Well-graded gravel (GW): 10 YR 6/4; dry; loose; 3 sands; 10% medium sands; 5% coarse sands; 50 sub-rounded to sub-angular. Note: Gravel up to 3 Q/F/L: 10/10/80.	% gravel;	4" Sch. 8 PVC
385-	GW		35% F 10% M 5% C 50% G	50% Q 25% F 25% L		Same as above (380 ft).		– Hydrated Granular Bentonite
390	SW	- 1	40% F 25% M 20% C 15% G	60% Q 30% F 10% L		Well-graded sand (SW): 10 YR 6/3; dry; loose; 40 sands; 25% medium sands; 20% coarse sands; 1 sub-rounded to sub-angular. Note: Gravel up to 0 Gravel Q/F/L: 20/20/60.	5% gravel;	
395	sw-sc	-	5% CL 70% F 15% M 10% C	60% Q 30% F 10% L		Well-graded sand with clay (SW-SC): 10 YR 5/3; 5% clay; 70% fine sands; 15% medium sands; 10 sands; sub-rounded to sub-angular. Note: Clay ba 0.25 cm.	% coarse	

		Su	nda nsulting l	nce	5	LOG OF BORING	KAFB-10	6251 (Page 11 of 13)	
Da	KAFB-1 E SW	10624 Bulk F MUs \$	oring Wel 8 to KAFE uels Facil ST-106/S , Albuque	lity S-111	on	Date/Time Started : 1/6/21 / 0815 Date/Time Completed : 1/11/21 / 1730 Rig : Speedstar 50K Casing Diameter : 13-3/8" (0-200')/11-3/4" (to TD) Drilling Method : ARCH	Date/Time Completed: 1/11/21 / 1730Lead Driller: ForresRig: Speedstar 50KGeologist: JustinCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Northing (Grid): 147278		
Depth in Feet	NSCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION		Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06	
400		2.5	3% ML 72% F 20% M 5% C	70% Q 20% F 10% L		Well-graded sand (SW): 10 YR 5/4; dry; loose; 3% s fine sands; 20% medium sands; 5% coarse sands; to sub-rounded. Note: Clay present as a handful of .25 cm clay balls.	rounded	– Hydrated Granular Bentonite	
405	SW		3% ML 72% F 20% M 5% C	70% Q 20% F 10% L		Same as above (405 ft).		4" Sch. 80 PVC	
410		1.2	3% ML 72% F 20% M 5% C	70% Q 20% F 10% L		Same as above (405 ft).			
415 			90% F 10% M	70% Q 25% F 5% L		Poorly-graded sand (SP): 10 YR 5/4; dry; loose; 90' sands; 10% medium sands; sub-rounded to rounde	% fine d.		
420		0.5	95% F 5% M Tr-C	70% Q 20% F 10% L		Poorly-graded sand (SP): 10 YR 6/3; dry; loose; 95' sands; 5% medium sands; trace coarse sands; sub-rounded to sub-angular.	% fine		
425	SP		25% F 75% M	40% Q 30% F 30% L		Poorly-graded sand (SP): 10 YR 6/3; dry; loose; 25 sands; 75% medium sands; sub-rounded to sub-an		PVC Screen	
430		0.3	100% F	70% Q 20% F 10% L		Poorly-graded sand (SP): 10 YR 6/3; dry; loose; 10 sands, sub-rounded to sub-angular; coarse grains a quartz, 20% feldspar and 10% lithics.	0% fine are 70%		
435	sw		50% F 50% M	50% Q 20% F 30% L		Well-graded sand (SW): 10 YR 6/4; dry; loose; 50% sands; 50% medium sands; sub-rounded to angular		Well Sump	
440-								Granular Bentonite	

			Su	inda	nce	5	LOG OF BORING KAFB-1	06251
			Co	nsulting I	nc.	FEARS		(Page 12 of 13)
-		KAFB-	10624 Bulk F ′MUs S	toring Wel 8 to KAFE Fuels Faci ST-106/S , Albuque	lity S-111	on	Date/Time Started: 1/6/21 / 0815Drilling CompDate/Time Completed: 1/11/21 / 1730Lead DrillerRig: Speedstar 50KGeologistCasing Diameter: 13-3/8" (0-200')/11-3/4" (to TD)Northing (GridDrilling Method: ARCHEasting (Grid	: Forrest Chattin-Evans : Justin Fitch d) : 1472784.57
	Depth in Feet	USCS	PID (ppm)	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC	DESCRIPTION	Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
	440	SW	0.9	20% F 40% M 40% C	50% Q 20% F 30% L		Well-graded sand (SW): 10 YR 6/3; dry; loose; 20% fine sands; 40% medium sands; 40% coarse sands; sub-angular to sub-rounded.	Hydrated Granular Bentonite 4" Sch. 80 PVC
	445	SP	-	100% F Tr-M	75% Q 15% F 10% L		Poorly-graded sand (SP): 10 YR 6/3; dry; loose; 100% fine sands; trace medium sands; sub-rounded.	
	450	GP	- 0.3	45% F 55% G	70% Q 25% F 5% L		Poorly-graded gravel with sand (GP): 10 YR 6/4; dry; loose; 45% fine sands; 55% gravel; sub-angular to sub-rounded.	
	455	SW	-	90% F 10% M	55% Q 35% F 10% L		Well-graded sand (SW): 10 YR 6/4; dry; loose; 90% fine sands; 10% medium sands; sub-angular to sub-rounded. Note: Strong degraded hydrocarbon odor.	- Sand Pack
	460		- 1.5	100% F Tr-M	60% Q 30% F 10% L		Poorly-graded sand (SP): 10 YR 6/4; dry; loose; 100% fine sands; trace medium sands; sub-angular to sub-rounded. Note: Hydrocarbon odor.	- 4" Sch. 80 PVC Screen
AFB-106251_JDF.bor	465			100% F	50% Q 30% F 20% L		Poorly-graded sand (SP): 10 YR 6/4; moist; loose; 100% fine sands; sub-angular to sub-rounded. Note: Hydrocarbon odor.	
Logging\From Marc\K	470	SP	1.1	100% F	50% Q 30% F 20% L		Poorly-graded sand (SP): 10 YR 5/4; moist; loose; 100% fine sands; sub-angular to sub-rounded. Note: Increasing moisture. Hydrocarbon odor.	
05-16-2021 U:\Geographics Logging\From Marc\KAFB-106251_JDF.bor	475			100% F	50% Q 30% F 20% L		Same as above (470 ft).	
05-1(480-							

Da	KAFB-1 E SWI	0624 Bulk F MUs S	8 to KAFE uels Facil ST-106/SS	ity S-111	on	Date/Time Completed Rig Casing Diameter	: 1/6/21 / 0815 : 1/11/21 / 1730 : Speedstar 50K : 13-3/8" (0-200')/11-3/4" (to TD) : ARCH	Drilling Compar Lead Driller Geologist Northing (Grid) Easting (Grid)	(Page 13 of 13) ny : Cascade Drilling L.P. : Forrest Chattin-Evans : Justin Fitch : 1472784.57 : 1541930.92
Depth in Feet	SUSS	PID (ppm) (mqq) DIA	Grain Size Distribution	Mineralogy Q/F/L	GRAPHIC		DESCRIPTION		Well1: KAFB-106251-443 Well2: KAFB-106251-409 Elev:: 5345.06
480	SP	1	100% F	50% Q 30% F 20% L 50% Q 30% F 20% L		Same as above (470 Same as above (470			Sand Pack 4" Sch. 80 PVC Screen Well Sump
490	GP	1.2	15% F 5% C 80% G 10% ML 40% F	60% Q 30% F 10% L 50% Q 30% F		loose; 15% fine sand sub-angular to sub-rc Gravel Q/F/L: 15/15/7	with sand (GP): 10 YR 3/4; m s; 5% coarse sands; 80% grav ounded. Note: gravel up to 1 cr 70. h silt (SW-SM): 10 YR 3/4; we	rel; n.	
500	SW-SM		40% M 30% M 15% C 5% G	20% L		10% silt; 40% fine sa sands; 5% gravel; su	nds; 30% medium sands; 15% b-rounded to sub-angular sand lar gravel. Note: gravel up to 2	coarse d;	

DATA GAP MONITORING WELL INSTALLATION KAFB-106248 TO KAFB-106252 BULK FUELS FACILITY	KIRTLAND AIR	FORCE BASE	INSTALLATION START DATE/TIME: 01/06/2021 - 0815 Hours	INSTALLATION END DATE/TIME: 01/21/2021 - 1600 Hours
SOLID WASTE MANAGEMENT UNITS ST-106/SS-111	Contract NO.:	WELL ID:	GEOLOGIST:	DRILLER:
INTLAND AIR FORCE BASE, NEW MEXICO	W912PP-17-C-0028	KAFB-106251	Justin Fitch	Forrest Chattin-Evans

Riser Elev: 5348.06 ft

ÿ §

4:39pm

E/ an	A Engi Id Tecl	neering, S nology, I	icience, nc., PB	Ċ	Start Date:	2735DM02 Kirtland AFB, New Mexico 2-23-2021 n Date: 3-11-2021		WELL LOG Well ID: KAFB-106252 Page: 1 of 14		
Drilling Drill B Driller	g Meth it: Lor : Mark	pany: Ca od: Air R ng-Tooth I Green I. Messen	otary C Mill	asing	g Hammer	Immer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Materia DTW After Completion (ft bgs): N/A Seal Materia		al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
(ft)	(vmqq) Old	Samples Collected USCS Lithology				Sample Description		Completion Details		
0 5 10	0.5				ft, road base	r utilities 0-8 ft bgs. At 0 to 0.5 ft, asphalt. A No samples taken. 7.5YR 4/4, brown; loose; slightly moist; 60%		(1) (2) (3) Cement, 0-28 (t bgs		
15	0.5		SM ML		sand (30% fi subangular-s quartz, felds fragments.	40% medium, 30% coarse); 20% grave subrounded; 15% silt, nonplastic; 5% clay; par, and lithic fragments; gravel is quartz a	el to 5/8"; sand is nd lithic			
20	0.0		SM		sand (30% fi subangular-s	7.5YR 4/4, brown; loose; slightly moist; 60% ine, 40% medium, 30% coarse); 20% grave subrounded; 20% silt, nonplastic; sand is q d lithic fragments; gravel is quartz and lithic	el to 1-1/8"; uartz,			
30	0.0		GW		moist; 80% g medium, 309 gravel and s	d Gravel with Sand: 7.5YR 5/4, brown; loos gravel to 1"; 15% fine-coarse sand (30% fir % coarse); subangular-subrounded; 5% sil and are quartz, feldspar, and lithic fragmer /2". At 35 ft, gravel to 2".	ne, 40% t, nonplastic; hts. At 30 ft,	Hydrated 3/8" Bentonite Chips, 28-34 ft bgs High Solids Bentonite Grout, 34-358 ft bgs		
40				•						

(1) KAFB-106252-515; 2.5" OD Sch. 80 PVC; blank riser, 0-515 ft bgs; 0.01" slot screen, 515-525 ft bgs
(2) KAFB-106252-425; 4.5" OD Sch. 80 PVC; blank riser, 0-425 ft bgs; 0.01" slot screen, 425-465 ft bgs
(3) KAFB-106252-390; 4.5" OD Sch. 80 PVC; blank riser, 0-390.5 ft bgs; 0.01" slot screen, 390.5-415.5 ft bgs
bgs = below ground surface
ft = foot(feet)

N/A = not applicable

Notes:

		neering, s			Start Date:	2735DM02 Kirtland AFB, New Mexico 2-23-2021 n Date: 3-11-2021		WELL LOG Well ID: KAFB-106252 Page: 2 of 14									
rillin rill B riller	g Metho iit: Lon : Mark	g-Tooth	Rotary C Mill	asing	Hammer Boring Diameter (in): 14" nominal Seal Material Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material		arial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand										
(μ)	(vmqq) QIA	Samples Collected	uscs	Lithology		Sample Description		Completion Details									
	0.0		SW- SM		90% fine-coasubangular-	d Sand with Silt: 7.5YR 5/3, brown; loose; s arse sand (10% fine, 40% medium, 50% c subrounded; 10% silt, nonplastic; sand is o d lithic fragments.	oarse);	(1) (2) (3)									
15			sw		moist; 65% f coarse); 30% nonplastic; s	d Sand with Gravel: 7.5YR 5/3, brown; loos fine-coarse sand (10% fine, 40% medium, % gravel to 2-1/2"; subangular-subrounded and is quartz, feldspar, and lithic fragment thic fragments.	50% ; 5% silt,										
50	0.3		GM	111111	gravel to 1-1 20% coarse	with Sand: 7.5YR 4/4, brown; loose; slightl /2"; 20% fine-coarse sand (40% fine, 40%); subangular-subrounded; 20% silt, nonpla d lithic fragments; sand is quartz, feldspar,	medium, astic; gravel										
5			sw		moist; 65% f coarse); 30% nonplastic; s	d Sand with Gravel: 7.5YR 5/4, brown; loos fine-coarse sand (40% fine, 40% medium, % gravel to 1"; subangular-subrounded; 5% sand is quartz, feldspar, and lithic fragment thic fragments.	20% silt,										
0	0.0															GW- GM GW- GM	
5			GM	10101	gravel to 1-1 20% coarse	with Sand: 7.5YR 4/4, brown; loose; slightl /2"; 20% fine-coarse sand (40% fine, 40%); subangular-subrounded; 30% silt, nonpla d lithic fragments; sand is quartz, feldspar,	medium, astic; gravel										
0	0.2		ML		fine-coarse s gravel to 3/8	I/4, brown; soft; slightly moist; nonplastic; sand (40% fine, 40% medium, 20% coarse "; subangular-subrounded; sand is quartz, gments; gravel is lithic fragments.); trace										
15			sw		moist; 75% f coarse); 20% nonplastic; s	d Sand with Gravel: 7,5YR 5/4, brown; loos fine-coarse sand (20% fine, 30% medium, % gravel to 1/2"; subangular-subrounded; 5 sand is quartz, feldspar, and lithic fragment thic fragments.	50% 5% silt,										

(1) KAFB-106252-515: 2.5" OD Sch. 80 PVC; blank riser, 0-515 ft bgs; 0.01" slot screen, 515-525 ft bgs
(2) KAFB-106252-425: 4.5" OD Sch. 80 PVC; blank riser, 0-425 ft bgs; 0.01" slot screen, 425-465 ft bgs
(3) KAFB-106252-390: 4.5" OD Sch. 80 PVC; blank riser, 0-390.5 ft bgs; 0.01" slot screen, 390.5-415.5 ft bgs
(3) bgs = below ground surface
ft = foot(feet)

N/A = not applicable

		neering, S			Start Date:	(irtland AFB, New Mexico	WELL LOG Well ID: KAFB-106252 Page: 3 of 14	
rilling rill Bi riller:) Metho t: Lon Mark	oany: Ca od: Air F ng-Tooth Green . Messen	Rotary C Mill	asing	Hammer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material		al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(µ)	(vmqq)	Samples Collected	uscs	Lithology		Sample Description		Completion Details
	1.2		SW- SM		70% fine-coa gravel to 1/2	Sand with Silt: 7.5YR 4/4, brown; loose; s rse sand (35% fine, 50% medium, 15% co ; subangular-subrounded; 10% silt, nonpl Ispar, and lithic fragments; gravel is quart	oarse); 20% astic; sand	(1) (2) (3)
15			SP- SM		moist; 90% fi coarse sand; nonplastic; s	ed Sand with Silt: 7.5YR 6/4, light brown; lo ne-medium sand (40% fine, 60% medium trace gravel to 1/2"; subangular-subround and is quartz, feldspar, and lithic fragment hts. Note: drill chatter at 87 ft.); trace ded; 10% silt,	
	0 1.1			SW	moist; 55% fi coarse); 40% nonplastic; s	Sand with Gravel: 7.5YR 5/4, brown; loos ne-coarse sand (30% fine, 50% medium, gravel to 2-1/4"; subangular-subrounded and is quartz, feldspar, and lithic fragment hic fragments.		
95			SP- SM		moist; 90% fi coarse sand;	ed Sand with Silt: 7.5YR 6/4, light brown; lo ne-medium sand (40% fine, 60% medium trace gravel to 1/2"; subangular-subround and is quartz, feldspar, and lithic fragment hts.); trace ded; 10% silt,	
100	0.4		SP		fine-medium subangular-s	ed Sand: 10YR 5/3, brown; loose; slightly r sand (40% fine, 60% medium); trace coar ubrounded; 5% silt, nonplastic; sand is qu lithic fragments.	se sand;	
105			sw		moist; 65% fi coarse); 30% nonplastic; s	Sand with Gravel: 10YR 5/3, brown; loose ne-coarse sand (40% fine, 30% medium, o gravel to 2"; subangular-subrounded; 5% and is quartz, feldspar, and lithic fragment hic fragments.	30% silt,	
110					moist; 90% c	5/4, brown; medium stiff; medium plastic; a lay; 5% silt; 5% gravel to 1-1/4"; trace fine gular-subrounded; gravel is quartz and lith	-medium	
115						7.5YR 5/4, brown; medium stiff; medium p ; 60% clay; 20% fine-coarse sand (40% fin 6 coarse); 20% gravel to 1-1/4"; ubrounded; sand is quartz, feldspar, and ravel is quartz and lithic fragments.	ne, 40%	

(1) KAFB-106252-515: 2.5" OD Sch. 80 PVC; blank riser, 0-515 ft bgs; 0.01" slot screen, 515-525 ft bgs
(2) KAFB-106252-425: 4.5" OD Sch. 80 PVC; blank riser, 0-425 ft bgs; 0.01" slot screen, 425-465 ft bgs
(3) KAFB-106252-390: 4.5" OD Sch. 80 PVC; blank riser, 0-390.5 ft bgs; 0.01" slot screen, 390.5-415.5 ft bgs
(3) bgs = below ground surface
(1) ft = foot(feet)

EA	Engin d Tech	eering, S nology, I	cience nc., PB	ċ	Start Date:	2735DM02 Kirtland AFB, New Mexico 2-23-2021 n Date: 3-11-2021		WELL LOG Well ID: KAFB-106252 Page: 4 of 14	
Drilling Drill Bi Driller:	Metho t: Lon Mark	any: Ca od: Air R g-Tooth I Green Messen	otary C Mill	asing	g Hammer	ammer Boring Diameter (in): 14" nominal Seal Materia Well Diameter: See Notes Section Seal Materia DTW After Completion (ft bgs): N/A		al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(H)	(vmqq) Old	Samples Collected	uscs	Lithology		Sample Description		Completion Details (1) (2) (3)	
	0.2		CL		moist; 60% o medium); tra subangular-s	5/4, brown; soft; slightly plastic-medium pl clay; 30% silt; 10% fine-medium sand (60% ice coarse sand; trace gravel to 1/2"; subrounded; sand is quartz, feldspar, and l ravel is quartz and lithic fragments.	6 fine, 40%		
125 130 135	0.2				10% clay; 5% feldspar, and fine-medium	/4, brown; soft; slightly moist; slightly plast % fine sand; subangular-subrounded; sand d lithic fragments. At 130 ft, 80%silt; 10% c sand, trace coarse sand. At 135 ft, 7.5YR silt; 20% clay; 10% fine-medium sand, trace	is quartz, lay; 10% 5/6, strong		
140	1.7)	ML						
145									
150	1.2								
155	2		SP		See descript	tion below.			
160			-						

(1) KAFB-106252-515: 2.5" OD Sch. 80 PVC; blank riser, 0-515 ft bgs; 0.01" slot screen, 515-525 ft bgs
(2) KAFB-106252-425: 4.5" OD Sch. 80 PVC; blank riser, 0-425 ft bgs; 0.01" slot screen, 425-465 ft bgs
(3) KAFB-106252-390: 4.5" OD Sch. 80 PVC; blank riser, 0-390.5 ft bgs; 0.01" slot screen, 390.5-415.5 ft bgs
bgs = below ground surface
ft = foot(feet)

EA Engineering, Science,					Location: I Start Date:	2735DM02 Kirtland AFB, New Mexico 2-23-2021 n Date: 3-11-2021	WELL LOG Well ID: KAFB-106252 Page: 5 of 14		
orilling orill Bit: oriller:	Metho Lon Mark		otary C Vill	asing	Hammer	Hammer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material		erial: See Notes Section II(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(H)	(nudd) QId	Samples Collected	uscs	Lithology		Sample Description		Completion Details (1) (2) (3)	
1.3 165 170 1.8 SP			moist; 95% f coarse sand nonplastic; s lithic fragme	ed Sand: 10YR 5/4, yellowish brown; loose fine-medium sand (40% fine, 60% medium ; trace gravel to 1/2"; subangular-subround and is quartz, feldspar, and lithic fragment nts. At 160 ft, 95% sand (30% fine, 70% m sand; 5% silt.); trace ded; 5% silt, s; gravel is				
180	1.4		sc		slightly mois coarse); trac	t: 10YR 4/3, brown; loose; nonplastic-sligh t; 75% fine-coarse sand (40% fine, 40% m æ gravel to 1/2"; subangular-subrounded; i tz, feldspar, and lithic fragments; gravel is nts.	edium, 20% 25% clay;		
185 190 195	1.0		sw		moist; 85% f coarse); 10% nonplastic; s	I Sand: 10YR 5/4, yellowish brown; loose; fine-coarse sand (30% fine, 60% medium, & gravel to 3/8"; subangular-subrounded; 5 and is quartz, feldspar, and lithic fragment thic fragments. At 190 ft, gravel to 5/8".	10% 5% silt,		

(1) KAFB-106252-315, 2.5 °CD Sch. 80 PVC; blank riser, 0-315 ft bgs; 0.01" slot screen, 425-465 ft bgs
 (2) KAFB-106252-425; 4.5" OD Sch. 80 PVC; blank riser, 0-425 ft bgs; 0.01" slot screen, 425-465 ft bgs
 (3) KAFB-106252-390; 4.5" OD Sch. 80 PVC; blank riser, 0-390.5 ft bgs; 0.01" slot screen, 390.5-415.5 ft bgs
 bgs = below ground surface
 ft = foot(feet)

EA Engineering, Science, and Technology, Inc., PBC					Project: 62735DM02 Location: Kirtland AFB, New Mexico Start Date: 2-23-2021 Completion Date: 3-11-2021			WELL LOG Well ID: KAFB-106252 Page: 6 of 14 terial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
Drilling Company: Cascade Drilling Method: Air Rotary Casing Hammer Drill Bit: Long-Tooth Mill Driller: Mark Green Geologist: J. Messenger						Boring Diameter (in):14" nominalWell Diameter:See Notes SectionDTW After Completion (ft bgs):N/A			
(ii)	(vmqq) Olq	Samples Collected	uscs	Lithology		Sample Description		Completion Details (1) (2) (3)	
	6.3		SP- SM		Poorly Graded Sand with Silt: 10YR 5/4, yellowish brown; loose; slightly moist; 90% fine-medium sand (30% fine, 70% medium); trace coarse sand; subangular-subrounded; 10% silt, nonplastic; sand is quartz, feldspar, and lithic fragments.				
205 210	2.5		SP		Poorly Graded Sand: 10YR 5/4, yellowish brown; loose; slightly moist; 95% fine-medium sand (30% fine, 70% medium); trace coarse sand; subangular-subrounded; 5% silt, nonplastic; sand is quartz, feldspar, caliche, and lithic fragments.				
215 220 225	3.4		sw		Well-Graded Sand: 10YR 5/4, yellowish brown; loose; slightly moist; 95% fine-coarse sand (25% fine, 65% medium, 10% coarse); trace gravel to 3/8"; subangular-subrounded; 5% silt, nonplastic; sand is quartz, feldspar, caliche, and lithic fragments; gravel is caliche and lithic fragments.				
230	2.3		SP		moist; 95% f coarse sand	ed Sand: 10YR 5/4, yellowish brown; loose ne-medium sand (30% fine, 70% medium subangular-subrounded; 5% silt, nonplas par, caliche, and lithic fragments.	; trace		
235			sw		moist; 85% f coarse); 10% nonplastic; s	Sand: 10YR 5/4, yellowish brown; loose; ne-coarse sand (25% fine, 65% medium, gravel to 1/2"; subangular-subrounded; 5 and is quartz, feldspar, caliche, and lithic f rtz and lithic fragments.	10% % silt,		

(1) KAFB-106252-515: 2.5" OD Sch. 80 PVC; blank riser, 0-515 ft bgs; 0.01" slot screen, 515-525 ft bgs
(2) KAFB-106252-425: 4.5" OD Sch. 80 PVC; blank riser, 0-425 ft bgs; 0.01" slot screen, 425-465 ft bgs
(3) KAFB-106252-390: 4.5" OD Sch. 80 PVC; blank riser, 0-390.5 ft bgs; 0.01" slot screen, 390.5-415.5 ft bgs
bgs = below ground surface
ft = foot(feet)

N/A = not applicable

EA Engineering, Science, and Technology, Inc., PBC					Project: 62735DM02 Location: Kirtland AFB, New Mexico Start Date: 2-23-2021 Completion Date: 3-11-2021			WELL LOG Well ID: KAFB-106252 Page: 7 of 14		
Drilling Drill Bi Driller:	Metho t: Lon Mark	14 Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rotary C Mill	asing	Hammer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material		rial: See Notes Section II(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand			
(iti)	(nudd) Old	Samples Collected	nscs	Lithology		Sample Description	- A - 1	Completion Details		
	1.7		SP		moist; 95% f coarse sand	ed Sand: 10YR 5/4, yellowish brown; loose ine-medium sand (30% fine, 70% medium subangular-subrounded; 5% silt, nonplas par, and lithic fragments.	; trace	(1) (2) (3)		
245			sw		moist; 85% f coarse); 10% nonplastic; s	Sand: 10YR 5/4, yellowish brown; loose; ine-coarse sand (25% fine, 50% medium, gravel to 1/2"; subangular-subrounded; 5 and is quartz, feldspar, caliche, and lithic f rtz and lithic fragments. Note: drill chatter	25% % silt, ragments;			
250 255	0.9		SP		moist; 90% f coarse sand, nonplastic; s	ed Sand: 10YR 5/4, yellowish brown; loose ine-medium sand (30% fine, 70% medium 5% gravel to 3/8"; subangular-subrounde and is quartz, feldspar, caliche, and lithic f rtz and lithic fragments. Note: drill chatter	; trace d; 5% silt, ragments;			
260	2.6		GW		slightly moist 40% medium quartz, calich	Gravel with Sand: 10YR 6/3, pale brown; ; 60% gravel to 2"; 40% fine-coarse sand n, 30% coarse); subangular-subrounded; g ne, and lithic fragments; sand is quartz, fel lithic fragments.	(30% fine, ravel is			
265			CL		clay; 10% fin	5/3, brown; soft; medium plastic; slightly m e sand; subangular-subrounded; sand is c che, and lithic fragments.				
270	2.9		sc		plastic; slight medium, 10%	: 10YR 4/3, brown; loose/slightly cohesive ly moist; 70% fine-coarse sand (40% fine, 6 coarse); subangular-subrounded; 30% c oar, caliche, and lithic fragments.	50%			
275					fine-medium subangular-s	ed Sand: 10YR 5/3, brown; loose; slightly r sand (25% fine, 75% medium); trace coar subrounded; 5% silt, nonplastic; sand is qu I lithic fragments.	se sand;			

		neering, s			Start Date:	735DM02 Kirtland AFB, New Mexico 2-23-2021 Date: 3-11-2021		WELL LOG Well ID: KAFB-106252 Page: 8 of 14	
rilling rill Bil riller:	Metho t: Lon Mark	oany: Ca od: Air F g-Tooth Green Messen	Rotary C Mill	asing	Hammer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material		rial: See Notes Section I(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
(µ)	(nudd) Old	Samples Collected	nscs	Lithology		Sample Description		Completion Details	
	2.0		SP		Same as abo	ove.		(1) (2) (3)	
285	1.4		sw		slightly mois coarse); 25% nonplastic; s	Sand with Gravel: 10YR 5/4, yellowish br t; 70% fine-coarse sand (30% fine, 50% m 6 gravel to 1/2"; subangular-subrounded; 5 and is quartz, feldspar, and lithic fragment thic fragments.	edium, 20% 5% silt,		
295			SP		fine-medium subangular-s	ed Sand: 10YR 5/3, brown; loose; slightly i sand (25% fine, 75% medium); trace coar subrounded; 5% silt, nonplastic; sand is qu I lithic fragments.	se sand;		
300	2.3		sw		fine-coarse s to 3/8"; suba	Sand: 10YR 5/3, brown; loose; slightly me sand (25% fine, 50% medium, 25% coarse ngular-subrounded; 5% silt, nonplastic; sa f lithic fragments; gravel is quartz and lithic); 5% gravel and is quartz,		
305 310	1.7		SP		95% fine-me sand; suban	ed Sand: 10YR 6/3, pale brown; loose; slig dium sand (25% fine, 75% medium); trace gular-subrounded; 5% silt, nonplastic; san I lithic fragments.	coarse		
315			SP-		moist; 90% f coarse sand quartz, felds	ed Sand with Silt: 10YR 5/3, brown; loose; ine-medium sand (30% fine, 70% medium ; subangular-subrounded; 10% silt, nonpla par, and lithic fragments. At 320 ft, 10YR 6 fine, 60% medium, no trace coarse sand.); trace istic; sand is		

		neering, S mology, I			Start Date:	(irtland AFB, New Mexico		WELL LOG Well ID: KAFB-106252 Page: 9 of 14		
Drilling Drill Bi Driller:	Metho t: Lon Mark	oany: Ca od: Air R g-Tooth Green Messen	otary C Mill	asing	Hammer Boring Diameter (in): 14" nominal Seal Material Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material			erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
(H)	(vmqq)	Samples Collected	nscs	Lithology		Sample Description		Completion Details		
	2.6		SP- SM		Same as abo	we.		(1) (2) (3)		
325			SW- SM		80% fine-coa gravel to 3/8'	Sand with Silt: 10YR 5/3, brown; loose; s arse sand (30% fine, 60% medium, 10% c c; subangular-subrounded; 10% silt, nonpl dspar, and lithic fragments.	oarse); 10%			
330	1.6		GW- GM	11111	loose; slightly fine, 50% me silt, nonplast	Gravel with Silt and Sand: 10YR 5/4, yell y moist; 70% gravel to 1"; 20% fine-coarse dium, 20% coarse); subangular-subround c; gravel is quartz and lithic fragments; sa lithic fragments.	e sand (30% led; 10%			
335			SM		70% fine san	0YR 5/3, brown; loose/slightly cohesive; s d; trace medium sand; subangular-subrou ic; sand is quartz, feldspar, and lithic fragr	unded; 30%			
340	2.4		SP		fine-medium gravel to 1/2	ed Sand: 10YR 5/4, brown; loose; slightly r sand (25% fine, 75% medium); trace coar ; subangular-subrounded; 5% silt, nonpla par, and lithic fragments; gravel is quartz a	se sand; 5% stic; sand is			
345			sw		slightly moist coarse); 30%	Sand with Gravel: 10YR 6/3, pale brown; 70% fine-coarse sand (25% fine, 50% m gravel to 1"; subangular-subrounded; san lithic fragments; gravel is quartz and lithic	edium, 25% nd is quartz,			
350 355	0.9		SP		100% fine-m sand; subang	ed Sand: 10YR 6/3, pale brown; loose; slig edium sand (40% fine, 60% medium); trac gular-subrounded; trace silt; sand is quart gments. At 355 ft, 95% sand; 5% silt, nonp	ce coarse z, feldspar,			
360										

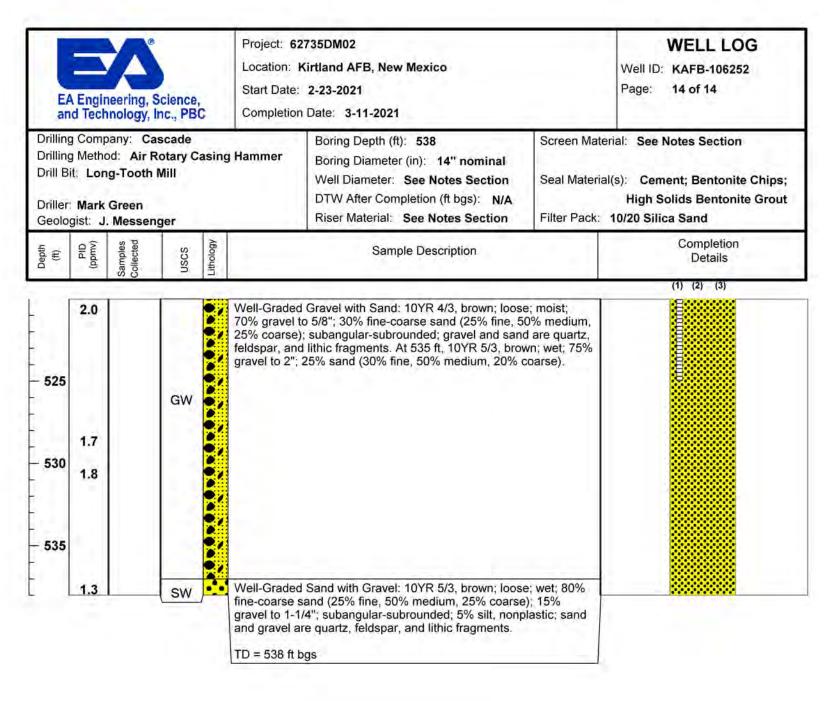
EA	Engli d Tech	neering, s	Science	ċ	Location: I Start Date:	: 62735DM02 m: Kirtland AFB, New Mexico ate: 2-23-2021 etion Date: 3-11-2021			WELL LOG Well ID: KAFB-106252 Page: 10 of 14		
Drilling Company: Cascade Drilling Method: Air Rotary Casing Hammer Drill Bit: Long-Tooth Mill Driller: Mark Green Geologist: J. Messenger						Boring Diameter (in):14" nominalWell Diameter:See Notes SectionDTW After Completion (ft bgs):N/A		terial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand			
(ft)	(nudd) QId	Samples Collected	uscs	Lithology		Sample Description			Completion Details		
	3.7		sw		moist; 95% f coarse); sub	I Sand: 10YR 5/4, yellowish brown; loose; ine-coarse sand (25% fine, 50% medium, angular-subrounded; 5% silt, nonplastic; s par, and lithic fragments.	25%	Hydrated 3/8" Bentonite Chips, 358-388.4 ft bgs			
365 370	5.1		SP		moist; 100% coarse sand feldspar, and	ed Sand: 10YR 5/4, yellowish brown; loose fine-medium sand (40% fine, 60% mediur ; subangular-subrounded; trace silt; sand i d lithic fragments. At 370 ft, 90% sand; 5% gravel is quartz and lithic fragments.	n); trace s quartz,				
375			GW		loose; slightl (30% fine, 40	l Gravel with Sand: 10YR 4/4, dark yellowis y moist; 60% gravel to 1-1/4"; 35% fine-co 0% medium, 30% coarse); subangular-sub plastic; gravel and sand are quartz, feldspa	arse sand rounded;				
380	5.2		sw		fine-coarse s gravel to 3/8	I Sand: 10YR 5/3, brown; loose; slightly mo sand (30% fine, 60% medium, 10% coarse "; subangular-subrounded; 5% silt, nonpla par, and lithic fragments; gravel is quartz a); trace stic; sand is				
385			SP- SM		moist; 90% f coarse sand	ed Sand with Silt: 10YR 5/3, brown; loose; ine-medium sand (30% fine, 70% medium; ; subangular-subrounded; 10% silt, nonpla par, and lithic fragments.	; trace	10/20 Silica Sand,			
390 395	2.5		SP		95% fine-me sand; suban	ed Sand: 10YR 6/3, pale brown; loose; slig edium sand (30% fine, 70% medium); trace gular-subrounded; 5% silt, nonplastic; san d lithic fragments.	coarse	388.4-418 ft bgs	4.5" OD Sch. PVC Screen, 0.010" Slots 390,5-415.5 ft bgs		

N/A = not applicable

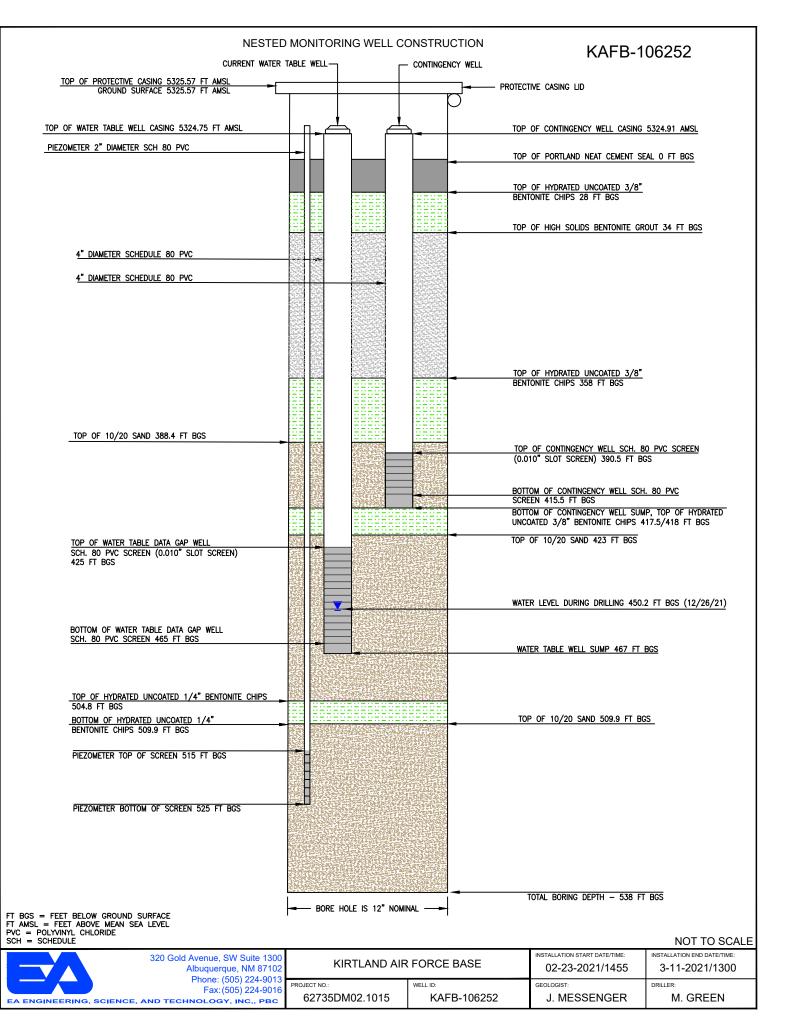
Notes:

EA Engineering, Science,						at: 62735DM02 ion: Kirtland AFB, New Mexico Date: 2-23-2021 Iletion Date: 3-11-2021			WELL LOG Well ID: KAFB-106252 Page: 11 of 14		
Drilling Drill Bi Driller:	g Meth it: Lor Mark	pany: Cas od: Air R ng-Tooth I Green . Messeng	otary C Vill	asing	Hammer	Boring Diameter (in): 14" nominal Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A		ierial: See Notes Section ial(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand			
Depth (ft)	(nundd) Old	Samples Collected	nscs	Lithology		Sample Description			Completion Details		
	1.1		sw		95% fine-coa gravel to 3/8	Sand: 10YR 6/3, pale brown; loose; slight arse sand (25% fine, 60% medium, 15% co ; subangular-subrounded; trace silt; sand t lithic fragments; gravel is quartz and lithic	barse); 5% is quartz,	C			
405			SP		95% fine-me sand; suban	ed Sand: 10YR 6/3, pale brown; loose; slig dium sand (30% fine, 70% medium); trace gular-subrounded; 5% silt, nonplastic; sand l lithic fragments.	coarse				
410	1.1		sw		95% fine-coa gravel to 3/8	Sand: 10YR 6/3, pale brown; loose; slight arse sand (25% fine, 60% medium, 15% co ; subangular-subrounded; trace silt; sand t lithic fragments; gravel is quartz and lithic	barse); 5% is quartz,				
415			GC		cohesive; slig sand (35% fi subangular-s fragments; s exists as not	el with Sand: 7.5YR 6/3, light brown; loose ghtly moist; 50% gravel to 1-1/4"; 35% fine ne, 55% medium, 10% coarse); subrounded; 15% clay; gravel is quartz and and is quartz, feldspar, and lithic fragments dules to 1"; 7.5YR 5/3, brown; medium stiff	-coarse d lithic s. Note: clay	Hydrated 3/8" Bentonite Chips, 418-423 It bgs	4.5" DD Sch. 1 PVC Sump 41.5-417.5 ft b		
	1.3		ML		70% silt; 30%	.5YR 4/6, strong brown; soft; slightly moist % fine-medium sand (50% fine, 50% mediu ; subangular-subrounded; sand is quartz, f nts.	im); trace	10/20 Silica			
425			SP		85% fine-me sand; 10% g nonplastic; s	ed Sand: 10YR 6/3, pale brown; loose; slig dium sand (30% fine, 70% medium); trace ravel to 5/8"; subangular-subrounded; 5% and is quartz, feldspar, and lithic fragment thic fragments.	coarse silt,	Sand, 423-504.8 ft bgs	4.5" 0D Sch. 1 PVC Screen, 0.010" Slots 425-465 ft bgs		
430	1.0		SP- SM		moist; 90% f coarse sand nonplastic; s	ed Sand with Silt: 10YR 6/3, pale brown; lo ine-medium sand (25% fine, 75% medium) ; trace gravel to 3/8"; subangular-subround and is quartz, feldspar, and lithic fragment thic fragments.); trace led; 10% silt,				
435	435		SP		moist; 95% f coarse sand	ed Sand: 10YR 6/2, light brownish gray; loc ine-medium sand (30% fine, 70% medium) ; subangular-subrounded; 5% silt, nonplas par, and lithic fragments.	; trace				

N/A = not applicable


Notes:

EA Engineering, Science,					Start Date:	2735DM02 Kirtland AFB, New Mexico 2-23-2021 n Date: 3-11-2021	WELL LOG Well ID: KAFB-106252 Page: 12 of 14			
Drilling Drill Bi Driller:	g Metho it: Lor Mark	oany: Ca od: Air F ng-Tooth Green . Messer	Rotary C Mill	asing	Hammer	nmer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A N/A		erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
(ii)	(ft) PID (ppmv) Samples Collected USCS Lithology			Lithology		Sample Description		Completion Details (1) (2) (3)		
	0.8		SM		sand; trace r subangular-s	0YR 6/3, pale brown; loose; slightly moist nedium sand; 5% gravel to 1-1/4"; subrounded; 25% silt, nonplastic; sand is o d lithic fragments; gravel is quartz and lithic	uartz,			
445 450 455	2.1		SP		moist; 95% f coarse sand quartz, felds medium san	ed Sand: 10YR 6/2, light brownish gray; lo ine-medium sand (30% fine, 70% medium ; subangular-subrounded; 5% silt, nonplas par, and lithic fragments. At 450 ft, 40% fir d. At 455 ft, 10YR 5/3, brown; 100% sand n), trace coarse sand.); trace tic; sand is ne sand, 60%			
460 465	2.7				fine-coarse s to 1/2"; suba fragments; g 4/4, dark yel	I Sand: 10YR 5/4, yellowish brown; loose; sand (20% fine, 50% medium, 30% coarse ingular-subrounded; sand is quartz, feldsp iravel is quartz and lithic fragments. At 470 lowish brown. At 475 ft, 90% sand, 10% gr 1, 20% gravel to 1", 5% nonplastic silt.); 5% gravel ar, and lithic ft, 10YR	4.5" 0D Sch. 1 PVC Sump 465-467 ft bgs		
470	1.5		SW							
475										
480	_				£					


bgs = below ground s ft = foot(feet) N/A = not applicable

EA	Engir d Tech	neering, s	Science, Inc., PB	c	Location: P Start Date:	Project: 62735DM02 Location: Kirtland AFB, New Mexico Start Date: 2-23-2021 Completion Date: 3-11-2021			WELL LOG Well ID: KAFB-106252 Page: 13 of 14		
Drilling Drill Bi Driller:	Metho t: Lon Mark	oany: Ca od: Air F g-Tooth Green Messen	Rotary C Mill	asing	Hammer	Hammer Boring Diameter (in): 14" nominal Well Diameter: See Notes Section Seal Materia DTW After Completion (ft bgs): N/A Seal Materia		terial: See Notes Section ial(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand			
(H)	(nudd) Old	Samples Collected	uscs	Lithology	-	Sample Description			Completio Details	n	
	2.4				Same as abo	ove.			(1) (2) (3)		
485			SP		fine-medium subangular-s	ed Sand: 10YR 5/3, brown; loose; slightly r sand (30% fine, 70% medium); trace coar subrounded; 5% silt, nonplastic; sand is qu l lithic fragments.	se sand;				
490 495	2.1		GC		moist; 50% g medium, 25% quartz and lif fragments. N	el with Sand: 10YR 4/3, brown; loose/sligh gravel to 1-5/8"; 20% fine-coarse sand (25 % coarse); subangular-subrounded; 30% c thic fragments; sand is quartz, feldspar, ar lote: clay exists as nodules to 2"; 7.5YR 4/ medium plastic.	% fine, 50% day; gravel is d lithic				
500 505	1.9		GM	111 11 11 111 111 1	moist; 50% g medium, 25% nonplastic; g	with Sand: 10YR 4/3, brown; loose/slightly gravel to 2"; 20% fine-coarse sand (25% fin % coarse); subangular-subrounded; 30% s ravel is quartz and lithic fragments; sand i I lithic fragments.	ne, 50%	Hydrated 1/4" Bentonite TR-30 Pellets, 504.8-509.9 ft bgs			
510	2.4			11-11-11				10/20 Silica Sand, 509.9-538 ft bgs			
520					See descript	ion below.				2.5" OD Sch. : PVC Screen, 0.010" Slots 515-525 ft bgs	

(2) KAFB-106252-425: 4.5" OD Sch. 80 PVC; blank riser, 0-425 ft bgs; 0.01" slot screen, 425-465 ft bgs (3) KAFB-106252-390: 4.5" OD Sch. 80 PVC; blank riser, 0-390.5 ft bgs; 0.01" slot screen, 390.5-415.5 ft bgs bgs = below ground surface ft = foot(feet) N/A = not applicable

Notes:

ş

EA Engineering, Science,						roject: 62735DM02 ocation: Kirtland AFB, New Mexico tart Date: 11-21-2020 completion Date: 12-20-2020			WELL LOG Well ID: KAFB-106S10 Page: 1 of 36		
						Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A		erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand			
(Ħ)	(nudd) QId	Samples Collected	uscs	Lithology		Sample Description			mpletion Details		
0 5					Hydrovac for	r utilities 0-8 ft bgs. No samples taken from	i o i o it ogo.	4" Sch. 80 PVC Blank 0-409 ft bgs	(2) 4'' Sch. 80 P Blank 0-443 I bgs		
10 15	5.0		CL		plasticity; 80 40% mediun subangular-s	5/4, brown; soft-medium stiff; slightly mois % clay; 5% silt; 15% fine to coarse sand (n, 10% coarse); trace gravel to 1/2"; subrounded; sand is quartz, feldspar, and ravel is lithic fragments. At 15 ft, 90% clay	50% fine,	Cement, 0-20 (t bgs			
20	6.2		ML		nonplastic; 7 40% mediun subangular-s	d: 5YR 5/4, reddish brown; soft; slightly m '0% silt; 10% clay; 20% fine to coarse san n, 10% coarse); trace gravel to 5/8"; subrounded; sand is quartz, feldspar, and ravel is lithic fragments.	d (50% fine,		High Solids Bentonite Gr 20-373.6 ft b		
25 30	4.5		CL		medium plas fine, 40% me subangular-s	5/4, reddish brown; soft-medium stiff; sligh sticity; 90% clay; 5% silt; 5% fine to coarse edium, 10% coarse); trace gravel to 1/2"; subrounded; sand is quartz, feldspar, and ravel is lithic fragments. At 30 ft, 100% cla I fine sand.	sand (50%				
35			ML		nonplastic-sl sand (40% fi subangular-s fragments; g	d: 5YR 5/4, reddish brown; soft; slightly mi ightly plastic; 55% silt; 20% clay; 20% fine ne, 40% medium, 20% coarse); 5% grave subrounded; sand is quartz, feldspar, and ravel is lithic fragments. At 40 ft, 75% silt, 0% fine, 50% medium, 10% coarse), trace	to coarse I to 1/2"; lithic 10% clay,				

 (1) KAFB-106S10-409: 4.5" OD Sch. 80 PVC; blank riser, 0-409 ft bgs; 0.01" slot screen, 409-434 ft bgs
 (2) KAFB-106S10-443: 4.5" OD Sch. 80 PVC; blank riser, 0-443 ft bgs; 0.01" slot screen, 443-483 ft bgs; Samples: D = diesel-range organics; G = gasoline-range organics bgs = below ground surface

ft = foot(feet)

		neering, annology, l			Start Date:	2735DM02 Kirtland AFB, New Mexico 11-21-2020 n Date: 12-20-2020		WELL LOG Well ID: KAFB-106S10 Page: 2 of 36
rilling rill Bi riller:	g Metho it: 8 1/ Forre	oany: Ca od: Air F 2" Long- est Chatti . Messen	Rotary C Tooth M		Hammer Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material		rial: See Notes Section I(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(11)	(vmqq) DIq	Samples Collected	uscs	Lithology		Sample Description		Completion Details
	2.0		ML		Same as ab	ove.		(1) (2)
15 50 55	1.5		ML			/4, light brown; soft; slightly moist; nonplas e sand and lithic gravel to 5/8". At 50 ft, gr rel to 1/2".		
50	1.8		SM		sand (20% f 1/2"; subang	5YR 5/3, brown; loose; slightly moist; 659 ne, 50% medium, 30% coarse); 10% grav ular-subrounded; 25% silt, nonplastic; sar t lithic fragments; gravel is quartz and lithi	el up to id is quartz,	
65			ML		nonplastic-s sand (40% f subangular-	d: 5YR 5/4, reddish brown; soft; slightly m lightly plastic; 70% silt; 10% clay; 15% fine ne, 40% medium, 20% coarse); 5% grave subrounded; sand is quartz, feldspar, and ravel is lithic fragments.	to coarse to 5/8";	
70 75	3.5		ML		silt; 5% clay; 20% coarse; sand is quar fragments. A (50% fine, 5)	, reddish brown; soft; slightly moist; nonpla 10% fine to coarse sand (40% fine, 40% ; trace lithic gravel to 1/2"; subangular-sul tz, feldspar, and lithic fragments; gravel is t 75 ft, 80% silt, 10% clay, 10% fine-mediu 0% medium), trace coarse sand. Note: cla ic-medium plastic nodules up to 5/8". At 86 % sand.	medium, prounded; lithic um sand y exists as	
80			1		-			

(1) KAFB-106S10-409; 4.5" OD Sch. 80 PVC; blank riser, 0-409 ft bgs; 0.01" slot screen, 409-434 ft bgs
(2) KAFB-106S10-443; 4.5" OD Sch. 80 PVC; blank riser, 0-443 ft bgs; 0.01" slot screen, 443-483 ft bgs. Samples: D = diesel-range organics; G = gasoline-range organics bgs = below ground surface ft = foot(feet)
N/A = not applicable

EA	Engir	neering, s	Science, Inc., PB	c	Location: H Start Date:	735DM02 Kirtland AFB, New Mexico 11-21-2020 Date: 12-20-2020		WELL LOG Well ID: KAFB-106S10 Page: 3 of 36		
orilling orill Bil oriller:	Metho t: 8 1/ Forre	oany: Ca od: Air F 2'' Long- st Chatti Messen	Rotary C Tooth M n	- Q. M. M. M.	Hammer Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A			al(s): Cement; Bentonite Chips High Solids Bentonite Grout 10/20 Silica Sand		
(L)	(vmqq)	Samples Collected	nscs	Lithology		Sample Description		Completion Details		
	5.7		ML		Same as abo	ove.		(1) (2)		
35			CL		plasticity; 80 50% medium	5/4, brown; medium stiff; slightly moist; m % clay; 10% silt; 10% fine to coarse sand n, 10% coarse); subangular-subrounded; s par, and lithic fragments.	(40% fine,			
Đ	5.5 ML				10% clay; 10 trace coarse	, light brown; soft; slightly moist; nonplasti % fine to medium sand (50% fine, 50% m sand; subangular-subrounded; sand is qu I lithic fragments.	nedium);			
95			SP- SM		moist; 90% fi coarse sand;	ed Sand with Silt: 10YR 5/3, brown; loose; ine-medium sand (50% fine, 50% medium trace gravel to 1-1/4"; subangular-subrou ic; sand is quartz, feldspar, and lithic frag- nents.	n); trace unded; 10%			
100	8.4		SW- SM		slightly moist coarse); 5% nonplastic; s	Sand with Silt: 10YR 5/2, grayish brown; t; 85% fine-coarse sand (30% fine, 50% m gravel to 3/8"; subangular-subrounded; 10 and is quartz, feldspar, and lithic fragmen thic fragments.	nedium, 20% 0% silt,			
105			sw		85% fine-coa gravel to 1";	Sand: 10YR 6/3, pale brown; loose; sligh arse sand (30% fine, 40% medium, 30% c subangular-subrounded; 5% silt, nonplast par, and lithic fragments; gravel is quartz a	coarse); 10% tic; sand is			
110	5.3		ML		plastic; 70% medium); tra quartz, felds	4, yellowish brown; soft; slightly moist; nor silt; 20% clay; 10% fine-medium sand (50 ce coarse sand; subangular-subrounded; par, and lithic fragments. Note: clay exists um plastic nodules up to 5/8".	0% fine, 50% sand is			
115			ML		silt; 5% clay; trace coarse	, reddish brown; soft; slightly moist; nonpl 10% fine to medium sand (50% fine, 50% sand; trace gravel to 1/2"; subangular-sul z, feldspar, and lithic fragments; gravel is	6 medium); brounded;			

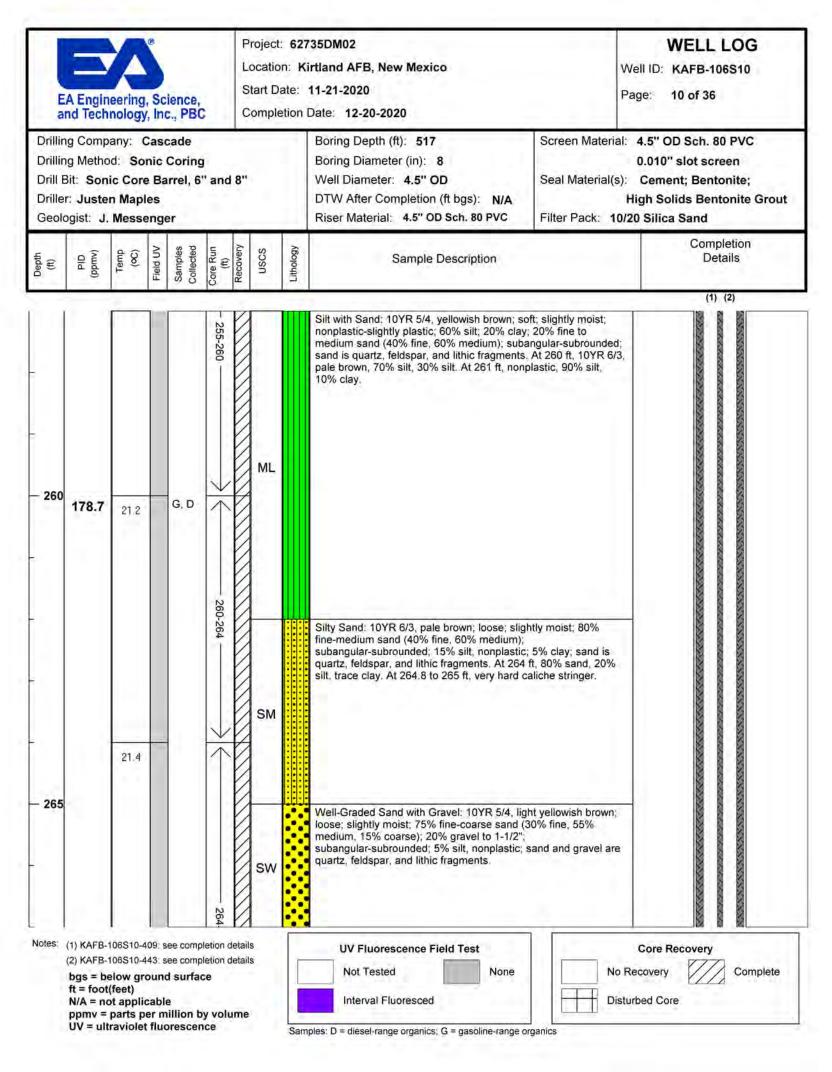
(1) KAFB-106S10-409: 4.5" OD Sch. 80 PVC; blank riser, 0-409 ft bgs; 0.01" slot screen, 409-434 ft bgs (2) KAFB-106S10-443: 4.5" OD Sch. 80 PVC; blank riser, 0-443 ft bgs; 0.01" slot screen, 443-483 ft bgs Samples: D = diesel-range organics; G = gasoline-range organics bgs = below ground surface ft = foot(feet)

EA		eering, S nology, I			Location: I Start Date:	2735DM02 Kirtland AFB, New Mexico 11-21-2020 Date: 12-20-2020		WELL LOG Well ID: KAFB-106S10 Page: 4 of 36		
vrilling vrill Bil vriller:	Metho t: 8 1/: Forre	any: Ca od: Air R 2'' Long- st Chatti Messen	lotary C Tooth N n		Hammer Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material		erial: See Notes Section al(s): Cement; Bentonite Chips High Solids Bentonite Grou 10/20 Silica Sand			
(11)	(nudd) Old	Samples Collected	nscs	Lithology		Sample Description		Completion Details		
	5.7		ML			ove. At 120 ft, 60% silt, 30% clay, 10% sai ightly plastic.	nd,	(1) (2)		
125			CL		plasticity; 80 50% medium	5/4, brown; soft-medium stiff; slightly mois % clay; 10% silt; 10% fine to coarse sand n, 10% coarse); subangular-subrounded; s par, and lithic fragments.	(40% fine,			
130	5.0		sc		fine-medium subangular-s	1: 10YR 5/3, brown; soft-loose; slightly moi sand (50% fine, 50% medium); trace coa subrounded; 20% clay, slightly plastic; 5% par, and lithic fragments. Note: clay exists	rse sand; silt; sand is			
135	1		SP- SM		moist; 90% f coarse sand	ed Sand with Silt: 10YR 6/3, pale brown; lo ine-medium sand (30% fine, 70% medium ; subangular-subrounded; 10% silt, nonpla par, and lithic fragments.	n); trace			
140	3.3		SP		95% fine-me sand; suban	ed Sand: 10YR 6/3, pale brown; loose; slig dium sand (25% fine, 75% medium); trace gular-subrounded; 5% silt, nonplastic; san t lithic fragments.	e coarse			
145			SP- SM		moist; 90% f coarse sand	ed Sand with Silt: 10YR 6/3, pale brown; lo ine-medium sand (30% fine, 70% medium ; subangular-subrounded; 10% silt, nonpla par, and lithic fragments.	n); trace			
150	5.2		CL		plasticity; 90 50% mediun subangular-s	5/4, brown; soft-medium stiff; slightly mois % clay; 5% silt; 5% fine to medium sand (n); trace coarse sand; trace gravel to 3/8"; subrounded; sand is quartz, feldspar, and ravel is lithic fragments.	50% fine,			
155			sc		fine-coarse s gravel to 5/8 5% silt; sand	E 7.5YR 5/3, brown; soft-loose; slightly mo sand (30% fine, 50% medium, 20% coarse "; subangular-subrounded; 35% clay, med t is quartz, feldspar, and lithic fragments; g lote: clay exists as nodules up to 5/8".	e); 15% lium plastic;			

(1) KAFB-106S10-409; 4.5" OD Sch. 80 PVC; blank riser, 0-409 ft bgs; 0.01" slot screen, 409-434 ft bgs (1) KAFB-106S10-443: 4.5" OD Sch. 80 PVC; blank riser, 0-443 ft bgs; 0.01" slot screen, 443-483 ft bgs.
 (2) KAFB-106S10-443: 4.5" OD Sch. 80 PVC; blank riser, 0-443 ft bgs; 0.01" slot screen, 443-483 ft bgs.
 Samples: D = diesel-range organics; G = gasoline-range organics
 bgs = below ground surface
 ft = foot(feet)

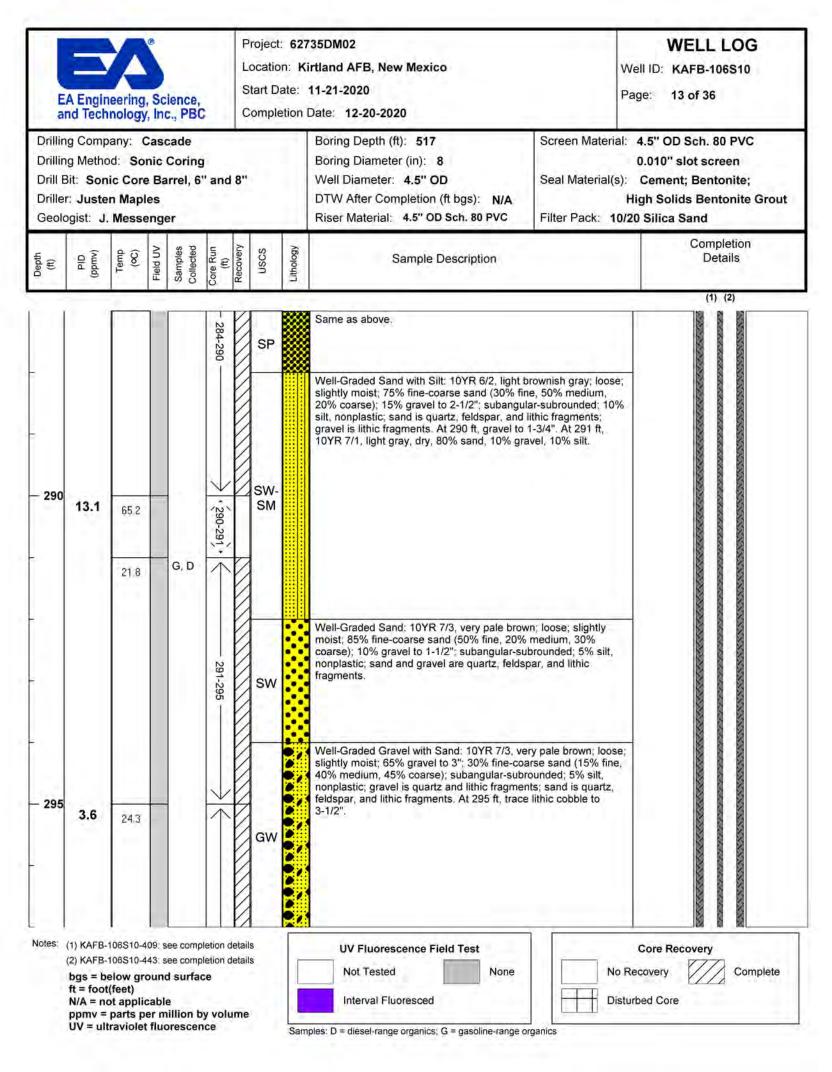
EA	Engir d Tech	eering, nology,	Science Inc., PB	ċ	Start Date:	735DM02 Kirtland AFB, New Mexico 11-21-2020 Date: 12-20-2020		WELL LOG Well ID: KAFB-106S10 Page: 5 of 36		
vrilling vrill Bi vriller:	Metho t: 8 1/ Forre		Rotary C -Tooth N .in	10 March 10	Hammer Boring Diameter (in): 9 5/8 Seal Material Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A Seal Material		rial: See Notes Section I(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand			
(4)	(vmqq) Olq	Samples Collected	nscs	Lithology		Sample Description		Completion Details		
	8.4		SW- SC		moist; 85% f coarse); 5% medium plas	Sand with Clay: 7.5YR 5/3, brown; soft-lo ine-coarse sand (30% fine, 50% medium, gravel to 3/8"; subangular-subrounded; 10 tic; sand is quartz, feldspar lithic fragment nts. Note: clay exists as nodules to 1".	20% % clay,	(1) (2)		
165		.3		SP- SC		slightly mois trace coarse clay, mediun	ed Sand with Clay: 7.5YR 5/3, brown; soft- t; 80% fine-medium sand (25% fine, 75% r sand; 5% gravel to 3/8"; subangular-subro n plastic; sand is quartz, feldspar, and lithio c fragments. Note: clay exists as very stiff	nedium); bunded; 10% c fragments;		
	10.3	.3 SP			95% fine-me sand; suban	ed Sand: 10YR 6/3, pale brown; loose; slig dium sand (25% fine, 75% medium); trace gular-subrounded; 5% silt, nonplastic; san l lithic fragments.				
175			SP- SM		moist; 90% f coarse sand nonplastic; tr	ed Sand with Silt: 10YR 6/3, pale brown; lo ine-medium sand (30% fine, 70% medium ; trace gravel to 3/8"; subangular-subround race clay; sand is quartz, feldspar, and lith ravel is lithic fragments. Note: clay exists a); trace led; 10% silt, ic			
180			SW- SM		Well-Gradec slightly mois coarse); 5% nonplastic; s	Sand with Silt: 10YR 5/4, yellowish brown t; 90% fine-coarse sand (30% fine, 60% m gravel to 3/8"; subangular-subrounded; 10 and is quartz, feldspar, caliche, and lithic f intz, feldspar, and lithic fragments.	edium, 10% % silt,			
185					moist; 95% f coarse); sub	I Sand: 10YR 5/4, yellowish brown; loose; ine-coarse sand (30% fine, 50% medium, angular-subrounded; 5% clay, medium pla par, and lithic fragments. Note: clay exists	20% stic; sand is			
190			sw		slightly mois coarse); 35% medium plas fragments; g	Sand with Gravel: 10YR 5/4, yellowish bro t; 60% fine-coarse sand (30% fine, 50% m gravel to 1-1/8"; subangular-subrounded stic; sand is quartz, feldspar, caliche, and li ravel is quartz, caliche, and lithic fragment dules to 1/2". At 195 ft, 90% sand, 5% grav	edium, 20% ; 5% clay, thic s. Note: clay			
200	ſ.	-			<u> </u>					

(1) KAFB-106S10-409; 4.5" OD Sch. 80 PVC; blank riser, 0-409 ft bgs; 0.01" slot screen, 409-434 ft bgs
 (2) KAFB-106S10-443; 4.5" OD Sch. 80 PVC; blank riser, 0-443 ft bgs; 0.01" slot screen, 443-483 ft bgs; Samples: D = diesel-range organics; G = gasoline-range organics
 bgs = below ground surface
 ft = foot(feet)
 N/A = not applicable

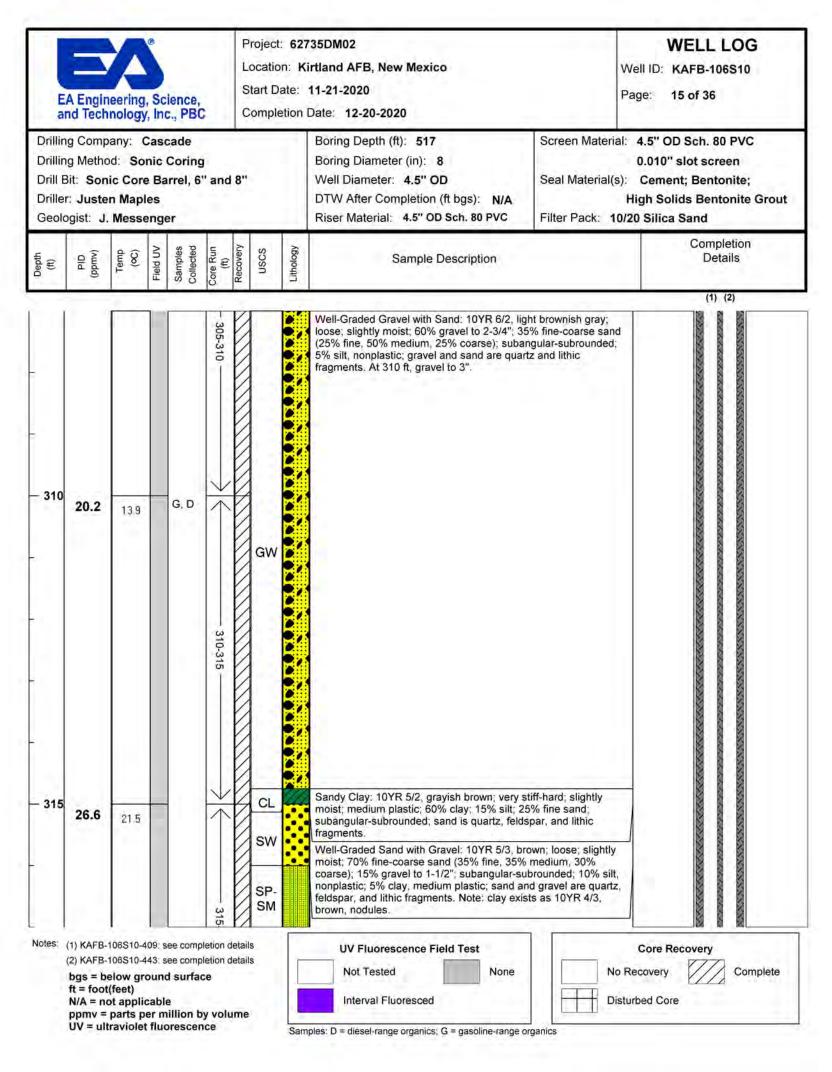

EA	Engir d Tech	neering, S	Science, nc., PB	ċ	Location: Start Date:	2735DM02 Kirtland AFB, New Mexico : 11-21-2020 n Date: 12-20-2020	WELL LOG Well ID: KAFB-106S10 Page: 6 of 36			
Drilling Drill Bi Driller:	g Metho it: 8 1/ Forre	oany: Ca od: Air R 2'' Long- st Chatti . Messen	lotary C Tooth N n		Hammer	Boring Depth (ft): 517 Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	Seal Material	terial: See Notes Section ial(s): Cement; Bentonite Chips; High Solids Bentonite Grout : 10/20 Silica Sand		
Depth (ft)	(vmqq) DIq	Samples Collected	nscs	Lithology		Sample Description		Completion Details		
205	10.0		SM		fine-coarse gravel up to sand is quar	10YR 5/6, yellowish brown; loose; slightly r sand (45% fine, 45% medium, 10% coarse 1/4"; subangular-subrounded; 25% silt, no tz, feldspar, and lithic fragments; gravel is d lithic fragments.	e); trace onplastic;	(1) (2)		
205			SW- SM- SM	80% fine-co gravel to 3/8	d Sand with Silt: 10YR 5/3, brown; loose; s arse sand (65% fine, 15% medium, 20% c "; subangular-subrounded; 10% silt, nonp ldspar, and lithic fragments; gravel is quart gments.	oarse); 10% lastic; sand				
210 215	10.3		sw		moist; 80% ; coarse); 15% nonplastic; t	d Sand with Gravel: 10YR 5/3, brown; loos fine-coarse sand (10% fine, 20% medium, % gravel to 1"; subangular-subrounded; 5% race clay; sand and gravel are quartz, feld ents. Note: clay exists as plastic nodules to	70% 6 silt, spar, and			
220	10.4	1	SW- SM		90% fine-me sand; trace nonplastic; s fragments. A	d Sand with Silt: 10YR 5/3, brown; loose; s edium sand (50% fine, 50% medium); trace gravel to 3/8"; subangular-subrounded; 10 sand and gravel are quartz, feldspar, and li At 225 ft, 95% sand, 5% silt. = 227 ft bgs.	e coarse % silt,			

(1) KAFB-106S10-409; 4.5" OD Sch. 80 PVC; blank riser, 0-409 ft bgs; 0.01" slot screen, 409-434 ft bgs
 (2) KAFB-106S10-443; 4.5" OD Sch. 80 PVC; blank riser, 0-443 ft bgs; 0.01" slot screen, 443-483 ft bgs
 Samples: D = diesel-range organics; G = gasoline-range organics
 bgs = below ground surface
 ft = foot(feet)

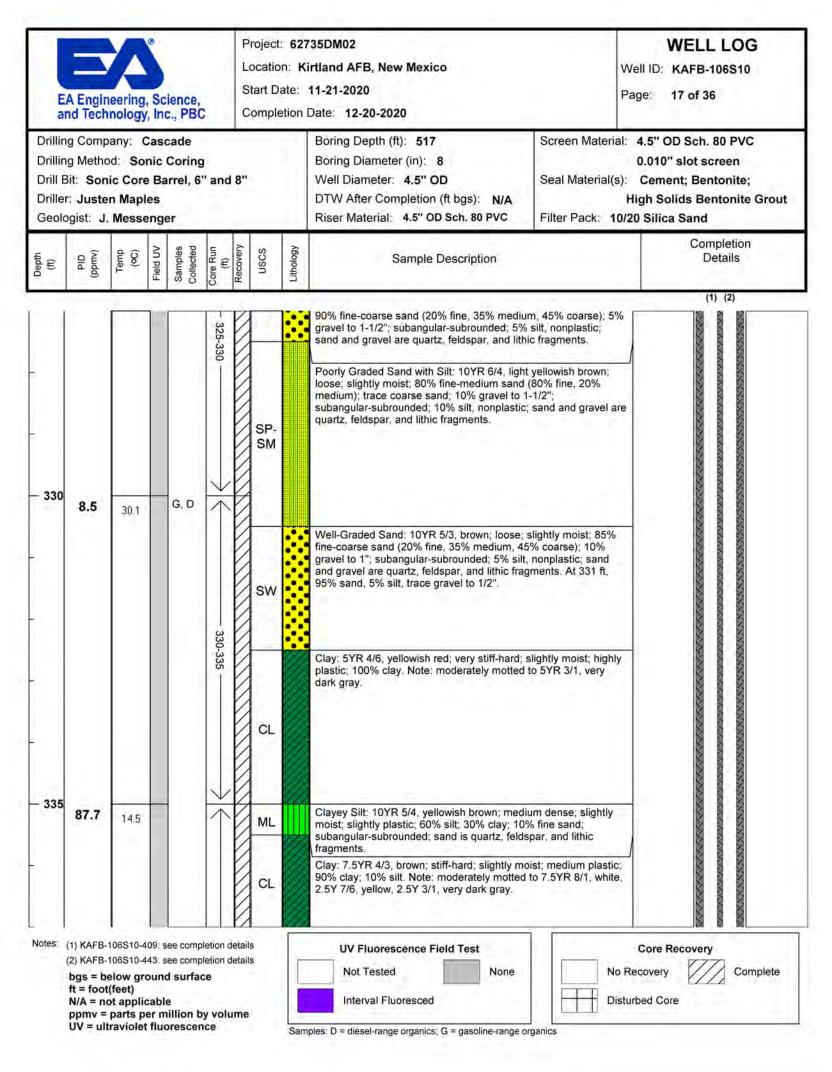
Ea	A Engin nd Tech	eering, s	Science Inc., PB	ċ	Loca Start	tion: F Date:	735DM02 (irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020		WELL LOG Well ID: KAFB-106S10 Page: 7 of 36		
Drillin Drill E Drille	ig Metho Bit: Son r: Juste		ic Corin Barrel, (s	- C	d 8"	Boring Diameter (in): 8 Well Diameter: 4.5" OD Seal Mater DTW After Completion (ft bgs): N/A			aerial: 4.5" OD Sch. 80 PVC 0.010" slot screen al(s): Cement; Bentonite; High Solids Bentonite Grout 10/20 Silica Sand		
(ij)	(vmqq) DIq	Temp (oC)	Field UV Samples Collected	Core Run (ft)	Recovery USCS	Lithology	Sample Description		D	npletion etails	
							Cleanout from 227-230 ft; no sample recove	ry.	4.5" OD Schedule 80 PVC Riser, 0-409 ft bgs	1) (2) 4.5" OD Schedule 80 PVC Riser, 0-443 ft bgs	
230	5.4	16.7	G, D	230-235	SV		Well-Graded Sand with Silt: 10YR 6/3, pale moist; 80% fine-coarse sand (40% fine, 40% coarse); 10% gravel to 1-1/4"; subangular-si nonplastic; sand is quartz, feldspar, and lithi quartz and lithic fragments.	6 medium, 20% ubrounded; 10% silt		High Solids Bentonite Grout, 20-373.6 ft bgs	
35	4.6	14.1			SI	-	Poorly Graded Sand: 10YR 6/3, pale brown; 90% fine-medium sand (35% fine, 65% med sand; 5% gravel to 1-1/4"; subangular-subro nonplastic; sand is quartz, feldspar, and lithi lithic fragments. Well-Graded Gravel with Sand: 10YR 5/2, g	lium); trace coarse unded; 5% silt, c fragments; gravel	īs		
	(2) KAFB- bgs = be ft = foot N/A = no ppmv =	106S10-44 elow grou (feet) ot applica parts per	9: see com 3: see com und surfa able r million fluoresce	pletion ace by vol	details		slightly moist; 55% gravel to 1-1/4"; 40% fin fine, 60% medium, 25% coarse); subangula silt, nonplastic; gravel is quartz and lithic fra UV Fluorescence Field Test Not Tested None Interval Fluoresced	e-coarse sand (15% r-subrounded; 5% gments; sand is	Core Recovery	Complete	

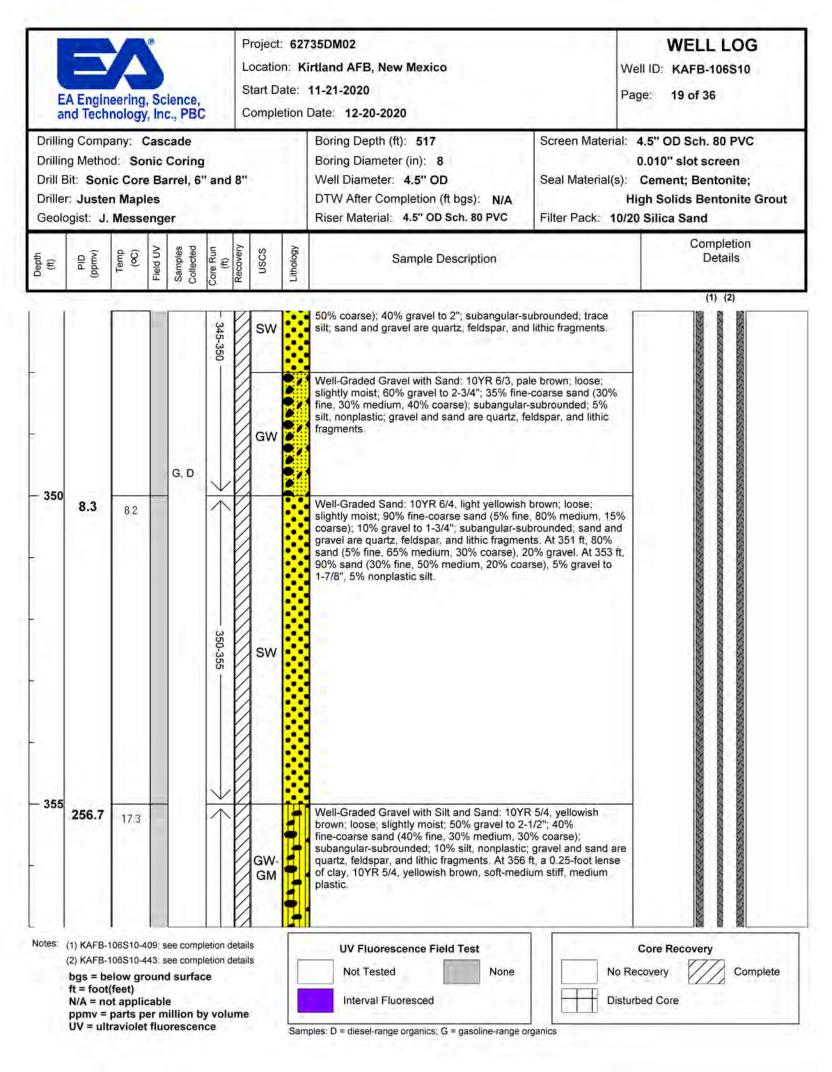

E	A Engin nd Tech	eering, S nology, I	Science, nc., PBC		Locatio Start D	on: K ate:	735DM02 irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020	WELL LOG ell ID: KAFB-106S10 age: 8 of 36		
Drillin Drill E Driller	g Metho Bit: Son :: Juste	any: Ca d: Soni ic Core I n Maples Messen	c Coring Barrel, 6 S	D			Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5'' OD DTW After Completion (ft bgs): N/A Riser Material: 4.5'' OD Sch. 80 PVC	4.5" OD Sch. 80 PVC 0.010" slot screen Cement; Bentonite; ligh Solids Bentonite Grout 20 Silica Sand		
(tt)	(vmqq) CII	Temp (oC)	Samples Collected	Core Run (ft) Recovery	nscs	Lithology	Sample Description		Completion Details	
				- 235-240	SP		quartz, feldspar, and lithic fragments. Poorly Graded Sand: 10YR 6/3, pale brown; k 95% fine-medium sand (35% fine, 65% mediu sand; trace gravel to 5/8"; subangular-subrour nonplastic; sand is quartz, feldspar, and lithic lithic fragments.	m); trace coarse nded; 5% silt,	(1) (2)	
					sw		Well-Graded Sand with Gravel: 10YR 6/3, pal slightly moist; 75% fine-coarse sand (30% fine 20% coarse); 20% gravel to 1-1/2"; subangula silt, nonplastic; sand is quartz, feldspar, and li gravel is quartz and lithic fragments.	e, 50% medium, ar-subrounded; 5%		
- 240	4.1	24.8	G, D		GW- GM	1101	Well-Graded Gravel with Silt: 10YR 6/2, light l loose; slightly moist; 50% gravel to 1-1/2"; 40' (40% fine, 40% medium, 20% coarse); suban 10% silt, nonplastic; gravel is quartz and lithic quartz, feldspar, and lithic fragments.	% fine-coarse sand gular-subrounded;		
			ŀ	240-245	CL		Clay: 10YR 5/3, brown; very stiff-hard; dry; sli clay; 20% silt. Note: clay is weakly mottled to brown; secondary calcium carbonate present. Clayey Silt: 10YR 5/4, yellowish brown; soft; s nonplastic-slightly plastic; 80% silt; 20% clay. nodules to 1-1/2".	10YR 6/3, pale		
					CL		Clay: 10YR 5/2, grayish brown; very stiff-hard plastic; 100% clay. Note: clay is moderately m very pale brown; 2.5Y 5/3, light olive brown; 2 secondary calcium carbonate present.	nottled to 10YR 8/2,		
- 245	52.2	22.7	G, D		ML		Silt: 10YR 6/3, pale brown; soft; slightly moist plastic; 75% silt; 25% clay. At 247.5 ft, 10YR gray, 90% silt, 10% clay.			
	(2) KAFB-1 bgs = be ft = foot N/A = nc	106S10-409 106S10-443 elow grou (feet) ot applica parts per	see comp ind surfa	etion deta ce	ails		UV Fluorescence Field Test Not Tested Interval Fluoresced		Core Recovery ecovery Complete rbed Core	

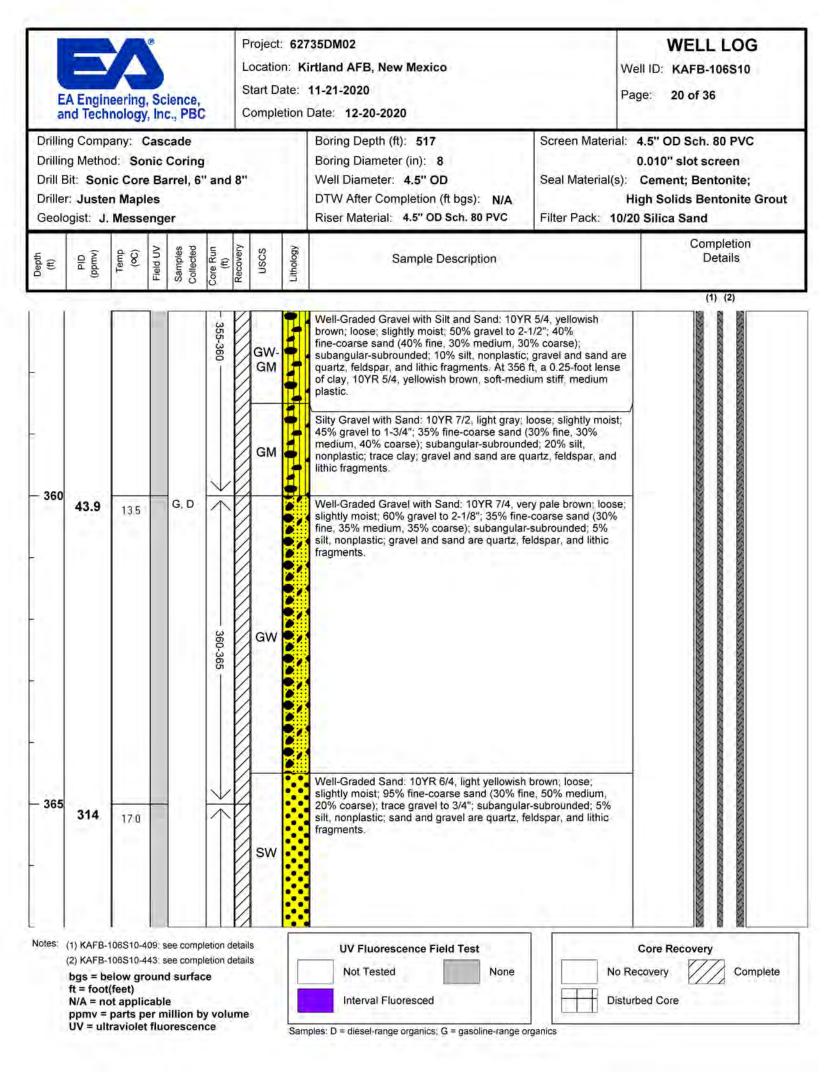
Drillin Drill B Driller	Drilling Company: Cascade Drilling Method: Sonic Coring Drill Bit: Sonic Core Barrel, 6" and 8" Driller: Justen Maples Geologist: J. Messenger							Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5'' OD DTW After Completion (ft bgs): N/A Riser Material: 4.5'' OD Sch. 80 PVC	 4.5" OD Sch. 80 PVC 0.010" slot screen Cement; Bentonite; High Solids Bentonite Grout /20 Silica Sand 		
Depth (ft)	(nudd) Old	Temp (oC)	Field UV	Samples Collected	Core Run (ft)	Recovery	Lithology	Sample Description		Completion Details	
					- 245-250	ML		Silt: 10YR 6/2, light brownish gray; soft; slight nonplastic-slightly plastic; 90% silt; 10% clay.	tly moist;	(1) (2)	
- 250	132.9	18.1		G, D	$\rightarrow <$			Clay: 2.5YR 7/3, pale brown; very stiff-hard; s 90% clay; 10% silt. At 251.5 ft, 70% clay, 30% hydrocarbon odor present.	slightly moist; plasti % silt. Note: weak	ic;	
	133.2				250-255	CL					
255					\rightarrow	SM		Silty Sand: 10YR 6/3, pale brown; loose; sligt fine-medium sand (70% fine, 30% medium); subangular-subrounded; 40% silt, nonplastic; feldspar, and lithic fragments. Note: At 254-2 stringers present.	sand is quartz,		
- 255	165.4	15.9			~	SW- SM		Well-Graded Sand with Silt: 10YR 7/2, light g moist; 80% fine-coarse sand (30% fine, 50% coarse); 10% gravel to 1-1/2"; subangular-sul nonplastic; sand is quartz, feldspar, caliche, a gravel is caliche and lithic fragments.	medium, 20% brounded; 10% silt,		
	10 1					ML		See description below.	4		

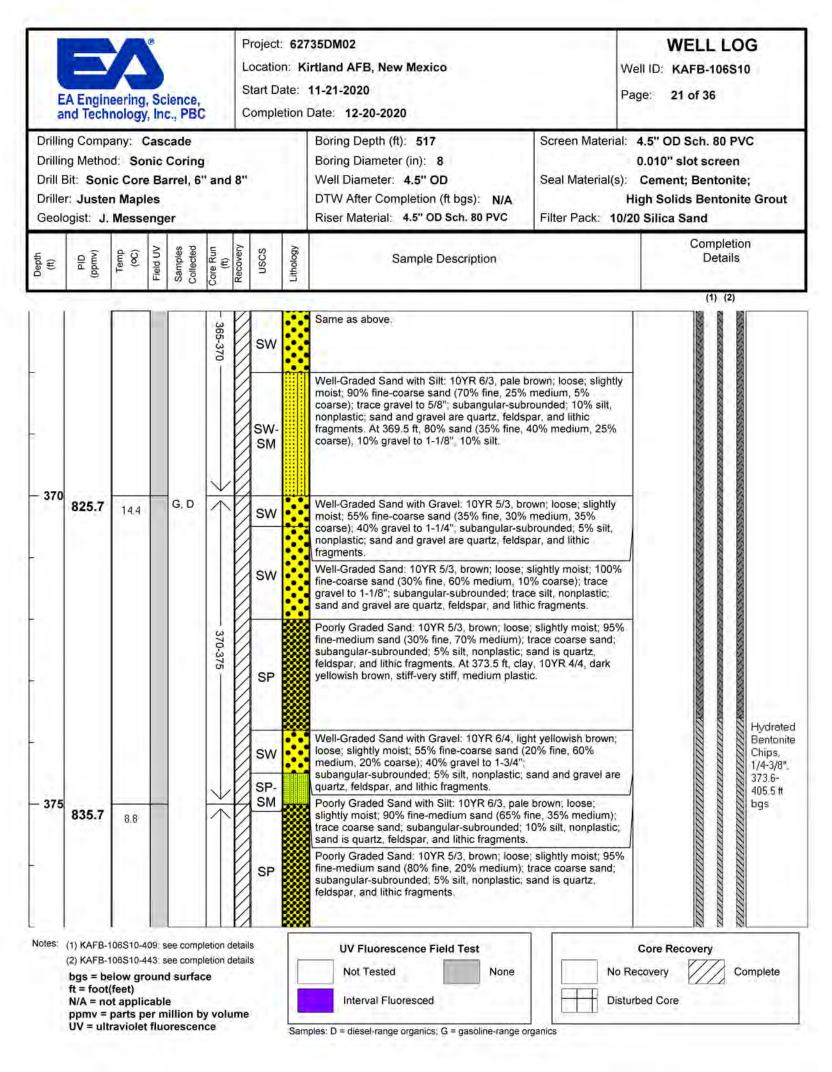


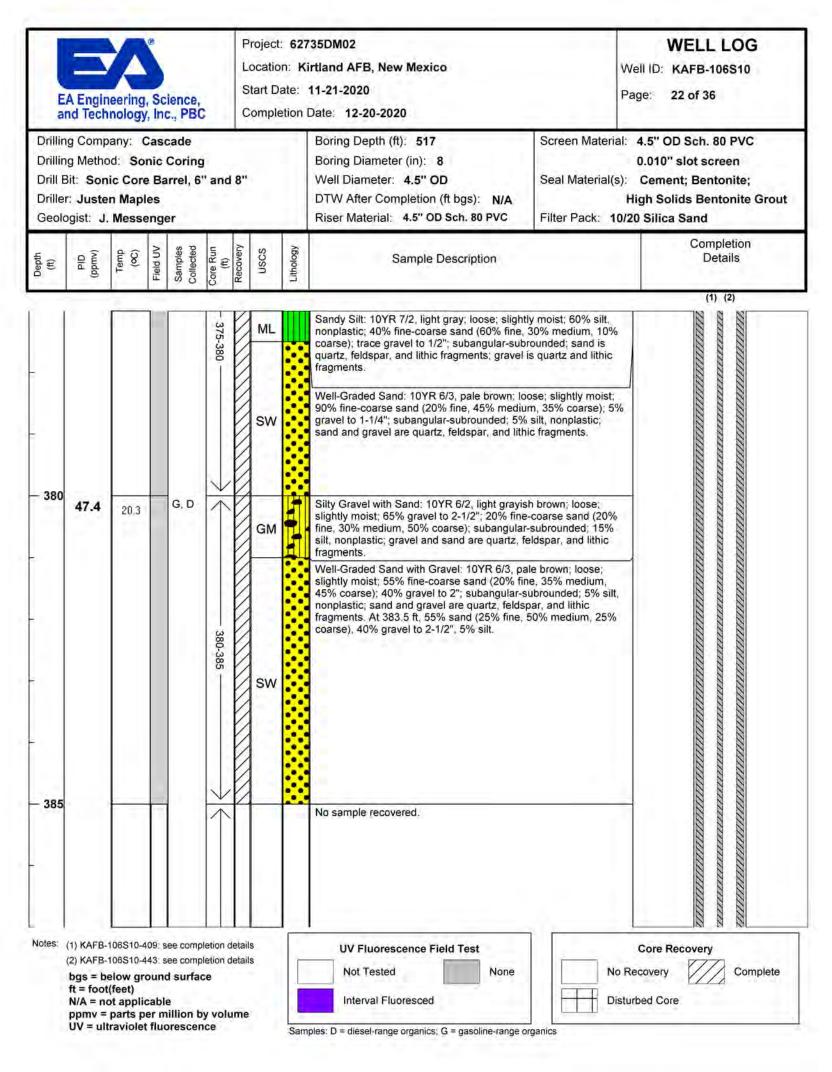
Ea	A Engin nd Tech	eering, S nology, I	Science, nc., PBC	5	Locatio Start Da	n: K ate:	735DM02 irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020	WELL LOG Well ID: KAFB-106S10 Page: 11 of 36			
Drillin Drill E Drille	ng Metho Bit: Soni r: Justei	any: Ca d: Soni c Core E n Maples Messen	c Coring Barrel, 6 S		8"		Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5'' OD DTW After Completion (ft bgs): N/A Riser Material: 4.5'' OD Sch. 80 PVC	Seal Material(laterial: 4.5" OD Sch. 80 PVC 0.010" slot screen erial(s): Cement; Bentonite; High Solids Bentonite Grou ck: 10/20 Silica Sand		
(¥)	(nunqq) CIIq	Temp (oC) Field IIV	Samples Collected	Core Run (ft)	Recovery USCS	Lithology	Sample Description		Completion Details		
				270	SP- SM		Poorly Graded Sand with Silt: 10YR 6/2, light loose; slightly moist; 90% fine-medium sand (medium); trace coarse sand; subangular-subi nonplastic; sand is quartz, feldspar, and lithic	60% fine, 40% rounded; 10% silt,	(1) (2)		
			L		SP		Poorly Graded Sand: 10YR 6/2, light brownisl slightly moist; 95% fine-medium sand (40% fi trace coarse sand; trace gravel to 3/8"; suban 5% silt, nonplastic; sand is quartz, feldspar, a gravel is quartz and lithic fragments.	ne, 60% medium); gular-subrounded			
270	183.1	19.8	G, D	>	SP- SM		Poorly Graded Sand with Silt: 10YR 6/2, light loose; slightly moist; 90% fine-medium sand (medium); trace coarse sand; trace gravel to 3 subangular-subrounded; 10% silt, nonplastic; feldspar, and lithic fragments; gravel is lithic f	20% fine, 80% /8"; sand is quartz,			
275	202.7	23.0		\rightarrow	CL		Clay: 10YR 5/3, brown; very stiff-hard; slightly plastic; 100% clay. Note: moderatly mottled to olive. At 276 ft, weakly mottled to 10YR 8/1, v secondary calcium carbonate present. At 280 brown, medium stiff, medium plastic.	5YR 6/4, pale white and minor			
	(2) KAFB-1 bgs = be ft = foot(N/A = no ppmv =	06S10-409 06S10-443 low grou feet) t applical parts per raviolet fl	see comp ind surfac ble million b	ce oy volu	etails		UV Fluorescence Field Test UV Fluorescence Field Test Not Tested Interval Fluoresced	D	Core Recovery o Recovery Complete isturbed Core		


Ea	A Engin nd Tech	eering, S nology, I	Science, Inc., PB	c	Loc Sta	ation: P	735DM02 (irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020		WELL LOG Well ID: KAFB-106S10 Page: 12 of 36	
Drillir Drill E Drille	ig Metho Bit: Son r: Juste	any: Ca d: Soni ic Core I n Maples Messen	c Corin Barrel, 6 s	- C C C C C C C C.	18"		Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5'' OD DTW After Completion (ft bgs): N/A Riser Material: 4.5'' OD Sch. 80 PVC	al: 4.5" OD Sch. 80 PVC 0.010" slot screen 5): Cement; Bentonite; High Solids Bentonite Grout 0/20 Silica Sand		
(it)	(nmqq) Olq	Temp (oC) Eicld IIV	Samples Collected	Core Run (ft)	Recovery	Lithology	Sample Description		Completion Details	
- 280	24.6	9.2	G, D G, D	280		CL SP- SM	Clay: 10YR 5/3, brown; very stiff-hard; slightl plastic; 100% clay. Note: moderatly mottled t olive. At 276 ft, weakly mottled to 10YR 8/1, secondary calcium carbonate present. At 280 brown, medium stiff, medium plastic.	o 5YR 6/4, pale white and minor 0 ft, 10YR 5/3, 0 ft, 10YR 5/3, 0 ft, 10YR 5/3,		
- 285	9.4	22.6		280-285 >		δP	Poorly Graded Sand: 10YR 6/3, pale brown; 95% fine-medium sand (40% fine, 60% medi subangular-subrounded; 5% silt, nonplastic; feldspar, and lithic fragments. At 285 ft, trace At 286 ft, trace lithic gravel to 1-1/2".	um); sand is quartz,		
lotes:	(2) KAFB- bgs = be ft = foot N/A = no ppmv =	106S10-409 106S10-443 elow grou (feet) ot applica parts per raviolet fi	3: see comp and surfa ble million t	ce cy volu	details	Sar	UV Fluorescence Field Test UV Fluorescence Field Test Not Tested Interval Fluoresced		Core Recovery o Recovery Complete isturbed Core	

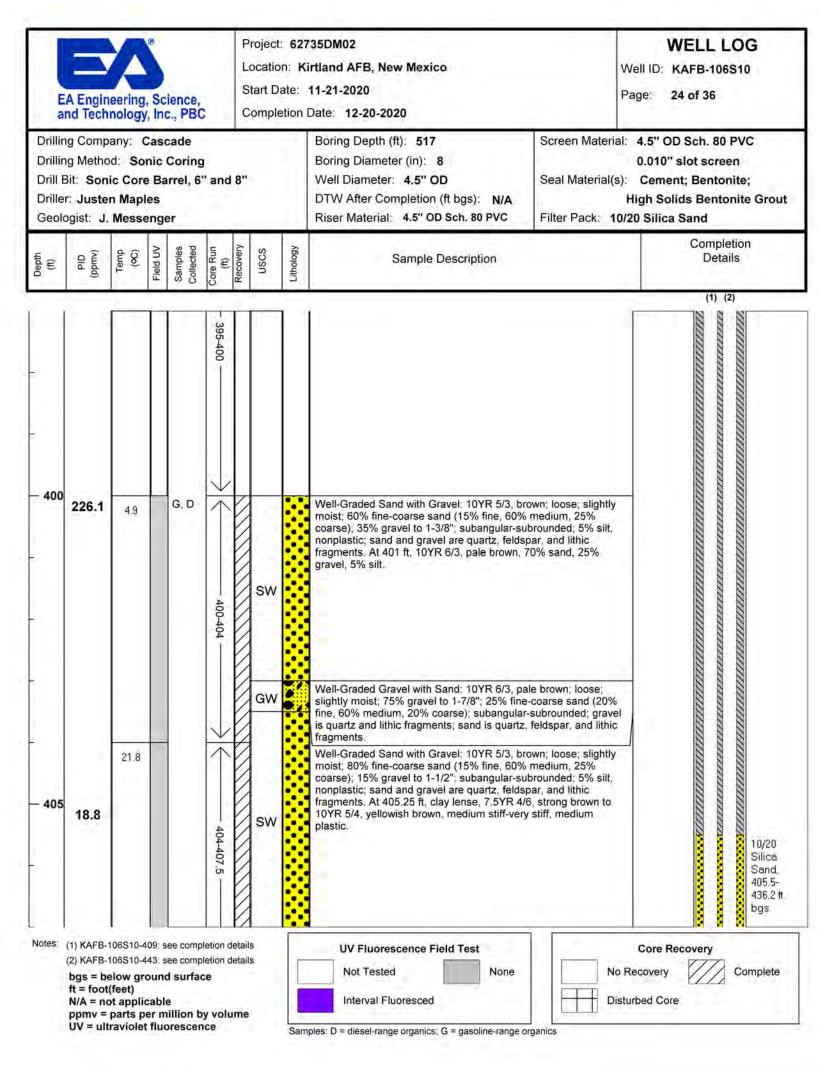

Ea	A Engir nd Tech	eering, So nology, In	cience, ic., PBC		Location Start Dat	: Ki te:	35DM02 irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020	WELL LOG Well ID: KAFB-106S10 Page: 14 of 36		
Drillir Drill E Drille	ng Metho Bit: Son r: Juste	any: Cas od: Sonic ic Core Ba n Maples Messeng	Coring arrel, 6	10 M 10	8"		Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5'' OD DTW After Completion (ft bgs): N/A Riser Material: 4.5'' OD Sch. 80 PVC	Seal Material(al: 4.5" OD Sch. 80 PVC 0.010" slot screen s): Cement; Bentonite; High Solids Bentonite Grout 0/20 Silica Sand	
(¥)	(nudd) Old	Temp (oC) Field UV	Samples Collected	Core Run (ft)	USCS	Lithology	Sample Description		Completion Details	
- 300	7.5	16.3	G, D	- 295-300	SW- SC		Well-Graded Sand with Clay and Gravel: 10Y loose; slightly moist; 65% fine-coarse sand (3 medium, 20% coarse); 25% gravel to 1-3/8"; subangular-subrounded; 10% clay, medium p quartz, feldspar, and lithic fragments; gravel fragments. Note: clay exists as 10YR 5/3, bro Poorly Graded Sand: 10YR 6/2, pale ; loose; fine-medium sand (40% fine, 60% medium); trace gravel to 3/8"; subangular-subrounded; trace clay; sand is quartz, feldspar, and lithic lithic fragments. Note: clay exists as nodules	80% fine, 50% plastic; sand is s quartz and lithic own, nodules to 2". slightly moist; 95% trace coarse sand; 5% silt, nonplastic fragments; gravel	6	
305	5.6			300-305	SP CL SW- SM		Clay: 7.5YR 5/3, brown; very stiff-hard; slight plastic; 100% clay. Well-Graded Sand with Silt and Gravel: 10YF loose; slightly moist; 65% fine-coarse sand (3 medium, 25% coarse); 25% gravel to 2-3/8"; subangular-subrounded; 10% silt, nonplastic feldspar, and lithic fragments; gravel is quart; fragments.	R 7/2, light gray; 25% fine, 50% sand is quartz, and lithic	d	
otes:	(1) KAFB- (2) KAFB- bgs = b ft = foot	13.8 106S10-409: 106S10-443: elow groun (feet) ot applicab	see comp Id surfac	letion de	and the second sec		Well-Graded Gravel with Sand: 10YR 6/2, lig loose; slightly moist: 60% gravel to 2-3/4"; 35 (25% fine, 50% medium, 25% coarse); subar 5% silt, nonplastic; gravel and sand are quart fragments. At 310 ft, gravel to 3". UV Fluorescence Field Test Not Tested None Interval Fluorescende	% fine-coarse san agular-subrounded z and lithic	d Core Recovery o Recovery isturbed Core	

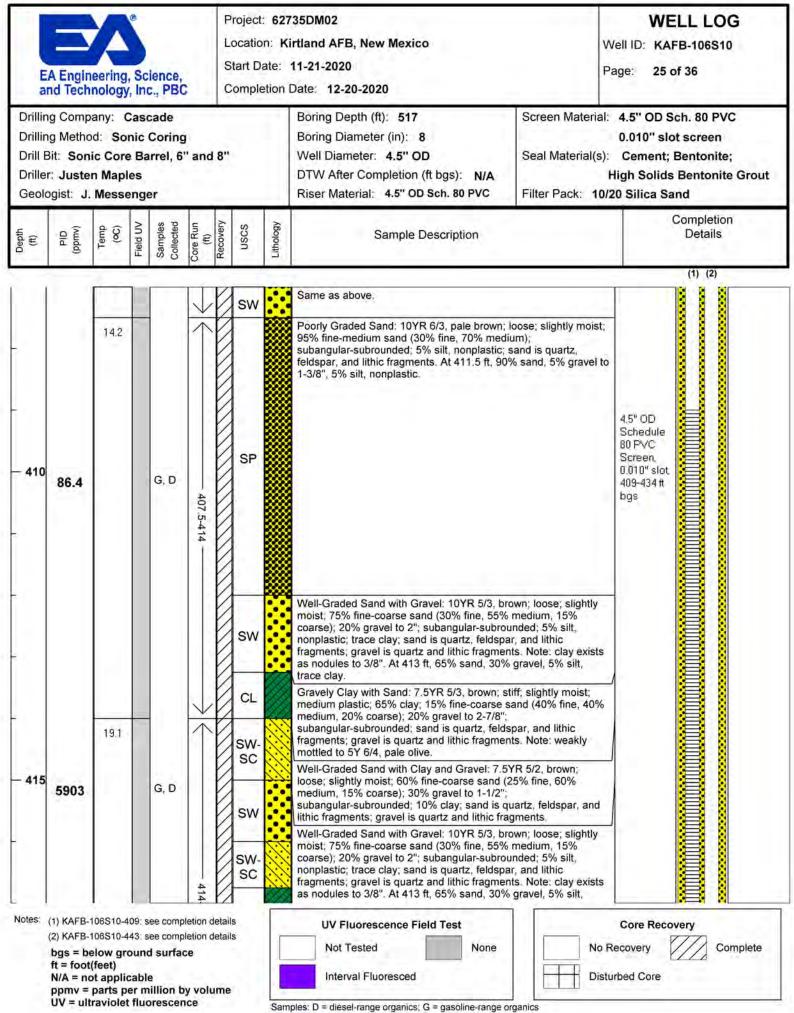


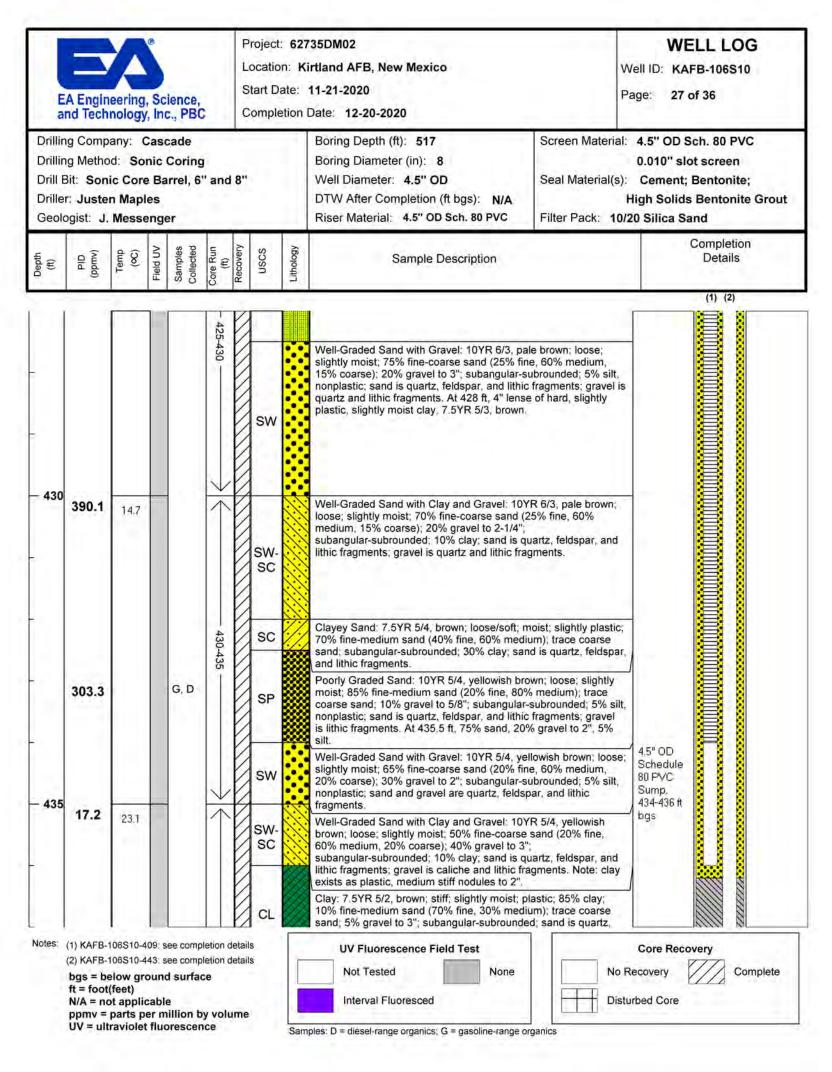

E	A Engin Id Tech	eering, S nology, Ir	cience, nc., PBC		Loca Start	tion: K Date:	735DM02 irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020	WELL LOG Well ID: KAFB-106S10 Page: 16 of 36		
Drillin Drill B Driller	g Metho it: Son : Juste	any: Cas d: Sonic ic Core B n Maples Messeng	c Coring Barrel, 6	D	8"		Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5'' OD DTW After Completion (ft bgs): N/A Riser Material: 4.5'' OD Sch. 80 PVC	il: 4.5" OD Sch. 80 PVC 0.010" slot screen): Cement; Bentonite; High Solids Bentonite Grout 0/20 Silica Sand		
(H)	(nmqq) QIA	Temp (cc) Field UV	Samples Collected	Core Run (ft)	Recovery USCS	Lithology	Sample Description		Completion Details	
		10.4		319	s	P	Poorly Graded Sand with Silt: 10YR 6/3, pale slightly moist; 85% fine-medium sand (60% f trace coarse sand; subangular-subrounded; 5% clay, medium plastic; sand is quartz, feld fragments. Note: clay exists as 10YR 4/3, br 2-1/2" Well-Graded Sand: 10YR 6/3, pale brown; lo 95% fine-medium sand (60% fine, 40% medi sand; trace gravel to 1/2"; subangular-subrou nonplastic; sand is quartz, feldspar, and lithic lithic fragments.	ine, 40% medium); 10% silt, nonplastic; spar, and lithic own, nodules to ose; slightly moist; ium); trace coarse unded; 5% silt,		
320	62.0 G, D SM	M	Silty Sand: 10YR 5/2, grayish brown; loose; s fine-coarse sand (45% fine, 45% medium, 10 gravel to 3/4"; subangular-subrounded; 15% is quartz, feldspar, and lithic fragments; grav	0% coarse); trace silt, nonplastic; sand						
				319-325	S	N	Well-Graded Sand: 10YR 5/4, yellowish brow moist; 95% fine-coarse sand (40% fine, 40% coarse); trace gravel to 1"; subangular-subro nonplastic; sand is quartz, feldspar, and lithic lithic fragments.	medium, 20% unded; 5% silt,		
325	8.4	24.6		\rightarrow	G	9. 9.	Well-Graded Gravel with Sand: 10YR 5/2, gr slightly moist; 60% gravel to 2-1/2"; 35% fine fine, 30% medium, 40% coarse); subangular silt, nonplastic; gravel and sand are quartz, fr fragments. Poorly Graded Sand with Silt: 10YR 6/3, pale slightly moist; 90% fine-medium sand (60% fi trace coarse sand; subangular-subrounded; sand is quartz, feldspar, and lithic fragments	-coarse sand (30% -subrounded; 5% eldspar, and lithic e brown; loose; fine, 40% medium); 10% silt, nonplastic; . At 325 ft, clay		
	2) KAFB- bgs = be ft = foot N/A = no ppmv =	06S10-409: 06S10-443: flow groun feet) ot applicab parts per i raviolet flu	see comp nd surfa ble million b	ce oy volu	etails		nodules, 7.5YR 5/3, brown, to 3" in a 2" lense plastic. Well-Graded Sand: 10YR 6/3, pale brown; lo UV Fluorescence Field Test Not Tested None Interval Fluoresced	ose; slightly moist;	Core Recovery Recovery Complete turbed Core	



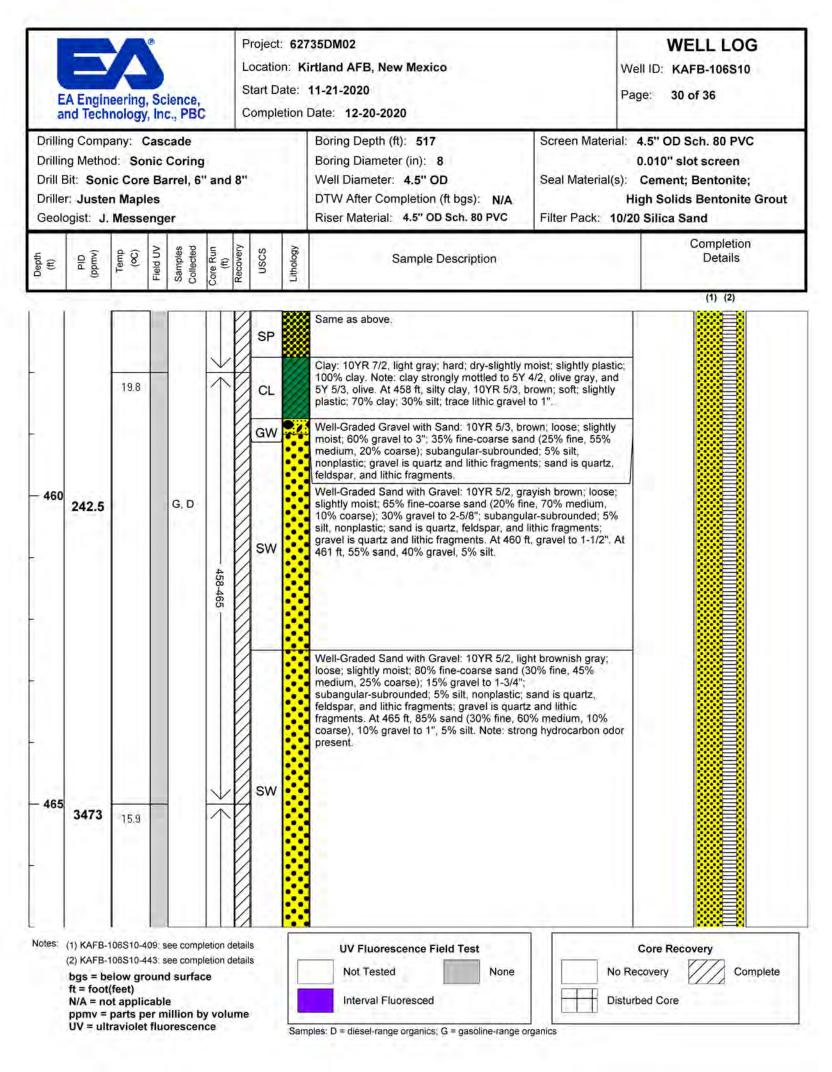
Ea	A Engin nd Tech	eering, So nology, In	ience, c., PBC		Locatio Start D	n: K ate:	735DM02 irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020	We Paç	WELL LOG III ID: KAFB-106S10 ge: 18 of 36
Drillir Drill E Drille	ng Metho Bit: Son r: Juste	any: Cas d: Sonic ic Core Ba n Maples Messeng	Coring arrel, 6'		8"	Boring Diameter (in): 8			4.5" OD Sch. 80 PVC 0.010" slot screen Cement; Bentonite; gh Solids Bentonite Grout Silica Sand
(H)	(nudd) Old	Temp (oC) Field UV	Samples Collected	Core Run (ft)	Recovery USCS	Lithology	Sample Description		Completion Details
				- 335-340	CL		Clay: 7.5YR 4/3, brown; stiff-hard; slightly mois 90% clay; 10% silt. Note: moderately motted to 2.5Y 7/6, yellow, 2.5Y 3/1, very dark gray.		(1) (2)
					SP		Poorly Graded Sand: 10YR 6/4, light yellowish slightly moist; 95% fine-medium sand (60% fin trace coarse sand; subangular-subrounded; 55 sand is quartz, feldspar, and lithic fragments.	e, 40% medium);	
340	20.8	19.5	G, D	> < 340-345	SW		Well-Graded Sand: 10YR 6/3, pale brown; loos 85% fine-coarse sand (20% fine, 50% medium 10% gravel to 3"; subangular-subrounded; 5% sand and gravel are quartz, feldspar, and lithic 342.5 ft, 4" lense of 10YR 5/4, yellowish brown	, 30% coarse); silt, nonplastic; fragments. At	
345	26.1	12.7		45	sw		Well-Graded Sand with Gravel: 10YR 6/3, pale slightly moist; 80% fine-coarse sand (25% fine 40% coarse); 15% gravel to 1-1/2"; subangula silt, nonplastic; sand and gravel are quartz, fel- fragments. At 345 ft, 85% sand (30% fine, 40% coarse), 10% gravel to 1-3/4", 5% silt.	, 35% medium, r-subrounded; 5% dspar, and lithic	
otes:	(2) KAFB- bgs = be ft = foot N/A = nc	106S10-409: s 106S10-443: s elow groun (feet) ot applicabl parts per m	see comp d surfac e	letion d :e	etails		Well-Graded Sand with Gravel: 10YR 6/3, pale slightly moist; 60% fine-coarse sand (25% fine UV Fluorescence Field Test Not Tested None Interval Fluoresced	, 25% medium,	Core Recovery covery Complete bed Core

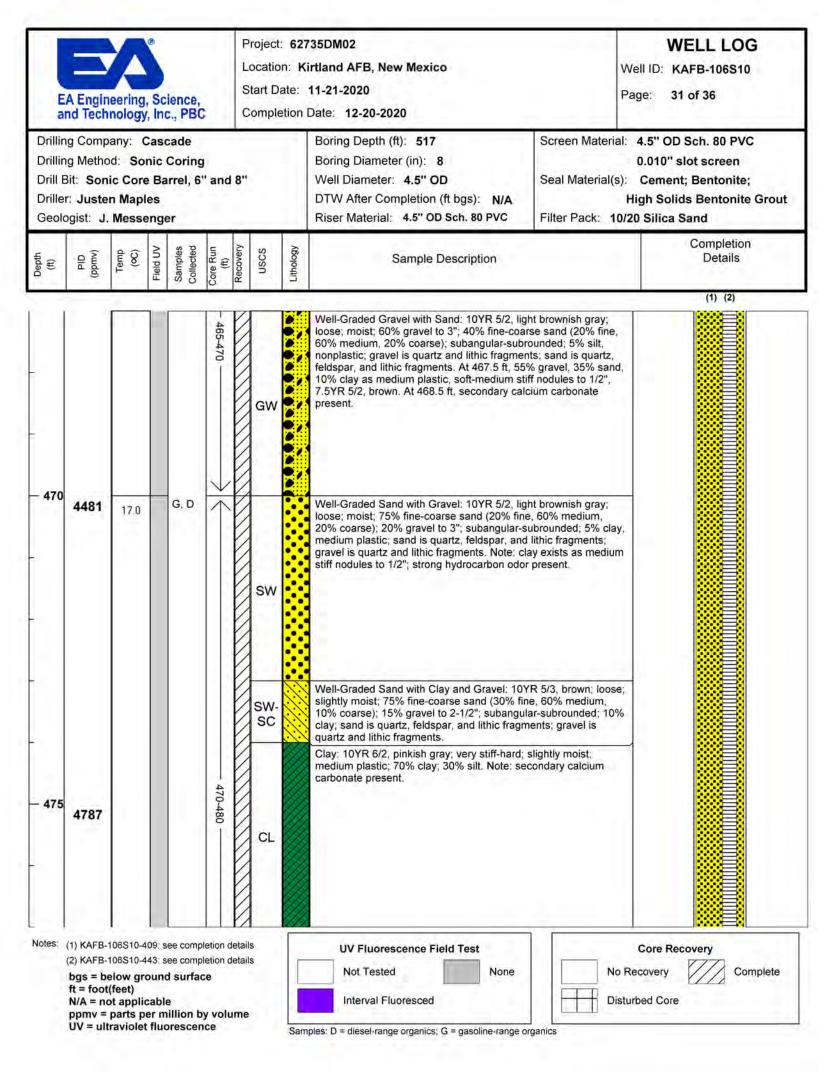


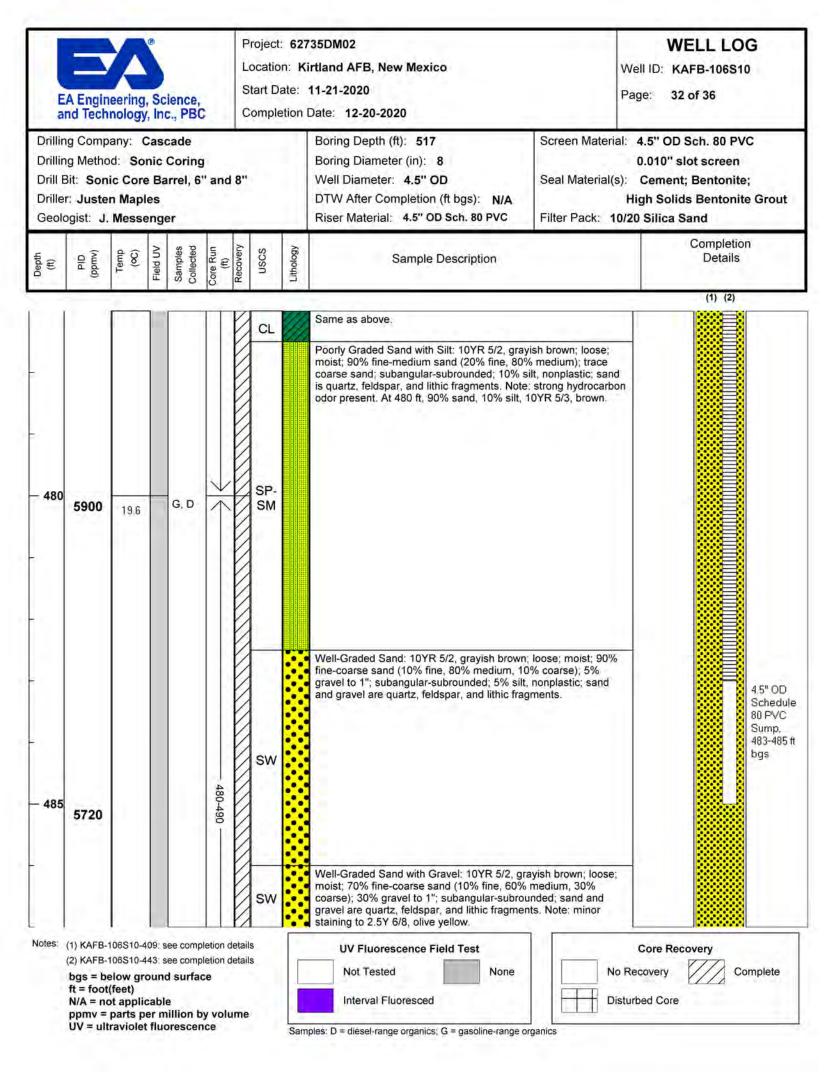


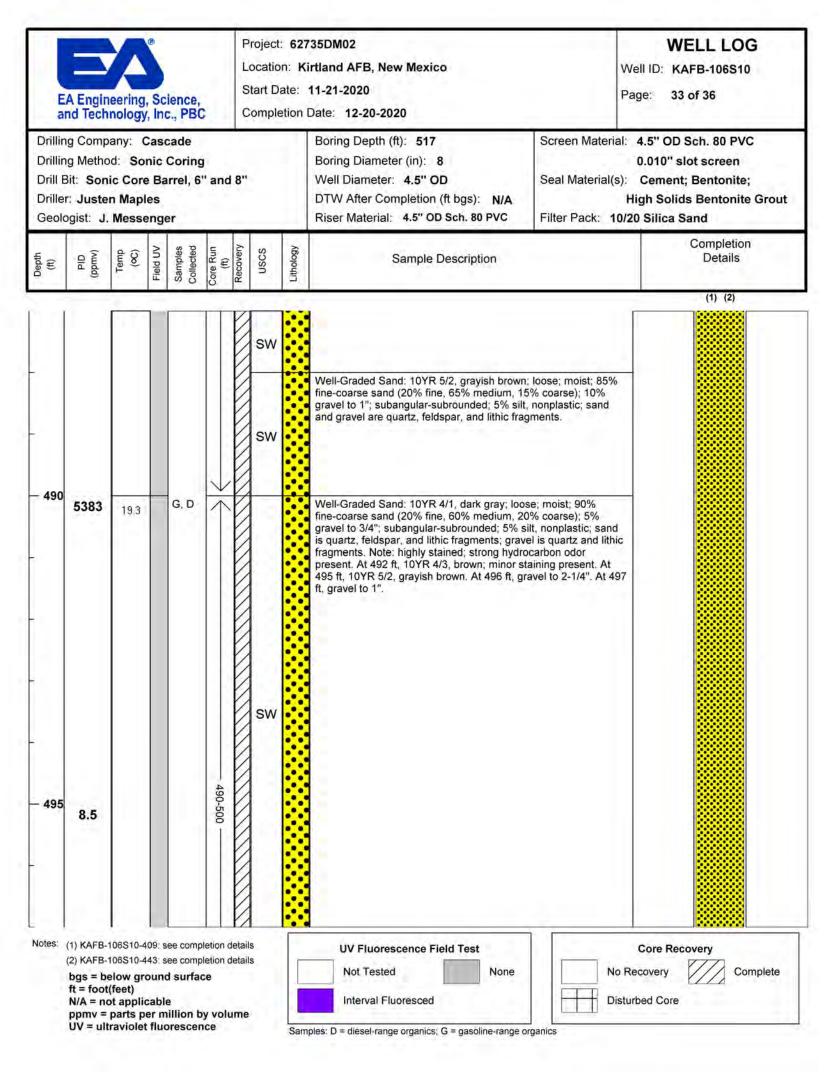


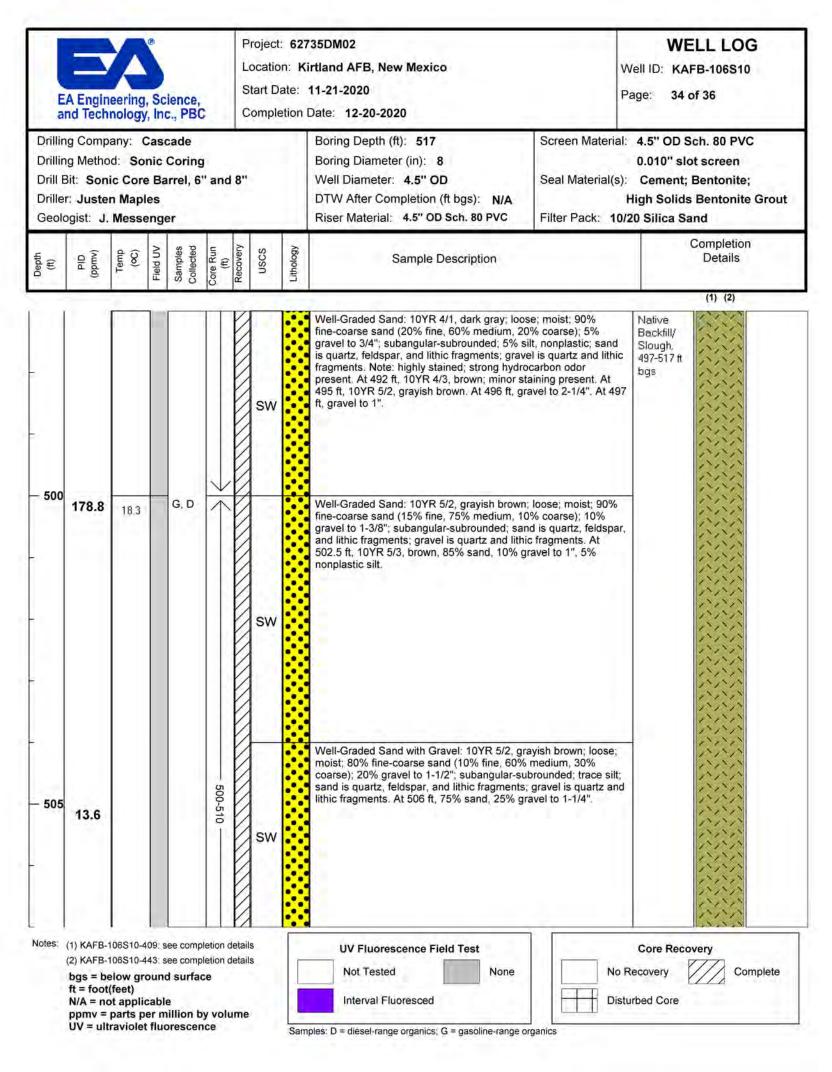
E	EA Engin	eering, S nology, I	Science, nc., PBC	;	Lo St	ocation art Da	n: Ki ate:	35DM02 rtland AFB, New Mexico 11-21-2020 Date: 12-20-2020	WELL LOG Well ID: KAFB-106S10 Page: 23 of 36		
Drillin Drill Drille	ng Metho Bit: Son er: Juste	oany: Ca od: Sonio ic Core E n Maples Messen	c Coring Barrel, 6' S		8"			Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5'' OD DTW After Completion (ft bgs): N/A Riser Material: 4.5'' OD Sch. 80 PVC	al: 4.5" OD Sch. 80 PVC 0.010" slot screen 5): Cement; Bentonite; High Solids Bentonite Grout 0/20 Silica Sand		
(tt)	(vmqq) Diq	Temp (oC) Field IIV	Samples Collected	Core Run (ft)	Recovery	USCS	Lithology	Sample Description		Completion Details (1) (2)	
- 390	11.3	47.7	G, D	385-390		ML SW		Silt: 10YR 7/1, light gray; soft; dry; nonplastic fine-coarse sand (10% fine, 35% medium, 55 subangular-subrounded; sand is quartz, felds fragments. Well-Graded Sand: 10YR 6/4, light yellowish slightly moist; 90% fine-coarse sand (10% fin 50% coarse); 10% gravel to 7/8"; subangular- and gravel are quartz, feldspar, and lithic frag Poorly Graded Sand: 7.5YR 6/4, light brown; 100% fine-medium sand (30% fine, 70% medi sand; trace gravel to 7/8"; subangular-subrou nonplastic; sand and gravel are quartz, feldsp fragments. Silt with Sand: 10YR 7/2, light gray; soft; dry; 20% fine-coarse sand (20% fine, 50% mediur subangular-subrounded; trace clay; sand is q lithic fragments. Note: clay exists as 10YR 6/2 nodules to 1-3/8". No sample recovered.	% coarse); par, and lithic brown; loose; e, 40% medium, subrounded; sand ments. loose; slightly mois lium); trace coarse nded; trace silt, par, and lithic nonplastic; 80% si n, 30% coarse); uartz, feldspar, and	st;	
lotes:	(2) KAFB- bgs = b ft = foot N/A = n ppmv =	106S10-409 106S10-443 elow grou (feet) ot applical parts per traviolet fil	see comp nd surfac ble million b	letion d ce by volu	letails			UV Fluorescence Field Test Not Tested Interval Fluoresced		Core Recovery o Recovery Complete isturbed Core	

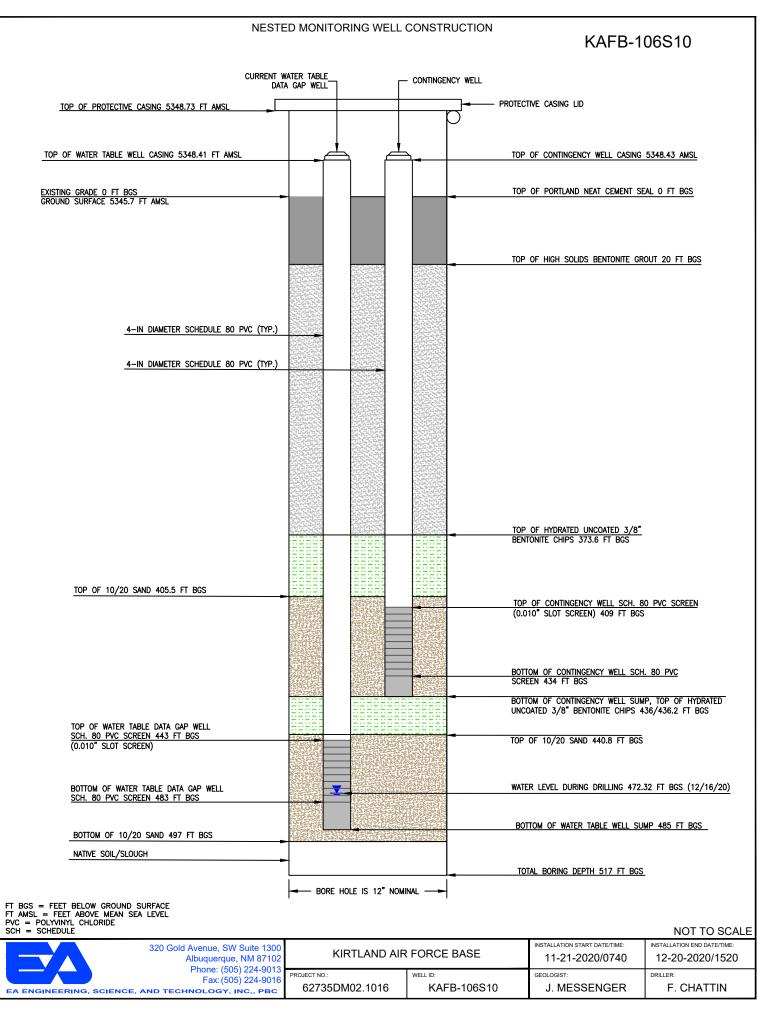



		eering, So nology, In			Loc Sta	ation: rt Date	2735DM02 Kirtland AFB, New Mexico 11-21-2020 1 Date: 12-20-2020	WELL LOG Well ID: KAFB-106S10 Page: 26 of 36
Drillin Drill Drille	rilling Company: Cascade rilling Method: Sonic Coring rill Bit: Sonic Core Barrel, 6" and 8" riller: Justen Maples seologist: J. Messenger				18"		Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5" OD DTW After Completion (ft bgs): N/A Riser Material: 4.5" OD Sch. 80 PVC	Screen Material: 4.5" OD Sch. 80 PVC 0.010" slot screen Seal Material(s): Cement; Bentonite; High Solids Bentonite Grou Filter Pack: 10/20 Silica Sand
(¥)	(vmqq) DIq	Temp (oC) Field UV	Samples Collected	Core Run (ft)	Recovery	USCS I ithology	Sample Description	Completion Details
		<u> </u>	_	4	VE		Itrace clay. Note: strong hydrocarbon odor p	(1) (2)
				420		CL	Well-Graded Sand with Clay and Gravel: 7. loose; slightly moist; 60% fine-coarse sand medium, 15% coarse); 30% gravel to 1-1/2' subangular-subrounded; 10% clay; sand is lithic fragments; gravel is quartz and lithic fr	SYR 5/2, brown; (25% fine, 60% quartz, feldspar, and agments.
						SW- SM	Clay: 7.5YR 5/3, brown; stiff- very stiff; sligh plastic; 100% clay. At 417.5 ft, 2" lense of c cemented with secondary calcium carbonat	aliche (f-m sand
400							Well-Graded Sand with Silt: 10YR 5/3, brow moist; 70% fine-coarse sand (25% fine, 60% coarse); 20% gravel to 1-3/8"; subangular-s nonplastic; sand is quartz, feldspar, and lith	6 medium, 15% ubrounded; 10% silt, c fragments; gravel is
420	5513	11.1	G, D	\wedge	N		quartz and lithic fragments. At 419 ft, 60% s 1-1/2", 10% silt.	
						SP	Poorly Graded Sand: 10YR 6/2, light brown slightly moist; 90% fine-medium sand (30% trace coarse sand; 5% gravel to 1"; subang silt, nonplastic; sand is quartz, feldspar, and gravel is lithic fragments.	fine, 70% medium); Jlar-subrounded; 5%
				420		SP- SM	Poorly Graded Sand with Silt: 10YR 6/2, lig loose; slightly moist; 85% fine-medium sand medium); trace coarse sand; 5% gravel to 1 subangular-subrounded; 10% silt, nonplasti feldspar, and lithic fragments; gravel is lithic	I (30% fine, 70% "; c; sand is quartz,
				420-425		CL	Clay: 7.5YR 5/3, brown; medium stiff; slight plastic; 100% clay.	y moist; medium
425				\downarrow				
	306.9	16.2				SP- SM	Poorly Graded Sand with Silt: 10YR 6/3, pa slightly moist; 80% fine-medium sand (30% trace coarse sand; 10% gravel to 2"; suban 10% silt, nonplastic; sand is quartz, feldspa gravel is lithic fragments. At 426 ft, 90% san gravel to 3/8".	fine, 70% medium); gular-subrounded; , and lithic fragments;
otes:	(2) KAFB-1 bgs = be ft = foot(N/A = no	06S10-409: 06S10-443: low groun feet) t applicab parts per r	see comp Id surfac le	letion o	details		UV Fluorescence Field Test UV Fluorescence Field Test Not Tested Interval Fluoresced	Core Recovery No Recovery Disturbed Core






Ea	EA Engineering, Science, Start Date:						735DM02 irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020	WELL LOG Well ID: KAFB-106S10 Page: 29 of 36 ial: 4.5" OD Sch. 80 PVC 0.010" slot screen (s): Cement; Bentonite; High Solids Bentonite Grout 10/20 Silica Sand	
Drilling Company: Cascade Drilling Method: Sonic Coring Drill Bit: Sonic Core Barrel, 6" and 8" Driller: Justen Maples Geologist: J. Messenger							Boring Diameter (in): 8 Well Diameter: 4.5" OD DTW After Completion (ft bgs): N/A		
(H)	(II) PID (ppmv) Temp (c) Field UV Samples Collected (f) (f) Recovery USCS						Sample Description		Completion Details
- 450	- 445-450				SP-SM		Poorly Graded Sand with Silt: 10YR 6/3, pale slightly moist; 90% fine-medium sand (25% f trace coarse sand; trace gravel to 1-5/8"; subangular-subrounded; 10% silt, nonplastic feldspar, and lithic fragments; gravel is lithic no trace gravel.	ine, 75% medium) sand is quartz,	
				450-455	SP		Poorly Graded Sand: 10YR 6/3, pale brown; 95% fine-medium sand (25% fine, 75% medi sand; subangular-subrounded; 5% silt, nonpl feldspar, and lithic fragments. Well-Graded Sand with Clay and Gravel: 10% slightly moist; 75% fine-coarse sand (30% fir 10% coarse); 15% gravel to 2-1/2"; subangul clay; sand is quartz, feldspar, and lithic fragn	um); trace coarse astic; sand is quar 7R 5/3, brown; loos le, 60% medium, ar-subrounded; 10	tz,
- 455	321.6	22.0	-	\rightarrow	SW- SC		quartz and lithic fragments. Note: clay exists very stiff 5Y 5/6, olive, nodules to 2"; second carbonate present. Poorly Graded Sand: 10YR 5/3, brown; loose fine-medium sand (20% fine, 80% medium); trace gravel to 5/8"; subangular-subrounded;	ary calcium ; moist; 95% trace coarse sand;	
				455-458 -	SP		sand is quartz, feldspar, and lithic fragments, fragments. At 457.5 ft, trace clay as nodules	gravel is lithic	
(2) KAFB-106S10-443: see completion details bgs = below ground surface ft = foot(feet)					etails		UV Fluorescence Field Test Not Tested Interval Fluoresced	Not Tested None No Recovery Comple	



E	EA Engineering, Science, and Technology, Inc., PBC						735DM02 irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020		WELL LOG Well ID: KAFB-106S10 Page: 35 of 36		
Drilling Company: Cascade Drilling Method: Sonic Coring Drill Bit: Sonic Core Barrel, 6" and 8" Driller: Justen Maples Geologist: J. Messenger							Boring Diameter (in): 8 Well Diameter: 4.5" OD DTW After Completion (ft bgs): N/A		rial: 4.5" OD Sch. 80 PVC 0.010" slot screen (s): Cement; Bentonite; High Solids Bentonite Grout 10/20 Silica Sand		
(H)	(ff) PID (ppmv) Temp (oC) (oC) Field UV Field UV Samples Collected (ff) (ff) Recovery USCS					Lithology	Sample Description		Completion Details		
510	17.0 28.0 G, D						Well-Graded Sand with Gravel: 10YR 5/2, gr. moist; 80% fine-coarse sand (10% fine, 60% coarse); 20% gravel to 1-1/2"; subangular-su sand is quartz, feldspar, and lithic fragments; lithic fragments. At 506 ft, 75% sand, 25% gr Clayey Gravel with Sand: 10YR 6/2, light bro moist; 50% gravel to 2"; 20% fine-coarse san medium, 25% coarse); trace cobble to 4"; subangular-subrounded; 30% clay, slightly pl sand are quartz, feldspar, and lithic fragment as stiff nodules to 2"; secondary calcium cart	medium, 30% brounded; trace si gravel is quartz a avel to 1-1/4". wnish gray; loose; d (30% fine, 45% astic; gravel and s. Note: clay exists	It; nd		
				500-517	SP- SC		Poorly Graded Sand with Clay: 10YR 5/3, bro 90% fine-medium sand (25% fine, 75% medi sand; subangular-subrounded; 10% clay, me quartz, feldspar, and lithic fragments. Note: o soft-medium stiff nodules to 1/2", 10YR 5/4, y Poorly Graded Sand: 10YR 5/3, brown; loose fine-medium sand (20% fine, 80% medium); trace gravel to 5/8"; subangular-subrounded; sand is quartz, feldspar, and lithic fragments;	um); trace coarse dium plastic; sand lay exists as yellowish brown. ; moist; 95% trace coarse sand 5% silt, nonplastic	is		
515	22.2 9.6		G, D	×	SP SP- SC		fragments. Poorly Graded Sand with Clay: 10YR 5/3, bro 80% fine-medium sand (25% fine, 75% medi sand; 10% gravel to 1-7/8"; subangular-subro medium plastic; sand is quartz, feldspar, and gravel is quartz and lithic fragments. Note: cl	own; loose; moist; um); trace coarse unded; 10% clay, lithic fragments;			
otes: (1) KAFB-106S10-409: see completion details (2) KAFB-106S10-443: see completion details bgs = below ground surface ft = foot(feet) N/A = not applicable ppmv = parts per million by volume UV = ultraviolet fluorescence					etails		UV Fluorescence Field Test UV Fluorescence Field Test Not Tested Interval Fluoresced		Core Recovery		

EA Engineering, Science, Start Date:						1	Locat Start	ion: K Date:	735DM02 (irtland AFB, New Mexico 11-21-2020 Date: 12-20-2020		WELL LOG Well ID: KAFB-106S10 Page: 36 of 36
Drilling Company: Cascade Drilling Method: Sonic Coring Drill Bit: Sonic Core Barrel, 6" and 8" Driller: Justen Maples Geologist: J. Messenger									Boring Depth (ft): 517 Boring Diameter (in): 8 Well Diameter: 4.5'' OD DTW After Completion (ft bgs): N/A Riser Material: 4.5'' OD Sch. 80 PVC	Screen Material: 4.5" OD Sch. 80 PVC 0.010" slot screen Seal Material(s): Cement; Bentonite; High Solids Bentonite G Filter Pack: 10/20 Silica Sand	
Depth (ft)	(vmqq)	Temp (oC)	Field UV	Samples Collected	Core Run	(ft) Recovery	uscs	Lithology	Sample Description		Completion Details
	-		_		0		-	-	soft-medium stiff nodules to 2", 10YR 5/4, ye	ellowish brown.	(1) (2)

otes: (1) KAFB-106S10-409: see completion details (2) KAFB-106S10-443: see completion details	UV Fluorescence Field Test	Core Recovery
bgs = below ground surface	Not Tested None	No Recovery Complete
ft = foot(feet) N/A = not applicable ppmv = parts per million by volume	Interval Fluoresced	Disturbed Core
UV = ultraviolet fluorescence	Samples: D = diesel-range organics; G = gasoline-range orga	nics

- 5:22an

C:\Users\

Ë

E/ an	Engli d Tech	neering, nology,	Science Inc., PB	ċ	Start Date:	735DM02 Kirtland AFB, New Mexico 11-8-2020 Date: 12-23-2020	WELL LOG Well ID: KAFB-106V3 Page: 1 of 14		
Drilling Company: Cascade Drilling Method: Air Rotary Casing Hammer Drill Bit: 8 1/2" Long-Tooth Mill Driller: Forrest Chattin Geologist: J. Messenger						Boring Depth (ft): 300 Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand		
(H)	(vmqq) DIq	Samples Collected	nscs	Lithology		Sample Description		D	npletion etails
					Hydrovac for	utilities 0-8 ft bgs. No samples taken.	1	lydrated /4-3/8'' lentonite /hips, 2-4 ft bgs	2) (3) Cement, 0-2 ft bgs 10/20 Silica Sand, 4-9.1 ft bgs
10	1.3		CL		medium plas 50% medium subangular-s	4, reddish brown; soft-medium stiff; slightl; ticity; 85% clay; 15% fine to coarse sand (n, 10% coarse); trace gravel to 1"; subrounded; sand is quartz, feldspar, and l ravel is lithic fragments. At 15 ft, 70% clay	y moist; 1 40% fine, 5 ithic , 15% silt,	tydrated /4-3/8" lentonite hinips, 9.1-12 ft gs	10/20 Silica Sand, 12-17 (bgs
20	0.7				plastic; 65% 30% medium quartz, felds 20% sand. A brown; trace	, reddish brown; soft; slightly moist; nonpla silt; 10% clay; 25% fine to coarse sand (40 n, 30% coarse); subangular-subrounded; s par, and lithic fragments. At 25 ft, 55% silt, t 30 ft, trace lithic gravel to 3/8". At 40 ft, 7 lithic gravel to 5/8". At 45 ft, no trace grave 6 clay, 15% sand.	astic-slightly 0% fine, and is 25% clay, .5YR 5/4,	A-3/8" lentonite hips, 17-27.8 bgs	
30 35	0.7		ML						High Solids Bentomite Gro 27.8 to 235.2 bgs
40									

Samples: D = diesel-range organics; G = gasoline-range organics

bgs = below ground surface ft = foot(feet) N/A = not applicable

E/ an	A Engin	neering, nology,	Science, Inc., PB	Ċ	Location: Start Date:	2735DM02 Kirtland AFB, New Mexico : 11-8-2020 n Date: 12-23-2020		WELL LOG Well ID: KAFB-106V3 Page: 2 of 14
Drilling Drill B Driller	g Metho it: 81/ : Forre		Rotary C -Tooth N in	2012 A 41 10	g Hammer	Boring Depth (ft): 300 Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	rial: See Notes Section (s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(ft)	(nudd) QId	Samples Collected	nscs	Lithology		Sample Description		Completion Details
- 45 - 50	0.5		ML		Same as ab	ove.		
60	0.5		CL		plasticity; 70 medium, 10	5/3, brown; soft-medium stiff; slightly mois % clay; 10% silt; 20% fine-coarse sand (6 % coarse); subangular-subrounded; sand d lithic fragments.	0% fine, 30%	
65	0.0		ML		plastic; 65% 30% mediur subangular-	5/4, brown; soft; slightly moist; nonplastic-s silt; 10% clay; 25% fine to coarse sand (4 n, 30% coarse); trace gravel to 5/8"; subrounded; sand is quartz, feldspar, and gravel is lithic fragment. At 70 ft, 5YR 5/4, r	0% fine, lithic	
80			CL		plastic; 65% medium, 20	and: 7.5YR 5/4, brown; soft-medium stiff; s clay; 15% silt; 20% fine-coarse sand (50% % coarse); subangular-subrounded; sand d lithic fragments.	6 fine, 30%	

(1) KAFB-106V3-07: 1" OD Sch. 80 PVC; blank riser, 0-5 ft bgs; 0.01" slot screen, 5-7 ft bgs
 (2) KAFB-106V3-272: 3.5" OD Sch. 80 PVC; blank riser, 0-267 ft bgs; 0.01" slot screen, 267-272 ft bgs
 (3) KAFB-106V3-15: 1" OD Sch. 80 PVC; blank riser, 0-5 ft bgs; 0.01" slot screen, 13-15 ft bgs

Samples: D = diesel-range organics; G = gasoline-range organics

bgs = below ground surface

ft = foot(feet) N/A = not applicable

EA Engineering, Science, and Technology, Inc., PBC						735DM02 Kirtland AFB, New Mexico 11-8-2020 Date: 12-23-2020	WELL LOG Well ID: KAFB-106V3 Page: 3 of 14		
)rilling)rill Bi)riller:	Metho t: 8 1/ Forre	oany: Ca od: Air F 2" Long- est Chatti . Messen	Rotary C Tooth N in	10.000	g Hammer	Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A		erial: See Notes Section al(s): Cement; Bentonite Chips High Solids Bentonite Grout 10/20 Silica Sand	
(H)	(vmqq) DIA	Samples Collected	nscs	Lithology		Sample Description		Completion Details	
35	0.5		ML		plastic; 65% 30% medium subangular-s	, reddish brown; soft; slightly moist; nonpla silt; 10% clay; 25% fine to coarse sand (40 n, 30% coarse); trace gravel to 5/8"; ubrounded; sand is quartz, feldspar, and l ravel is lithic fragment.	0% fine,		
90	0.1				plastic; 90%	5/2, brown; soft; slightly moist; nonplastic- clay; 10% fine-coarse sand (50% fine, 40% ; subangular-subrounded; sand is quartz, nts.			
100	1.0		SW- SM		90% fine-coa gravel to 1/2	Sand with Silt: 10YR 5/3, brown; loose; sl irse sand (30% fine, 60% medium, 10% co '; subangular-subrounded; 10% silt, nonpl dspar, and lithic fragments; gravel is lithic f	barse); trace astic; sand		
105			CL		plastic; 90%	5/2, brown; soft; slightly moist; nonplastic- clay; 10% fine-coarse sand (50% fine, 40% ; subangular-subrounded; sand is quartz, nts.	% medium,		
110	1.2		ML		plastic; 70%	/4, brown; soft; slightly moist; nonplastic-sl silt; 20% clay; 10% fine-medium sand (50 bangular-subrounded; sand is quartz, felds hts.	% fine, 50%		
120									

(2) KAFB-106V3-272: 3.5" OD Sch. 80 PVC; blank riser, 0-267 π bgs; 0.01" slot screen, 207-277.
 (3) KAFB-106V3-15: 1" OD Sch. 80 PVC; blank riser, 0-5 ft bgs; 0.01" slot screen, 13-15 ft bgs

Samples: D = diesel-range organics; G = gasoline-range organics

bgs = below ground surface ft = foot(feet) N/A = not applicable

		neering, nology,			Start Date:	2735DM02 Kirtland AFB, New Mexico 11-8-2020 n Date: 12-23-2020	WELL LOG Well ID: KAFB-106V3 Page: 4 of 14		
Drilling Drill Bi Driller:	g Metho it: 81/ Forre	oany: Ca od: Air I '2'' Long est Chatt . Messer	Rotary C -Tooth N .in		g Hammer	Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A		erial: See Notes Section al(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(µ)	(nudd) QId	Samples Collected	nscs	Lithology		Sample Description		Completion Details	
125			CL		plastic: 90% 10% coarse)	5/2, brown; soft; slightly moist; nonplastic- clay; 10% fine-coarse sand (50% fine, 40% ; subangular-subrounded; sand is quartz, nts. Note: secondary calcium carbonate pr	6 medium, feldspar, and		
130	0.5		SM		fine-medium subangular-s	0YR 5/3, brown; loose; slightly moist; 80% sand (70% fine, 30% medium); subrounded; 20% silt, nonplastic; sand is o d lithic fragments.			
135			SP- SM		moist; 90% f coarse sand	ed Sand with Silt: 10YR 5/3, brown; loose; ine-medium sand (40% fine, 60% medium ; trace gravel to 1/2"; subangular-subround and is quartz, feldspar, and lithic fragment nts.); trace led; 10% silt,		
140	0.0		sw		fine-coarse s to 1/2"; suba	I Sand: 10YR 5/3, brown; loose; slightly mo sand (30% fine, 60% medium, 10% coarse ngular-subrounded; 5% silt, nonplastic; sa I lithic fragments; gravel is lithic fragments); 5% gravel nd is quartz,		
145			ML		fine-medium	/3, brown; soft; slightly moist; nonplastic; 7 sand (40% fine, 60% medium); trace coar subrounded; sand is quartz, feldspar, and l	se sand;		
150	2.4		SW- SM		90% fine-coa subangular-s feldspar, and lithic gravel t	I Sand with Silt: 10YR 5/3, brown; loose; sl arse sand (40% fine, 50% medium, 10% cr subrounded; 10% silt, nonplastic; sand is o d lithic fragments. At 155 ft, 85% sand; 5% to 5/8"; 10% silt. At 160 ft, 80% sand; 10% 165 ft, gravel to 1-1/8". At 170 ft, 60% sand 10% silt.			
160			SM		gravel to 1";	10% silt.			

 (1) KAFB-106V3-07: 1" OD Sch. 80 PVC; blank riser, 0-5 ft bgs; 0.01" slot screen, 5-7 ft bgs
 (2) KAFB-106V3-272; 3.5" OD Sch. 80 PVC; blank riser, 0-267 ft bgs; 0.01" slot screen, 267-272 ft bgs
 (3) KAFB-106V3-15: 1" OD Sch. 80 PVC; blank riser, 0-5 ft bgs; 0.01" slot screen, 13-15 ft bgs Samples: D = diesel-range organics; G = gasoline-range organics bgs = below ground surface

ft = foot(feet) N/A = not applicable

EA Engineering, Science,						2735DM02 Kirtland AFB, New Mexico 11-8-2020 n Date: 12-23-2020	WELL LOG Well ID: KAFB-106V3 Page: 5 of 14		
Drilling Drill Bi Driller:	Metho t: 8 1/ Forre		Rotary Ca Tooth M	S. 200 -) Hammer	Boring Diameter (in):9 5/8Well Diameter:See Notes SectionDTW After Completion (ft bgs):N/A		erial: See Notes Section al(s): Cement; Bentonite Chips High Solids Bentonite Grou 10/20 Silica Sand	
(L)	(vmqq) OId	Samples Collected	nscs	Lithology		Sample Description		Completion Details	
165 170	1.6		SW- SM						
175			SM		fine-medium subangular-s	0YR 5/3, brown; loose; slightly moist; 75% sand (40% fine, 60% medium); subrounded; 25% silt, nonplastic; sand is q I lithic fragments.			
180	1.4		SW- SM		80% fine-coa gravel to 1/2 clay; sand is	Sand with Silt: 10YR 5/3, brown; loose; sl arse sand (40% fine, 50% medium, 10% co "; subangular-subrounded; 10% silt, nonpla quartz, feldspar, and lithic fragments; grav gments. Note: clay exists as nodules to 1-1 plastic.	parse); 5% astic; 5% vel is quartz		
190	1.2		SP- SM		moist; 90% f coarse sand; nonplastic; s	ed Sand with Silt: 10YR 5/3, brown; loose; ine-medium sand (30% fine, 70% medium ; trace gravel to 3/8"; subangular-subround and is quartz, feldspar, and lithic fragment thic fragments.); trace led; 10% silt,		
195 200			SW- SM		60% fine-coa gravel to 5/8 clay as nodu	Sand with Silt: 10YR 5/3, brown; loose; sl arse sand (30% fine, 40% medium, 30% co "; subangular-subrounded; 10% silt, nonpla les to 3/8"; sand is quartz, feldspar lithic fr intz and lithic fragments.	barse); 30% astic; trace		

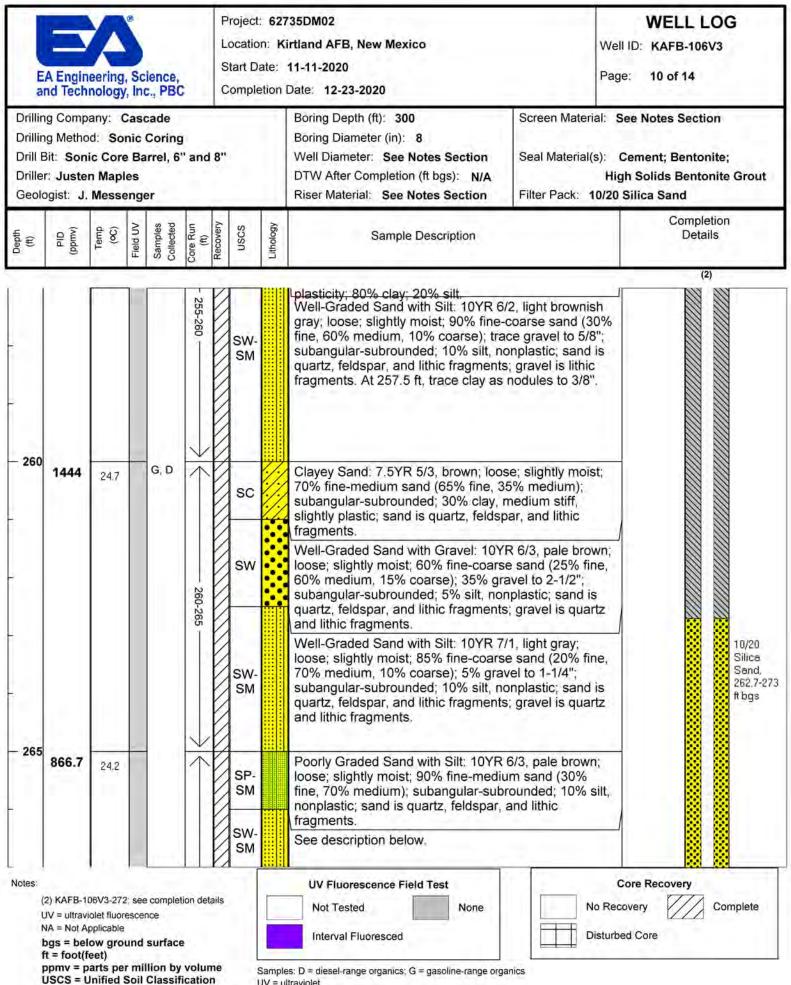
(1) KAFB-106V3-07: 1" OD Sch. 80 PVC; blank riser, 0-5 ft bgs; 0.01" slot screen, 5-7 ft bgs
 (2) KAFB-106V3-272: 3.5" OD Sch. 80 PVC; blank riser, 0-267 ft bgs; 0.01" slot screen, 267-272 ft bgs
 (3) KAFB-106V3-15: 1" OD Sch. 80 PVC; blank riser, 0-5 ft bgs; 0.01" slot screen, 13-15 ft bgs

Samples: D = diesel-range organics; G = gasoline-range organics

bgs = below ground surface

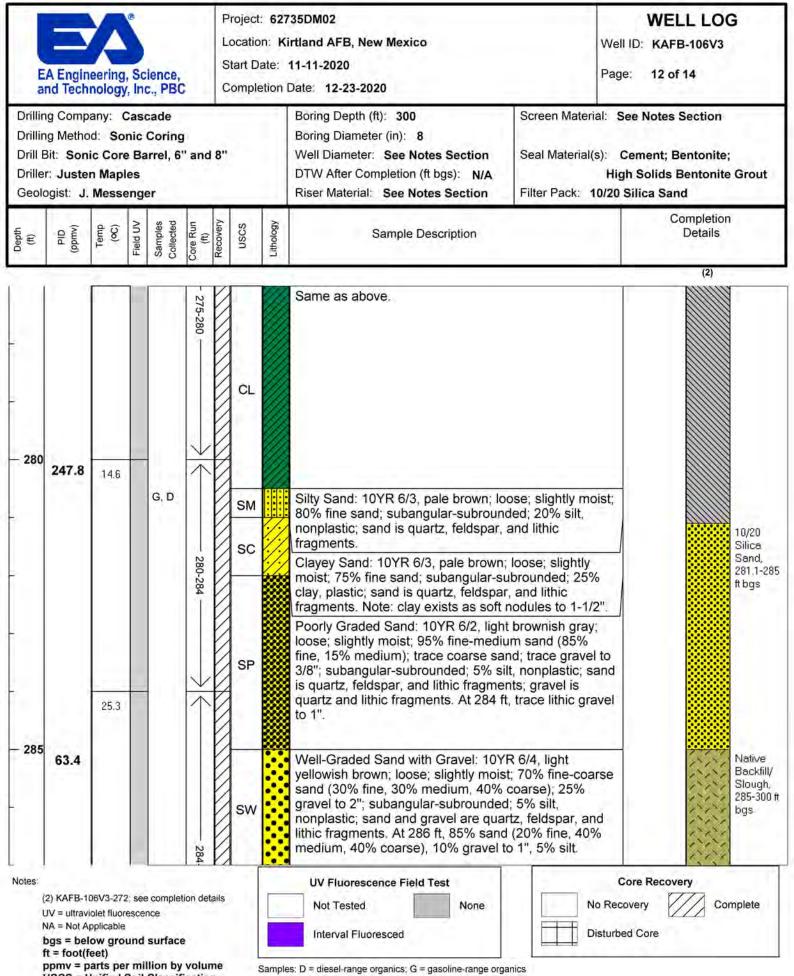
Notes:

ft = foot(feet) N/A = not applicable


Engli d Tech	neering, s	Science, Inc., PB	c	Location: Start Date:	Kirtland AFB, New Mexico 11-8-2020	WELL LOG Well ID: KAFB-106V3 Page: 6 of 14		
9 Metho it: 8 1/ Forre	od: Air F 2'' Long- est Chatti	Rotary C Tooth N	241,200,24	g Hammer	Boring Diameter (in):9 5/8Well Diameter:See Notes SectionDTW After Completion (ft bgs):N/A		terial: See Notes Section ial(s): Cement; Bentonite Chips; High Solids Bentonite Grout 10/20 Silica Sand	
(nudd) QId	amples ollected	ISCS	ithology		Sample Description		Completion Details	
	0.0	1 -	-				(1) (2) (3)	
0.6		SM		fine-medium subangular-	n sand (40% fine, 60% medium); trace coa subrounded; 25% silt, nonplastic; sand is o	rse sand;		
70% fine-co gravel to 5/8 is quartz, fel				70% fine-co gravel to 5/8 is quartz, fel	arse sand (30% fine, 40% medium, 30% c "; subangular-subrounded; 10% silt, nonp dspar lithic fragments; gravel is quartz and	oarse); 20% astic; sand		
		sw		fine-coarse gravel to 1-1	sand (30% fine, 40% medium, 30% coarse I/8"; subangular-subrounded; 5% silt, non); 25% lastic; sand		
0.2		SW- SM		moist; 80% coarse); 10% nonplastic; s and lithic fra fine, 75% m	fine-coarse sand (20% fine, 60% medium, % gravel to 7/8"; subangular-subrounded; sand is quartz, feldspar lithic fragments; gr gments. At 225 ft, 10YR 5/3, brown; 90% s edium, 5% coarse); trace gravel to 3/4"; 10	20% I0% silt, avel is quartz sand (20%		
	d Tech Comp Method t: 8 1/ Forregist: J Que de 0.6	d Technology; g Company: g Method: Air F t: 8 1/2" Long- Forrest Chattingist: gist: J. Messer J. Messer J. Messer J. Messer <td< td=""><td>d Technology, Inc., PB a Company: Cascade a Method: Air Rotary C t: 8 1/2" Long-Tooth M Forrest Chattin gist: J. Messenger a Guided a Guided a Guided a Company: Cascade Forrest Chattin gist: J. Messenger a Guided b Guided a Guided</td><td>Method: Air Rotary Casing It 8 1/2" Long-Tooth Mill Forrest Chattin gist: J. Messenger 0.4 SW- 0.2</td><td>Engineering, Science, d Technology, Inc., PBC Location: Start Date: Completion Company: Cascade Method: Air Rotary Casing Hammer It 8 1/2" Long-Tooth Mill Forrest Chattin gist: J. Messenger Image: String of the s</td><td>d Technology, Inc., PBC Completion Date: 12-23-2020 g Company: Cascade Method: Air Rotary Casing Hammer It: 8 1/2" Long-Tooth Mill Boring Depth (ft): 300 Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section Forrest Chattin gist: J. Messenger Silty Sand: 10YR 6/3, pale brown; loose; slightly moist fine-medium sand (40% fine, 60% medium); trace coal subangular-subrounded; 25% silt, nonplastic; sand is of feldspar, and lithic fragments. 0.6 SM Well Graded Sand with Silt: 10YR 5/3, brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.4 SW Well Graded Sand: 10YR 5/3, brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.4 SW Well Graded Sand: 10YR 5/3, brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.2 Well Graded Sand with Silt: 10YR 6/3, pale brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.2 Well Graded Sand: 10YR 5/3, brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.4 SW 0.5 Well Graded Sand: 10YR 5/3, brown; loose; slightly moist fragments. At 200% fine, 40% medium, 30% coarse gravel to 1-1/8"; subangular-subrounded; 5% silt, nonp is quartz, feldspar lithic fragments; gravel is quartz and fragments. 0.4 SW Well Graded Sand: 10YR 5/3, brown; loose; slightly mist fragments. 0.4 SW SW 0.5</td><td>Location: Kirtland AFB, New Mexico Start Date: 11-8-2020 Company: Cascade Method: Air Rotary Casing Hammer t: 8 1/2" Long-Tooth Mill Forrest Chattin Boring Depth (ft): 300 Forrest Chattin DTW After Completion (ft bgs): N/A Riser Material: See Notes Section Screen Material: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section Filter Pack: 0.6 Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.6 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SW Well Gr</td></td<>	d Technology, Inc., PB a Company: Cascade a Method: Air Rotary C t: 8 1/2" Long-Tooth M Forrest Chattin gist: J. Messenger a Guided a Guided a Guided a Company: Cascade Forrest Chattin gist: J. Messenger a Guided b Guided a Guided	Method: Air Rotary Casing It 8 1/2" Long-Tooth Mill Forrest Chattin gist: J. Messenger 0.4 SW- 0.2	Engineering, Science, d Technology, Inc., PBC Location: Start Date: Completion Company: Cascade Method: Air Rotary Casing Hammer It 8 1/2" Long-Tooth Mill Forrest Chattin gist: J. Messenger Image: String of the s	d Technology, Inc., PBC Completion Date: 12-23-2020 g Company: Cascade Method: Air Rotary Casing Hammer It: 8 1/2" Long-Tooth Mill Boring Depth (ft): 300 Boring Diameter (in): 9 5/8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section Forrest Chattin gist: J. Messenger Silty Sand: 10YR 6/3, pale brown; loose; slightly moist fine-medium sand (40% fine, 60% medium); trace coal subangular-subrounded; 25% silt, nonplastic; sand is of feldspar, and lithic fragments. 0.6 SM Well Graded Sand with Silt: 10YR 5/3, brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.4 SW Well Graded Sand: 10YR 5/3, brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.4 SW Well Graded Sand: 10YR 5/3, brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.2 Well Graded Sand with Silt: 10YR 6/3, pale brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.2 Well Graded Sand: 10YR 5/3, brown; loose; slightly moist fragments. At 210 ft, trace clay. 0.4 SW 0.5 Well Graded Sand: 10YR 5/3, brown; loose; slightly moist fragments. At 200% fine, 40% medium, 30% coarse gravel to 1-1/8"; subangular-subrounded; 5% silt, nonp is quartz, feldspar lithic fragments; gravel is quartz and fragments. 0.4 SW Well Graded Sand: 10YR 5/3, brown; loose; slightly mist fragments. 0.4 SW SW 0.5	Location: Kirtland AFB, New Mexico Start Date: 11-8-2020 Company: Cascade Method: Air Rotary Casing Hammer t: 8 1/2" Long-Tooth Mill Forrest Chattin Boring Depth (ft): 300 Forrest Chattin DTW After Completion (ft bgs): N/A Riser Material: See Notes Section Screen Material: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section Filter Pack: 0.6 Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.6 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SM Silty Sand: 10YR 6/3, pale brown; loose; slightly moist; 75% Filter Pack: 0.4 SW Well Gr	

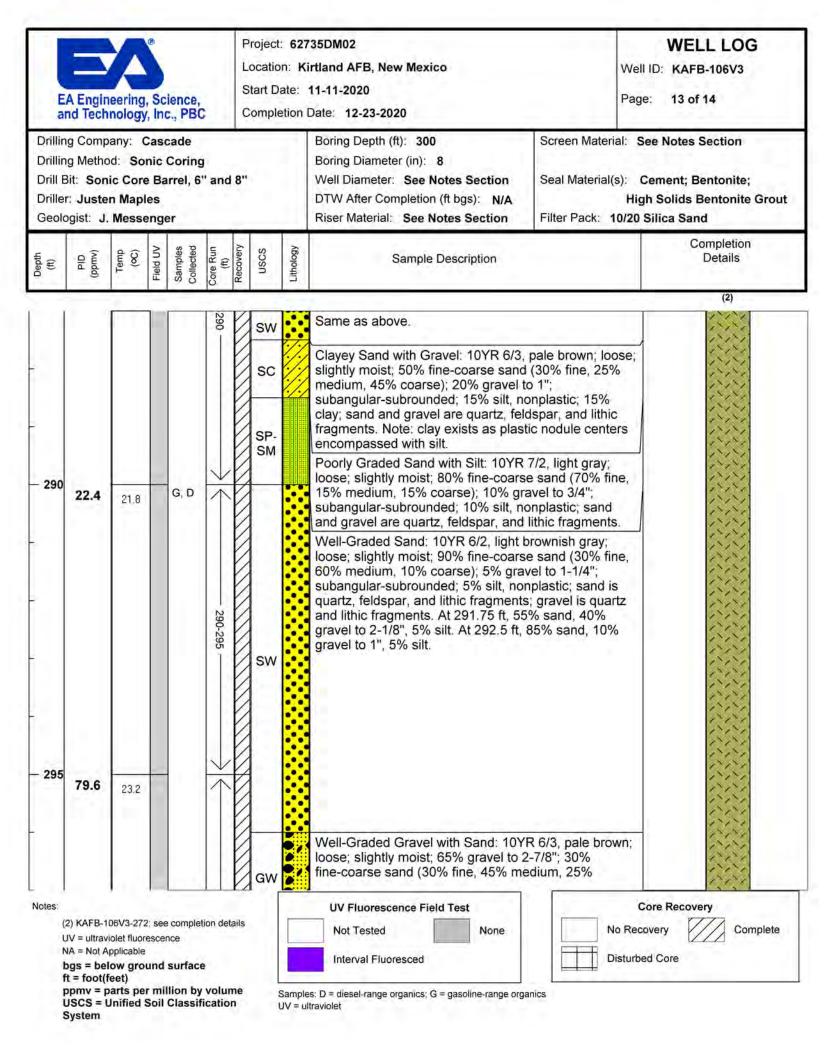
E	EA Engineering, Science,						n: K ate:	735DM02 irtland AFB, New Mexico 11-11-2020 Date: 12-23-2020	WELL LOG Well ID: KAFB-106V3 Page: 7 of 14		
Drillin Drill B Driller	g Metho lit: Son : Juste	any: Ca d: Son ic Core n Maple Messer	ic Cor Barrel s	ng	nd 8"			Boring Depth (ft): 300 Boring Diameter (in): 8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A Riser Material: See Notes Section	Seal Material(s	al: See Notes Section s): Cement; Bentonite; High Solids Bentonite Grout 0/20 Silica Sand	
Depth (ft)	(nudd) Old	Temp (oC)	Field UV Samples	Collected Core Run	(ft) Recovery	nscs	Lithology	Sample Description		Completion Details	
1 1							111	No cuttings returned.		(2) 3.5" OD Schedule 80 PVC Riser, 0-267 ft bgs 10 Schedule Solids Bentonite Grout 27.8-235.2 ft bgs	
- 230	6.5	16.5	G, I	7		sw		Well-Graded Sand with Gravel: 10Y loose; slightly moist; 60% fine-coars 45% medium, 25% coarse); 35% gra subangular-subrounded; 5% silt, nor quartz, feldspar, and lithic fragments and lithic fragments.	e sand (30% fin avel to 1-1/4"; pplastic; sand is		
_				200-200		SP- SM		Poorly Graded Sand with Silt: 10YR loose; slightly moist; 90% fine-mediu fine, 70% medium); subangular-sub nonplastic; sand is quartz, feldspar, fragments.	im sand (30% ounded; 10% s		
- 235	11.2	22.4	G,			sw		Well-Graded Sand with Gravel: 10Yl brownish gray; 70% fine-coarse sam medium, 25% coarse); 25% gravel to subangular-subrounded; 5% silt, nor quartz, feldspar, and lithic fragments and lithic fragments. At 235 ft, 10YR brown.	d (30% fine, 45° o 2"; pplastic; sand is ; gravel is quar		
						GW- GM		See description below.	2	235.2 to 262.7 ft bgs.	
U N b fi	IV = ultravi IA = Not A Igs = bel t = foot(f pmv = p	ow grou	scence nd surf million	ace by vol	lume		Sample	UV Fluorescence Field Test Not Tested Interval Fluoresced States: D = diesel-range organics; G = gasoline-range organics; G = gasoline-range organica; C = gasoli	Di	Core Recovery	

EA Engineering, Science,						n: K ate:	735DM02 irtland AFB, New Mexico 11-11-2020 Date: 12-23-2020		WELL LOG Well ID: KAFB-106V3 Page: 8 of 14	
Drilling Company: Cascade Drilling Method: Sonic Coring Drill Bit: Sonic Core Barrel, 6" and 8" Driller: Justen Maples Geologist: J. Messenger							Boring Diameter (in): 8 Well Diameter: See Notes Section Seal Material DTW After Completion (ft bgs): N/A		ial: See Notes Section (s): Cement; Bentonite; High Solids Bentonite Grout 10/20 Silica Sand	
(tt)	(vmqq)	Temp (ac)							Completion Details	
		Well-Graded Gravel with Silt and Sand: 10YR 7/3, very pale brown; loose; slightly moist; 60% gravel to 2-1/2"; 30% fine-coarse sand (25% fine, 50% medium, 25% coarse); subangular-subrounded; 10% silt, nonplastic; sand is quartz, feldspar, and lithic fragments; gravel is quartz and lithic fragments. At 239.8 ft, trace plastic and medium stiff clay.							2"; ic; is	
240	0.4	29.7	G, D	> <24	SP		Poorly Graded Sand: 10YR 6/3, pale slightly moist; 85% fine-medium san medium); trace coarse sand; 10% g subangular-subrounded; 5% silt, not sand is quartz, feldspar, and lithic fra quartz and lithic fragments. Note: cla medium plastic nodules to 1-7/8", 10 brown.	ay; is		
245				0-245	SP- SM		Poorly Graded Sand with Silt: 10YR loose; slightly moist; 85% fine-mediu fine, 60% medium); trace coarse sa 1/2"; subangular-subrounded; 10% s trace clay; sand is quartz, feldspar, a fragments; gravel is quartz and lithic ft, 10YR 7/3, very pale brown, 90% s trace gravel to 5/8". At 246.5 ft, trace	um sand (40% nd; 5% gravel to silt, nonplastic; and lithic fragments. At 2 sand, 10% silt,		
245	43.8	36.2		\wedge						
U N b	V = ultravi A = Not A ogs = bel t = foot(f	ow groun	cence	e			UV Fluorescence Field Test Not Tested None Interval Fluoresced	Dis	Core Recovery Recovery Complete Sturbed Core	


UV = ultraviolet

Ea	A Engine	eering, S nology, I	Science, nc., PB		Location Start Da	n: K ate:	735DM02 irtland AFB, New Mexico 11-11-2020 Date: 12-23-2020	WELL LOG Well ID: KAFB-106V3 Page: 9 of 14	
Drillin Drill E Drille	g Compa g Metho Bit: Soni r: Juster ogist: J.	d: Soni ic Core I n Maples	c Coring Barrel, 6 S	Do 19 19 19			Boring Diameter (in): 8 Well Diameter: See Notes Section Seal Material(s):		l: See Notes Section): Cement; Bentonite; High Solids Bentonite Grou)/20 Silica Sand
(ų)	(nmqq) Qiq	Temp (oC)	Samples Collected	Core Run (ft) Recovery	nscs	Lithology	Sample Description		Completion Details
					SP- SM		Same as above.		
				245-252.5	ML		Silt: 10YR 6/2, light brownish gray; so slightly moist; nonplastic-slightly plas clay; 20% fine-medium sand (60% fin subangular-subrounded; sand is qua lithic fragments.	tic; 60% silt; 20 ne, 40% mediur	% n);
- 250	4.6		G, D		SM		Silty Sand: 10YR 6/2, light grayish br slightly moist; 65% fine-coarse sand medium, 20% coarse); trace gravel t subangular-subrounded; 35% silt, no clay; sand is quartz, feldspar, and lith gravel is lithic fragments.	(30% fine, 50% o 5/8"; onplastic; trace	
		23.0		> < 252.5-255	SW- SM		Well-Graded Sand with Silt: 10YR 6/ loose; slightly moist; 85% fine-coarse 55% medium, 15% coarse); 5% grav subangular-subrounded; 10% silt, no quartz, feldspar, and lithic fragments fragments.	e sand (30% fine rel to 3/4"; inplastic; sand is	
255				5	ML		Silty Sand: 10YR 7/2, light gray; loos 70% fine-medium sand (40% fine, 60 subangular-subrounded; 30% silt, no quartz, feldspar, and lithic fragments	0% medium); nplastic; sand is	
	639.6	20.5			CL		Silt: 10YR 6/2, light brownish gray; so slightly moist; nonplastic-slightly plas clay; 20% fine-medium sand (60% fin subangular-subrounded; sand is qua lithic fragments.	oft-medium stiff tic; 60% silt; 20 ne, 40% mediur	% n);
	10						Clay: 10YR 5/3, brown; stiff; slightly r	noist; medium	
	2) KAFB-10 JV = ultravio JA = Not Ap ogs = belo t = foot(fe	olet fluores oplicable ow grour	cence		5		UV Fluorescence Field Test Not Tested Interval Fluoresced		Core Recovery Recovery Complete sturbed Core

UV = ultraviolet

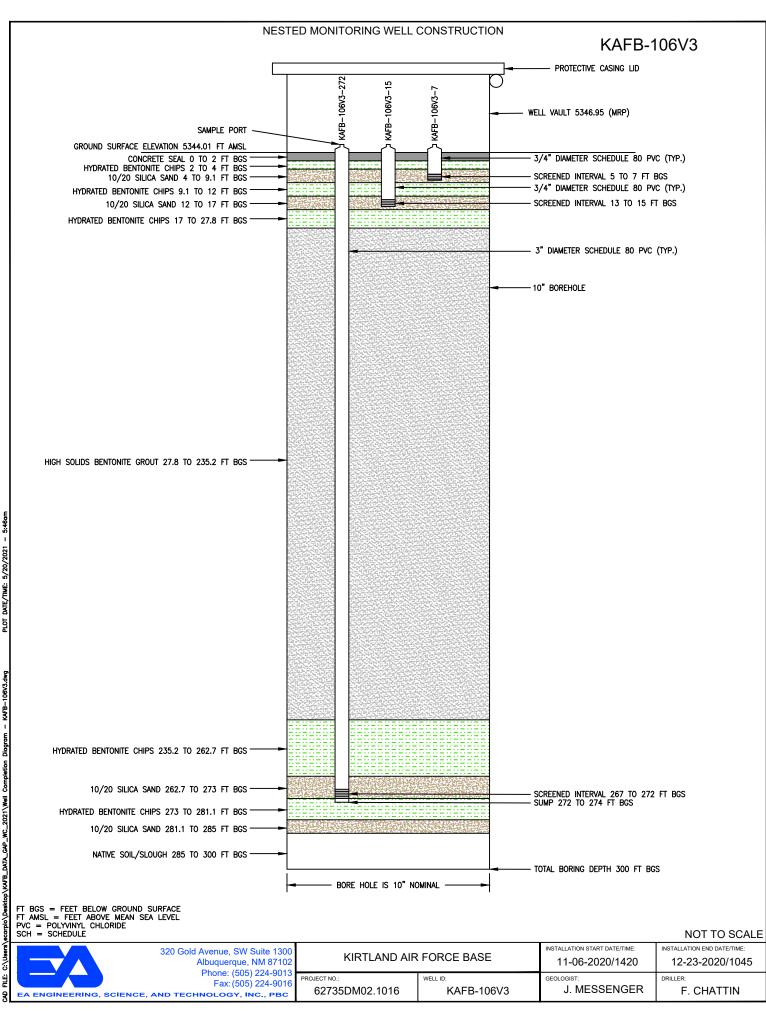

E	A Engin nd Tech	eering, S nology, I	Science, Inc., PBC		Locati Start I	on: K Date:	735DM02 (irtland AFB, New Mexico 11-11-2020 Date: 12-23-2020	WELL LOG Well ID: KAFB-106V3 Page: 11 of 14			
Drillin Drill E Drille	ig Metho Bit: Son r: Juste		ic Coring Barrel, 6 s		8"		Boring Diameter (in): 8 Well Diameter: See Notes Section DTW After Completion (ft bgs): N/A		I: See Notes Section): Cement; Bentonite; High Solids Bentonite Grout)/20 Silica Sand		
Depth (ft)	(vmqq)	Temp (oC)	Samples Collected	Core Run (ft)	Recovery USCS	Lithology	Sample Description		Completion Details		
- 270	546.6 796.6 72.8	25.1	G, D G, D	- 265-270	SW SW CL		Well-Graded Sand with Silt: 10YR 7/ loose; slightly moist; 85% fine-coarse 60% medium, 15% coarse); 5% grave subangular-subrounded; 10% silt, no quartz, feldspar, and lithic fragments and lithic fragments. Clay: 7.5YR 5/2, brown; very stiff-ha medium plasticity; 100% clay. Note: alteration to 10YR 2/1, black and 2.5 yellowish brown; minor secondary ca present. At 276 ft, moderately mottle very pale brown; moderate secondari carbonate present; moderate-strong acid.	e sand (25% fin vel to 3/4"; onplastic; sand i s; gravel is quart rd; slightly mois moderate by 6/3, light alcium carbonat ed to 10YR 8/2, ry calcium	t;		
Notes: (2) KAFB-106V3-272: see completion details UV = ultraviolet fluorescence NA = Not Applicable bgs = below ground surface ft = foot(feet)							UV Fluorescence Field Test Core Recovery Not Tested None Interval Fluoresced Disturbed Core				

USCS = Unified Soil Classification

System

UV = ultraviolet

EA Engineering, Science, Start Date:							on: K late:	irtland AFB, New Mexico	WELL LOG Well ID: KAFB-106V3 Page: 14 of 14	
Drillin Drill E Drille	ng Comp ng Metho Bit: Son r: Juste ogist: J.	ic Cor n Map	nic e Ba les	Coring Irrel, 6		8"		Boring Depth (ft): 300 Screen Material: See Notes Section Boring Diameter (in): 8 Screen Material: See Notes Section Well Diameter: See Notes Section Seal Material(s): Cement; Bentoni DTW After Completion (ft bgs): N/A High Solids Benton Riser Material: See Notes Section Filter Pack: 10/20 Silica Sand		
Depth (ft)	(nundd)	Temp (oC)	Field UV	Samples Collected	Core Run (ft)	Recovery USCS	Lithology	Sample Description		Completion Details
			1		- 295-300			coarse); subangular-subrounded; 5 ⁶ trace clay; gravel is quartz and lithic is quartz, feldspar, and lithic fragme	fragments; san	
2						sw		Well-Graded Sand with Gravel: 10Y brownish gray; loose; slightly moist; sand (30% fine, 60% medium, 10% gravel to 2-1/8"; subangular-subrour nonplastic; sand is quartz, feldspar, fragments; gravel is quartz and lithic	55% fine-coars coarse); 40% nded; 5% silt, and lithic	ie
- 300	22.3			G, D	$ \downarrow\rangle$	0		Total Depth = 300 ft bgs reached or	11-12-2020	


Notes:

(2) KAFB-106V3-272: see completion details UV = ultraviolet fluorescence NA = Not Applicable bgs = below ground surface ft = foot(feet) ppmv = parts per million by volume USCS = Unified Soil Classification System

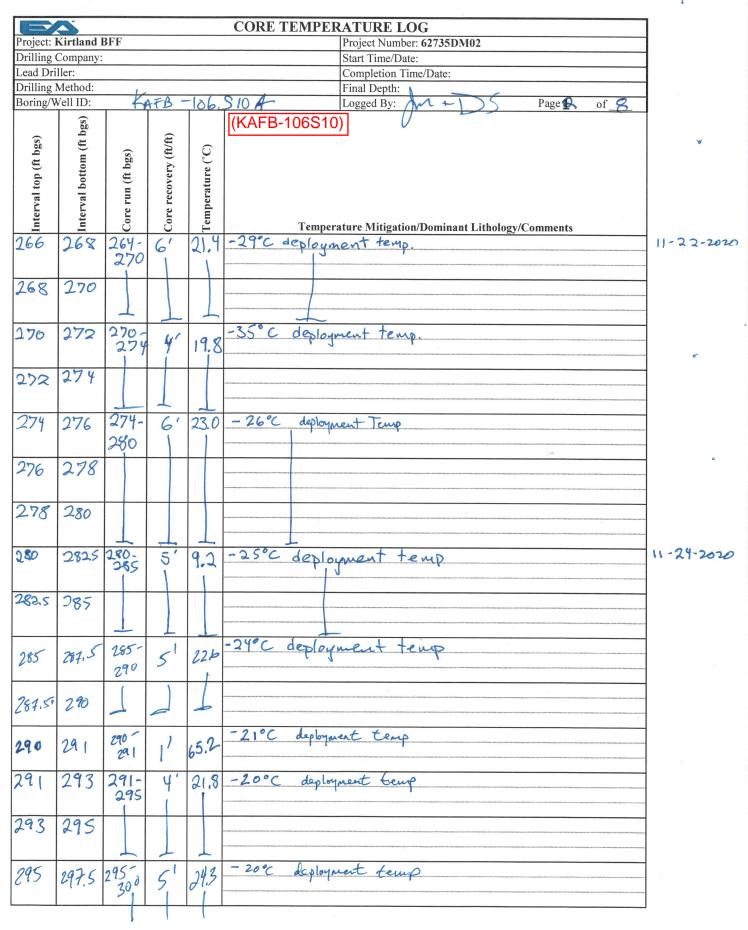
UV Fluorescence Fie	eld l'est
Not Tested	None
Interval Fluoresced	

Samples: D = diesel-range organics; G = gasoline-range organics UV = ultraviolet

	Core Re	covery	
1	No Recovery	11	Complete
	Disturbed Core	2	

 KAFB—106V3.dwg Diagram carpio\Desktop\KAFB_DATA_GAP_WC_2021\Well Completion FILE: C:\Users\

APPENDIX E


CORE TEMPERATURE LOGS

oject: I	Kirtland I	3FF			CORE TEMPERATURE LOG Project Number: 62735DM02	
illing	Company:	C	iscad	R .	Start Time/Date: 0930 11-11-2020	
ad Dri	iller: 🗡			better	Completion Time/Date:	
illing l	Method:	50	NK		Final Depth:	
oring/V	Well ID:	- Ki	AFB-	- 1065		
Interval top (ft bgs)	Interval bottom (ft bgs)	Core run (ft bgs)	Core recovery (ft/ft)	Temperature (°C)	(KAFB-106V3)	
I	<u> </u>		Ŭ,	Ĕ	Temperature Mitigation/Dominant Lithology/Comments	
130	235			16,5	-27°C deployment timp.	
132.5	235	230-235	S	16.5		
35	237.5	235-240	5'	22:10	-25°C deployment temp.	
1325		1				
140	242.5	240-245	S	29.7	-5°C deployment temp.	
242.5	245		Ţ			
45	247,5	245-2525	7,5'	36.2	-35.06 deployment temp. - attempted a 10' sun, was able to get 7.251 - temp shightly high - will to	scal
47.5	250				to	541
250	252.5					
\$2,5	255	 252.5 -255	2.5	23	-20°C deployment temp.	
55	257.5	255 -260	5'	20.5	-20°C deployment temp	
2575	260	L	5			
60	262,5	260 -265	5'	24.7	-20°C deployment temp	
5 3 62.5		Ţ	I			
65	267.5	265 - 270	S	242	-200°C deployment temp.	

	Kirtland				Project Number: 62735DM02	1
	Company	:			Start Time/Date:	1
Lead Dr	Method:				Completion Time/Date:	1
		(KAFE	2_100		Final Depth:	1
Bornig/			5-100	<u>svs)</u>	Logged By: Page 2 of	1
Interval top (ft bgs)	Interval bottom (ft bgs)	Core run (ft bgs)	Core recovery (ft/ft)	Temperature (°C)	Temperature Mitigation/Dominant Lithology/Comments	
267.5	270	265-	5	24.2	-20°C deployment temp.	JA .
	-	270	10	0-1.2		11-14-
270	272.5	270-	5	25.1	-35°C deployment temp	11 10
		275	1	1		11-12
A						
272.5	275					
						Y Y
		1	1-	L		
275	277.5	275	51	1200	-34°C deployment temp.	
		-280		45.8		
		1		1		
277.5	280					
			1	1		
280	282	280-	4'	14.6	-33°C deployment Terry	
			7	11,6		
		28,4				
282	284					
		L				
284	aci	284-	11	2011	-29°C deployment Temp.	
0 (286	290	6'	25:3		
		610	C			
286	0.00		1			
686	288	1				
mar						
285	290	4	-			
00	1025	295	51	21,8 -	-35°C deployment Temp	
290	2925	195	5'	CIV		
792.5	295		1			
10.1	011	-	-	-		
				+		
ar	2225	295-	5'	23,2	- 20°C deployment Temp	
95	297.5	300	0	61,6		
		1				
005	2 . 1			<u>ور</u>		
97.5	300)	+	a			
				+		

W. L.

	<u> </u>		ana kaominina dia mandri kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia ka		CORE TEMPERATURE LOG	
	Kirtland I				Project Number: 62735DM02	
	Company:		cade		Start Time/Date:	
Lead Dri		Ju	sten	Map	Completion Time/Date:	
Drilling		SON	10 4	Core	barrel Final Depth: 517 ff bgs OA Logged By: M + D S Page 1 5 of	
Boring/V		KAF	13-10	2631		
	Interval bottom (ft bgs)				(KAFB-106S10)	
pgs	(tt		ft/fi	5		
(ft	tom	pga	, Ń	e (°		$\sim 10^{-1}$
top	bot	l (ft	ove	tur		
val	val	rur	rec)er2		
Interval top (ft bgs)	iter	Core run (ft bgs)	Core recovery (ft/ft)	Temperature (°C)		
		the second se	<u> </u>	E	Temperature Mitigation/Dominant Lithology/Comments	1630
830	\$32.5	\$30- \$35	5'	16,7	-33°C déployarient temp	11-21-2020
B \$2,5	835		1	1		
235-	237.5	235-240	51	14,1	- 29 l deplayment temp	11-22-2020
2375	240	d	Ţ	1		
240	242,5	240- 245	5'	24.8	-28°C deployment temp	
242.5	245	1	d	a		5. 1972 - 19
245	247.5	245- 250	51	22.7	-25°C deployment timp	
247.5	250	7		d	-24°C deployment temp. X	
250	252,5	250 ⁻ 255 ¹	51	8.1	- 24°C deployment temp	
252,5	255	4	-	-		
255	257.5	255-260	5'	15.9	= 25°C deployment trup	
257.5	260					
260	262	260° 264	41	21.2	-32° c deployment temp.	
262	264		1	1		
264	266	269 - 270	6'	21.4	-29°C deployment temp	

	<u> </u>				CORE TEMPERATURE LOG	1
	Kirtland I				Project Number: 62735DM02	
	Company:			1	Start Time/Date:	
Lead Dri					Completion Time/Date:	
Drilling			10 00		Final Depth:	
Boring/V	1	r t	AFF	2-1	06SIOA Logged By: Page 1 3 of 8	
Interval top (ft bgs)	Interval bottom (ft bgs)	Core run (ft bgs)	Core recovery (ft/ft)	.Temperature (°C)	(KAFB-106S10) Temperature Mitigation/Dominant Lithology/Comments	11-24-2020
297.5	300	295 L 300	5'		deplequent temp -20°C	11-27-2020
300	302.5	300- 305	5'	16.3	-26°C deployment bemap	
302.5	305			1		
305	307.5	305- 310	5'	<i> 3</i> ,8	-28°C deployment temp	
307.5	310	4				
310	312.5	310- 315	5'	13.9	- 30°C deployment temp	
312.5	315	4		+		
315	317	315-319	4'	21.5	-31°C deployment temp.	
317	319	1		-		
319	321	319- 325	61	19.4	- 34°C deployment temp	
321	323					
323	325	A	d	7		
325	327.5	325- 330	5'	24.6	-34°C deployment temp	11-25-2020
327.5	330		I			
330	332.5	330- 335	51	30.1	-33°C deployment temp	

		<u>.</u>				CORE TEMPERATURE LOG	
		Kirtland I				Project Number: 62735DM02	
	Drilling	Company:				Start Time/Date:	
	Lead Dri					Completion Time/Date:	
	Drilling		1/			Final Depth:	
(av W)	Boring/V	Vell ID:	44	FB-	1063	SIOA Logged By: M+1 S Page 4 of 8	
		Interval bottom (ft bgs)				(KAFB-106S10)	
	Interval top (ft bgs)	(lf	s)	Core recovery (ft/ft)	C		
	(fi	ton	Core run (ft bgs)	È.	Temperature (°C)		
	do	ott	(ft	Vel	tur		
	alt	alt	1	eco	crat		
	SIV .	ALC: N	.e.	.e.	du		
	nte	nte	Col	Col	ren	Temperature Mitigation/Dominant Lithology/Comments	2-2
11,26,2020						- on pot work of Antigenton, 2 on man Dienotogy, Comments	
11-25-2020	332.5	335	225	5'	30.1		
			335	-			2
		6	335-			-270 c deslow ent temp	
	335	337.5		51	14.5	-27°C deployment temp.	
	11		340	S	· .		
							а.
	337.5	340					
	1220		4	4	-		
		-	240 -			-25°C deployment temp	
	340	342.5	340 -	5'	19.5		
	000		345		1.0		
	342.5	345					
\backslash	0 10.0	00		-	-		
\backslash			345-	1	12.4	-22.°C deployment temp	
\backslash	345	347.5	350	51	16.1	- atomatic comp	
\backslash			300				
						1	
	347.5	350			-		
Xc			-				
		1	535	1	AP	Im -27°C deployment temp	12 . 1 2.0
12-1-2020	350	352.5	350-	5	12.7 8.2	A set a prese carib	12-1-2020
	22		355	-	8.2		
			1		1		
1 ²¹ x	352.5	355	9	2	\triangleleft		
			63	204			
			715-	1		- 30°C deployment temp	
	355	357.5	355-	5'	17.3		
	1.1	1.1	360	1	1		
	-						
	357.5	360		-	do		
			3				
· · · · ·	25 0	1.20	2000	I	.25	-18°C deployment tomp	
	360	362.5	360 ° 365	5!	13,5		
8) 4		1	365	21			
	362.5	365		1	1		
	-						
		-	916-	1	A	-20°C deployment temp	
	365	367.5	365- 370	5	17.0	nannan an	
	10-		3:40	0	1		
			1				
	3675	370					
	~		9	-			

Project:	Kirtland	BFF	5		CORE TEMPERATURE LOG Project Number: 62735DM02
	Company				Start Time/Date:
Lead Dri		-			Completion Time/Date:
Drilling		1	/		Final Depth:
Boring/V		K	AFB	-106	SIOA Logged By: M+ S Page of
	1	1 ,			
	Interval bottom (ft bgs)				(KAFB-106S10) 5 4 8
gs)	(Ĥ		t/ft		
Interval top (ft bgs)	E E	Core run (ft bgs)	Core recovery (ft/ft)	Temperature (°C)	
b (otto	fit	/er.j	Ire	
I to	1 pc	u u	C0V	atı	
'Va	Va	n n	re	per	
itei	Iter	ore	ore	em	
		0		E	Temperature Mitigation/Dominant Lithology/Comments
370	372.5	370-	1	14,4	- 26 °C deployment temp
0.0	116.1	375	5	(b)	
	2	1			
747-	241				
342.5	345	d	1	+	•
375	377.5	375	5'	8.8	-34°C deployment temp
		380	- Al	~~~~	
			1	1	
377.5	380				
			-	4	
		L			
al		260 -	-1	0.2	-33°C deployment temp.
380	3825	380	51	20.2	
		385	1	1	
		-			
382.5	383				
			1	+	
				Nam	-35°C deployment lenge
290	292.5	340- 395	5'	47.7	and the second s
7	1	395			
		1			
\$12.5	295	1		0	
-	/	63	-		
		1	1		-23°C deployment to ma
400	402	400 .1	4	4.9	-23°C deployment temp. -31°C
100	10 -	404	1		
		1	ſ		
402	404			1	
TUC	10-1	- Alian	+	ŀ	
		1.110	1		- 34°C deployment temp
404	405	404-	3.5	218	st + correguent v-mps
1. I	100	40t.3	2.2		
		1	1		
405	4075			1	
(V)	10 12	2	a	-	
		1	- 4	2.1.0	-28°C deployment temo
Rect	11.0	4075	65	14.2	-28°C deployment temp
407.5	410	414	60	1	
		71			
.C.	1.0	i i			
410	412				
11.0	A				
412	414	1	-		
005	20-1			1	Page 7 of 10 October 202
-1 (7 /	140	OA ro	FAMPEN	: Sav	Page 7 of 10 October 202

						CORE TEMPERATURE LOG	
		Kirtland E				Project Number: 62735DM02	
	Drilling Lead Dri	Company:				Start Time/Date:	
	Drilling I					Completion Time/Date:	
	Boring/W		K	AFF	> - 10	best Logged By: AM +D S Page H of 8	
						(KAFB-106S10)	
	(S)	Interval bottom (ft bgs)		(t)			
	t bg	m (1	gs)	(ft/	C)		
	Interval top (ft bgs)	otto	Core run (ft bgs)	Core recovery (ft/ft)	Temperature (°C)		
	al to	l be	un (ecov	ratı		
	erva	erva	re r	rer	npe		
	Int	Int	Col	Col	Ter	Temperature Mitigation/Dominant Lithology/Comments	
	414	416	414-	15	19.1	- 30°C deployment temp	
	111	116	420	6	110		
			4-	1			
	416	418	1				
	(10						
	11.00	1172					
	418	420					
					a. 1	- 26°C deployment temp	
	420	422.5	420-	5'	1.1	-26 (deployment temp)	
	(10-1	425	>	1		2.1
	1005	11.		Γ		-25°C deployment temp	
	42.5	425			4		
						-26°C deployment tremp	
	425	427.5	425-	51	16.2	to c aproprient temp	
	105	4.5.5	430		(
	11 1						
	427.5	430	1	4	4		
12-13-2020			0.0	1		- 30 °C deployment temp	12-13-2020
	430	432.5	430	5'	14.7	-30 °C deployment temp	12-15-2020
	170		435		1		
	432.5	420					
	436.5	435	0	2	1		
			126			-25°C depergrent temp	
	435	437.5	435-	5	23.1	- 2) - auporment comp	
	100		440	5	1		
	1100	Hila					
	437.5	440	1	-	7		
				1	~	- 35°C deployment Comp	
	440	442.5	440-	5'	18.0	- 35°C doployment tomp	
			445	3	1		
		1.1	1				
	4425	445	-	+	+		1 A
						-23°C doployment temp	
	445	447.5	445- 450	51	20.7	-23°C doployment temp	
	110	Cr. Co	450		1		
	4425	450	a	4	2		
]

		and the second se				CORE TEMPERATURE LOG]
	Project: Kirtland BFF					Project Number: 62735DM02	
		Company:				Start Time/Date:	
	Lead Dr					Completion Time/Date:	
		Method:		1		Final Depth: 7	
	Boring/V		ŧ	AFB	-106	SIDA Logged By: Am + DS Page 10m of 8	
	(sa	ft bgs)				(KAFB-106S10)	
	Interval top (ft bgs)	Interval bottom (ft bgs)	Core run (ft bgs)	Core recovery (ft/ft)	Temperature (°C)	Temperature Mitigation/Dominant Lithology/Comments	
	450	452.5	450- 455	5	21.7	- 35° deploymont temp	-
	452.5	455	9		1		
	455	456	455- 458	3'	22.0	-24 °C deployment temp	
	456	458	1	A			
	458	460	458- 465	4 ⁵⁸¹ 465	19,8	-26°C Deployment temp	
	460	462.5					
	462.5	465	1		1		
	465	467.5	465- 470	5'	15.9	-22°C deployment tomp	
	467.5	470				t	
12-14	470	472.5	470-480	10'	17.0	-35°C deployment temp	12-14-202
	472.5	425					
	475	492.5					
	477,5	480		¥	1		
	480	482.5	480- 490	10'	19.6	- 34°C deployment temp	
	482.5	485					

					CORE TEMPERATURE LOG
Project: Kirtland BFF					Project Number: 62735DM02
	Company:				Start Time/Date:
Lead Dri			1		Completion Time/Date:
Drilling Method:					Final Depth: 8
Boring/W	Vell ID:		KAFB	- 101	bSIDA Logged By: AM + US Page of 8
	gs)				(KAFB-106S10)
(ss	ftb		(Įf)		
t bg	Ē	as)	(ĴĴ	C.	
p (f	tto	ît b	ery	re	
to	po	n (j	COV	atu	
va	val	n	re	per	
Interval top (ft bgs)	Interval bottom (ft bgs)	Core run (ft bgs)	Core recovery (ft/ft)	Temperature (°C)	
		160	Contraction of the local distance of the loc		Temperature Mitigation/Dominant Lithology/Comments
485	487.5	180,90	101	19.b	
100	10.0		10	· .	
487.5	490	1	4	1	
	1.0				
		490'	. 1	.4 2	-19°C deployment temp
490	492.5	420-	16'	19.3	
		~			
	101	,			
497.5	495			1	
1195	497.5				
495	977.0				
497.5	500			1	
111.5	0.00	7	4	-	
		(M)			- 24°C deployment temp
500	502.5	510	10'	18,3	
100		510	10	·	
			×		
502.5	505)		
CIT					
505	507.5				
507.5	SIA				
UTIS	510	+	1		
	. 1	610-			~ 270 desbyment tamo
Sio	512.5	510-	7'	28.0	~ 270 depbyment Tamp
00	01010	517	7	N	
512.5	515		1		
		and a second			
1.1	12.0				
515	517	A	+		
				7	
	1. A				ATTAN
	5 ₆₁				10 = 517 # bgs
				,	
L				L	