NEW MEXICO ENVIRONMENT DEPARTMENT VOLUNTARY REMEDIATION AGREEMENT

I. <u>Introduction</u>

This Voluntary Remediation Agreement ("Agreement") is entered into voluntarily by **Coruscate Management LLC**, represented by **David A Barker**, who is duly authorized and appointed ("Participant") and the secretary of the New Mexico Environment Department ("Department"), or his or her designee, pursuant to the Voluntary Remediation Act, Sections 74-4G-1 et seq. NMSA 1978, and the New Mexico Voluntary Remediation Regulations (20.6.3 NMAC). The purpose of this Agreement is to detail the obligations and functions of each party relevant to the remediation to be conducted at the **Quinn Tire** ("Site"), located at 1005 Cordova Place in Santa Fe, under the Voluntary Remediation Program (**VRP Site No. 53231001**). This Voluntary Remediation Agreement is issued pursuant to Section 20.6.3.300 NMAC and the Delegation Order dated May 24, 2021, through which the Cabinet Secretary has delegated signatory authority to the Chief of the Ground Water Quality Bureau.

The activities conducted by the Participant under this Agreement are subject to approval by the Department. The activities conducted by the Participant shall be consistent with this Agreement, all applicable laws and regulations, and any pertinent guidance documents. The Participant shall employ sound scientific, engineering, and construction practices in the voluntary remediation activities at this Site.

II. Statement of Eligibility

The secretary or his designee has determined that the application, consisting of materials submitted by the Participant to the Department on January 4, 2023, January 5, 2023, and February 14, 2023 is complete, and that the Participant is eligible to enter into this Agreement in accordance with Section 74-4G-5 NMSA 1978 and 20.6.3.200.A NMAC.

III. Parties Bound

This Agreement shall apply to and be binding upon the Participant, its officers, managing agents, directors, principals, partners, employees, receivers, trustees, agents, parents, subsidiaries and affiliates, and upon the Department, its employees, and agents. The Participant has submitted with the application a signed Declaration of Ability and Intent as set forth in 20.6.3.200.B(2) NMAC. No change in ownership, corporate, or partnership status shall in any way alter the Participant's status or responsibilities under this Agreement unless the Participant or Department terminates this Agreement in accordance with 20.6.3.300.H NMAC.

The Participant shall provide a copy of this Agreement to any subsequent owners or successors before ownership rights are transferred. The Participant shall provide a copy of this Agreement to all contractors, subcontractors, laboratories, and consultants or other parties, which are retained by the Participant, to conduct any work under this Agreement, within 14 days after the effective date of this Agreement or within 14 days of the date of retaining their services.

IV. Designated Project Manager

On or before the effective date of this Agreement, the Department shall designate a project manager. The Primary Applicant specified on the Voluntary Remediation Program Application will function as the project manager for the Participant. Each project manager shall be responsible for overseeing the implementation of this Agreement. The Department project manager will be the Department-designated representative at the site. To the maximum extent possible, communications between the Participant and Department and all documents (including reports, approvals, and other correspondence) concerning the activities performed pursuant to the terms and conditions of this Agreement shall be directed through the project managers. During implementation of this Agreement, the project managers shall, whenever possible, operate by consensus and shall attempt in good faith to resolve disputes informally through discussion of the issues. Each party has the right to change its respective project manager by notifying the other party in writing at least five days prior to the change.

V. Definitions

"Site" means the area described in the Voluntary Remediation Application. This description is attached and incorporated herein as Exhibit 1. All other terms used are defined in Section 74-4G-3 NMSA 1978 and 20.6.3.7 NMAC.

VI. Addresses for All Correspondence

Documents, including reports, approvals, notifications, disapprovals, and other correspondence to be submitted under this Agreement, may be sent by certified mail, first class mail, hand delivery, overnight mail, or by courier service to the following addresses or to such addresses as the Participant or Department designates in writing.

Documents to be submitted to the Department should be sent to:

Mailing Address:

Rebecca Cook

Ground Water Quality Bureau

New Mexico Environment Department

P.O. Box 5469

Santa Fe. NM 87502

E-mail: Rebecca.Cook@env.nm.gov

Phone number: (505) 670-2135

Fax number: (505) 827-2965

Physical Address:

Rebecca Cook

Ground Water Quality Bureau

New Mexico Environment Department

1190 St. Francis Drive Santa Fe, NM 87505

Documents to be submitted to the Participant should be sent to:

Mailing Address:

David A Barker, Manager

Coruscate Management

530 S. Guadalupe Street

Santa Fe, NM 87501

dbarker@santaferealestate.com

Physical Address:

Same as mailing address

VII. Compliance with Applicable Laws

All work undertaken by the Participant pursuant to this Agreement shall be performed in compliance with all applicable federal, state and local laws, ordinances and regulations, including, but not limited to all Occupational Safety and Health Administration, Department of Transportation, Resource Conservation and Recovery Act, New Mexico Water Quality Control Commission, and New Mexico Environmental Improvement Board Petroleum Storage Tank regulations. In the event of a conflict between federal, state, or local laws, ordinances, or regulations, the Participant shall comply with the most stringent of such laws, ordinances, or regulations, unless provided otherwise in writing by the Department or other appropriate regulatory personnel with jurisdiction over such laws, ordinances, and regulations. Where it is determined that a permit is required under federal, state or local laws, ordinances, or regulations, the Participant shall submit timely and complete applications and take all other actions necessary to obtain all such permits or approvals. The Participant shall be responsible for obtaining all permits that are necessary for the performance of the work hereunder, and for all ongoing or proposed Site activities, and for all ongoing or proposed facility operations.

VIII. Performance Standards and Associated Requirements

The Participant has submitted with their application to the Department a preliminary work plan describing the proposed voluntary remediation activities as they are currently envisioned as being submitted in a final voluntary remediation work plan, which includes a description of the known and suspected contaminants to be addressed by the proposed voluntary remediation activities. This preliminary work plan was prepared pursuant to 20.6.3.200.B NMAC. A copy of the preliminary work plan is attached and incorporated herein as Exhibit 2.

The contaminants covered by this Agreement are described as follows:

- Total Petroleum Hydrocarbons especially Diesel and Motor Range Organics, polychlorobiphenyls (PCBs), Volatile Organic Compounds and Semi-volatile Organic Compounds especially Tetrachloroethene (PCE), 1,2,4 Trimethylbenzene, and 2-Methylnaphthalene in subsurface soils
- This VRA does not cover contaminants of concern in groundwater.

Voluntary remediation activities undertaken pursuant to this Agreement shall achieve the following standards or risk-based levels:

• New Mexico Environment Department Risk Assessment Guidance for Site Investigations and Remediation, November 2022

It is understood that the parties may wish to modify the list of contaminants and the media in which the contaminants are located, as covered by this Agreement, as additional information about the Site is developed. The Department may approve such changes through approval of work plans and other submittals provided by the Participant during the course of undertaking voluntary remediation activities.

IX. Access

To the extent that the Site or other areas where work is to be performed hereunder are presently owned or controlled by parties other than those bound by this Agreement, the Participant shall obtain or shall use its best efforts to obtain access agreements from the present owners. Best efforts shall include, at a minimum, certified letters from Participant to the present owners of such properties requesting access agreements to permit the Participant, Department, and their authorized representatives' access to such property. Such agreements shall provide access for the Department and authorized representatives of the Department, as specified below. In the event that such access agreements are not obtained, the Participant shall so notify the Department, which may then, at its discretion, assist the Participant in gaining access.

The Participant shall provide authorized representatives of the Department access to the Site and other areas where work is to be performed at all reasonable times. Such access shall be related solely to the work being performed on the Site pursuant to this Agreement and may include, but is not limited to: inspecting and copying of Site and facility records; reviewing the progress of the Participant in carrying out the terms of this Agreement; conducting such tests, inspections, and sampling as the Department may deem necessary; using a camera, sound recording, or other documentary type equipment for field activities; and verifying the data submitted to the Department by the Participant hereunder. Prior to conducting remediation activities, the Participant shall provide a minimum of 72 hours' notice to the Department to allow observation of Site activities and to allow the Department's authorized representatives to collect split samples, at the Department's discretion. The Participant shall permit the Department's authorized representatives to inspect and copy all records, files, photographs, documents, and other writings, including all sampling and monitoring data, which pertain to this Agreement and over which the Participant exercises authority.

X. Deliverables and Submittal Schedule

A. Final Voluntary Remediation Work Plan

In accordance with 20.6.3.400 NMAC, the Participant shall submit to the Department a proposed final voluntary remediation work plan, detailing investigation and remediation activities to be undertaken to achieve the performance standards described in Section VIII of this Agreement. At a minimum, the final work plan must include the elements listed in 20.6.3.400.B NMAC.

Submittal Schedule:

The proposed final work plan shall be submitted by the Participant no later than 60 days after this Agreement has been signed.

If the work plan is to be prepared in phases, the work plan for the first phase shall be submitted no later than 60 days after this Agreement has been signed. Following completion, to the Department's satisfaction, of the work which is the subject of the final work plan for the first phase, the Department may require submission of one or more proposed final work plans for subsequent phases.

Department Review:

The secretary or his designee shall review and approve, approve with conditions, or disapprove a proposed final work plan within 45 days of receipt. Written notice shall be made of any conditions or deficiencies. If the secretary or his designee disapproves a final work plan, the Participant may be granted an opportunity to submit a revised version, as determined by the secretary or his designee.

Modification of Voluntary Remediation Work Plan:

The approved final voluntary remediation work plan may be modified at the request of the Participant and/or the Department, with both parties' approval, in accordance with 20.6.3.400.D NMAC.

B. Periodic Status Reports

The Participant shall submit periodic status reports, which detail activities completed for the reporting period and those planned for the upcoming reporting period, to the Department for the duration of this Agreement. The status report shall identify any proposed variances to the approved work plan and describe interim progress on implementation of the work plan, including analytical results of any sampling, water level measurements, Site maps or photos, as appropriate. [Add additional description if needed.]

Submittal Schedule:

Periodic status reports are not required.

C. Voluntary Remediation Completion Report

In accordance with 20.6.3.500.B NMAC, following the completion of Site voluntary remediation activities, the Participant shall demonstrate to the Department that Site conditions meet the applicable standards specified in Section VIII of this Agreement by submitting to the Department a voluntary remediation completion report. The content of the completion report is detailed in 20.6.3.500.B NMAC. The report shall be submitted to the Department with the legal description of the affected property, and with an Affidavit of Completion of Voluntary Remediation signed by the Participant that indicates that remediation is complete, in accordance with this Agreement and applicable regulations and guidance.

Submittal Schedule:

The voluntary remediation completion report shall be submitted to the Department within 90 days following completion of voluntary remediation activities.

Department Review:

The Department shall review and determine the sufficiency of a completion report within 45 days of receipt. If the secretary or his designee does not approve the completion report, the secretary or his designee shall either issue a finding that the Participant is not in compliance with the Agreement and terminate the Agreement, or advise the Participant in writing of data gaps in the report. The Participant shall correct any identified data gaps and resubmit the completion report within 30 days of receipt of notice of data gaps.

XI. Certificate of Completion

If the secretary or his designee approves the voluntary remediation completion report, the secretary or his designee will issue either a Certificate of Completion or a Conditional Certificate of Completion, as appropriate, pursuant to Section 74-4G-7 NMSA 1978 and 20.6.3.500.B NMAC. If a Conditional Certificate of Completion is issued, the Department shall conduct audits to ensure that all engineering controls, remediation systems, post-closure care, and affirmations of future non-residential land use are being maintained appropriately. These audits shall be performed at least every other year for the first 10 years following the issuance of the Conditional Certificate of Completion, and every five years thereafter. If, during the course of such an audit, the Department finds that any of the monitoring requirements, engineering controls, remediation systems, post-closure care, or affirmations of future non-residential land use are not being properly maintained such that the performance standards described in Section VIII of this Agreement are no longer being met, the Department may revoke the Conditional Certificate of Completion and initiate an enforcement action.

No Certificate of Completion or Conditional Certificate of Completion shall be issued to a Participant who has not paid invoiced oversight costs in full to the Department.

XII. Covenant Not to Sue

Pursuant to Section 74-4G-8 NMSA 1978 and 20.6.3.600 NMAC, after the secretary or his designee issues the Certificate of Completion or Conditional Certificate of Completion, the secretary or his designee shall provide a covenant not to sue to a purchaser or prospective purchaser of the Site that did not contribute to the Site contamination, for any direct liability, including future liability, for claims based upon the contamination covered by the Agreement and over which the Department has authority. Except as may be provided under federal law or as may be agreed to by a federal government entity, the covenant not to sue shall not release or otherwise apply to claims by the federal government for claims based on federal law. Except as may be agreed to by another department or agency of the state, the covenant not to sue shall not release or otherwise apply to claims of any other office, department, or agency of the state. Except as may be agreed to by a third party, the covenant not to sue shall not release or otherwise affect a person's liability to third parties.

XIII. Dispute Resolution

This section shall apply to any dispute arising under any section of this Agreement, unless specifically excepted. Dispute resolution shall be conducted in accordance with 20.6.3.300.I NMAC).

XIV. Reservation of Rights

The Department and Participant reserve all rights and defenses they may have pursuant to any available legal authority unless expressly waived herein. The Department expressly reserves the right to take any action, including any enforcement action, to address any release not covered by this Agreement, including any release that occurs after issuance of the Certificate of Completion or any release of a contaminant not covered by the voluntary remediation agreement. The secretary's covenant not to sue shall not apply to any such release.

Nothing herein is intended to release, discharge, or in any way affect any claims, causes of action or demands in law or equity which the parties may have against any person, firm, partnership or corporation not a party to this Agreement for any liability it may have arising out of, or relating in any way to the generation, storage, treatment, handling, transportation, release or disposal of any materials, hazardous substances, hazardous waste, contaminants or pollutants at, to, or from the Site. The parties to this Agreement expressly reserve all rights, claims, demands, and causes of action they have against any and all other persons and entities who are not parties to this Agreement, and as to each other for matters not covered hereby.

The Participant reserves the right to seek contribution, indemnity, or any other available remedy against any person other than the Department found to be responsible or liable for contribution, indemnity or otherwise for any amounts which have been or will be expended by the Participant in connection with the Site.

XV. Enforcement Shield

Pursuant to the provisions of 20.6.3.300.A NMAC, the secretary will not initiate any enforcement action, including an administrative or judicial action, against a Participant for the contamination or release thereof, or for the activity that results in the contamination or release thereof, if the contamination is the subject of an Agreement pursuant to 20.6.3 NMAC. However, this Section shall not be a bar to any enforcement action if the Agreement is not finalized, if the Agreement is terminated or rescinded, or if the Participant does not successfully initiate or implement the Agreement within a reasonable time under the schedules set forth in this Agreement and approved work plans.

XVI. Oversight Costs

The Participant agrees to reimburse the Department for all of its costs associated with oversight and implementation of this Agreement in accordance with 20.6.3.300.J NMAC. These costs shall include those described in 20.6.3.300.J NMAC, as well as long-term oversight performed by the Department, as described in 20.6.3.500.B(5) NMAC, if a Conditional Certificate of Completion is issued.

Oversight will be invoiced based on actual hours of staff oversight, at a variable rate beginning at \$90.00 per hour. The hourly rate is calculated and updated on November 1 of each year, following a 30 calendar day public comment period. Travel and per diem costs will be invoiced at state-designated rates. Sampling and analysis costs will be invoiced at actual cost plus indirect overhead rate.

The Department will track all costs to the Department for review and oversight activities related to the Site and provide quarterly (or more often at the discretion of the Department) invoices per this Agreement for said costs. The Participant shall pay these invoiced costs to the Department within 30 calendar days after the date that the Participant receives notice that these costs are due and owed. If payment is not made within 30 days, the Department may terminate this Agreement and bring an action to collect the amount owed and the costs of bringing the collection action. If the Department prevails in such collection action, the Participant shall pay the Department's reasonable attorneys' fees and costs incurred in the collection action.

In the event that this Agreement is terminated for any reason, the Participant agrees to reimburse the Department for all costs incurred or obligated by the Department before the date of notice of termination of the Agreement.

XVII. Notice of Bankruptcy

As soon as Participant has knowledge of its intention to file bankruptcy, or no later than seven days prior to the actual filing of a voluntary bankruptcy petition, Participant shall notify the Department of its intention to file a bankruptcy petition. In the case of an involuntary bankruptcy petition, Participant shall give notice to the Department as soon as it acquires knowledge of such petition.

XVIII. Indemnification

The Participant shall defend, indemnify, and hold harmless the Department and the State of New Mexico from all actions, proceedings, claims, demands, costs, damages, attorneys' fees, and all other liabilities and expenses of any kind from any source which may arise out of the performance of this Agreement, caused by the negligent act or failure to act of the Participant, its officers, employees, servants, subcontractors or agents, or if caused by the actions of any client of the Participant resulting in injury or damage to persons or property during the time when the Participant or any officer, agent, employee, servant or subcontractor thereof has or is performing services pursuant to this Agreement.

XIX. Effective Date and Subsequent Modification

The Agreement shall become final and effective upon being signed by both the secretary or his designee and the Participant. The effective date of the Agreement shall be the later date of signature by either the secretary or his designee or the Participant. This Agreement may be amended only by mutual agreement of the Department and the Participant. Amendments shall be in writing and shall be effective upon being signed by both the secretary or his designee and the Participant.

XX. Termination

As provided for in 20.6.3.300.H NMAC, if an Agreement is not reached between an applicant and the secretary or his designee on or before the 30th calendar day after the secretary or his designee determines an applicant to be eligible pursuant 20.6.3.200 and 20.6.3.300 NMAC, the applicant or the secretary or his designee may withdraw from the negotiations. The Participant may terminate the voluntary remediation Agreement upon 60 calendar days' written notice via certified mail, return receipt requested to the Department. The secretary or his designee may terminate this Agreement upon finding that the Participant is not in compliance with this Agreement. Notice of termination will be made to the Participant via certified mail, return receipt requested, and facts supporting the rationale for termination shall be set forth in the notification. The Department's costs incurred or obligated before the date the notice of termination is received are recoverable by the Department under the Agreement if the Agreement is terminated.

XXI. Complete Agreement

This Agreement contains the entire Agreement of the parties.

XXII. Applicable Law

This Agreement shall be governed by and construed in accordance with the laws of the State of New Mexico.

The provisions of this Agreement shall be satisfied when the Department gives the Participant written notice in the form of a Certificate of Completion that the Participant has demonstrated to the secretary's satisfaction that the terms of this Agreement have been completed, including the selection and implementation of a remedial action, when appropriate.

Nothing in this Agreement shall restrict the State of New Mexico from seeking other appropriate relief to protect human health or the environment from contamination at or from this Site if not remediated in accordance with this Agreement.

Signatures

Participant(s):			
By:		Name:	
(Signa	ture of authorized representative)		(Print or type)
Date:			
Now Moving I	Environment Denortment		
New Mexico	Environment Department:		
		Name:	
(Secre	tary or designee)		(Print or type)
Date:			
Enclosures:	Exhibit 1: Legal Description of P	roperty	
	Exhibit 2: Preliminary Work Plar	1	

Preliminary Work Plan 1005 Cordova Place Former Quinn Tire Santa Fe, New Mexico

Prepared for NMED Voluntary Remediation Program Application for Determination of Eligibility

Date: February 9, 2023

Prepared By: Larry "Boot" Pierce

GLORIETA GEOSCIENCE, INC.

P.O. Box 5727 (505) 983-5446 E-mail: Web Address: Santa Fe, NM 87502 Fax (505) 983-6482 ggi@glorietageo.com www.glorietageo.com

Contents

1.0 Introduction	4
2.0 Background	4
2.1 Site Description and Physical Setting	4
2.2 Site History and Land Use	5
2.3 Summary of Previous Assessments and Remediation	5
2.4 Hydraulic Lift Removal and Sampling	6
2.5 Used Oil Tank removal and Sampling	8
3.0 Suspected/Known Contaminants of Potential Concern	10
4.0 Proposed Performance Standard	10
5.0 Summary of Proposed Sampling and Analysis	10
6.0 Summary of Proposed Remediation	11
7.0 How Proposed Activities Will Meet the VRP Performance Standards	11
8.0 References	11

List of Figures

- Figure 1. Location Map of Quinn Tire
- Figure 2. Topographic Map of Quinn Tire
- Figure 3. Photo of north hydraulic lift prior to excavation
- Figure 4. Photo of south hydraulic lift prior to excavation
- Figure 5. Photo of hydraulic lift S-2 prior to excavation
- Figure 6. Photo of hydraulic lift cylinders removed from building
- Figure 7. Photo of fill materials from excavation below hydraulic lift S-2
- Figure 8. Photo of fill materials from excavation below hydraulic lift S-2 (close up)
- Figure 9. Sample Location Map at Quinn Tire
- Figure 10. Photo of excavation of hydraulic lift S-2 and vault
- Figure 11. Photo of vault fill materials in the upper 4 feet
- Figure 12. Photo of vault with fill materials removed
- Figure 13. Photo of used oil tank located inside southwest corner of building
- Figure 14. Photo of trench outside the southwest corner of the building
- Figure 15. Photo of oil-stained soils outside the southwest corner of the building
- Figure 16. Photo of bottom of trench outside the southwest corner of the building
- Figure 17. Photo of stockpiled materials

List of Tables

- Table 1. Soil sample results for TPH sampling beneath lifts
- Table 2. Soil sample results from December 14, 2022 volatile and semi-volatile sampling within the sealed vault
- Table 3. Soil sample results for TPH sampling near southwest corner of building

Appendices

Appendix A - Property Boundary Survey Plat

Appendix B - New Mexico Environment Department, Hazardous Waste Bureau, Compliance

Evaluation Inspection field forms and compliance letter

Appendix C - Sample Analysis Reports

1.0 Introduction

On the behalf of Mr. David Barker and Coruscate Management, LLC., purchaser of the former Quinn Tire property, Glorieta Geoscience, Inc. (GGI) has prepared this Preliminary Work Plan (PWP) to satisfy the requirements of 20.6.3.200.B(4) NMAC and 20.6.3.400 NMAC, and to supplement the NMED Voluntary Remediation Program Application for Determination of Eligibility for the property located at 1005 Cordova Place, Santa Fe, New Mexico (Site). This work plan outlines the proposed investigation strategy for determining the extent of the release of hydraulic fluid and degradation byproducts (collectively, Contaminants of Potential Concern or COPCs), and whether the release presents a risk to human health or the environment.

This work plan is based on our current knowledge of the Site's history of use and present site conditions. A brief discussion of the site background and the proposed investigation activities are presented below. Additional detail on the site background is provided in the accompanying Phase 1 Environmental Site Assessment (ESA) submitted as part of the VRP application process.

2.0 Background

2.1 Site Description and Physical Setting

The Site is located at 1005 Cordova Place at the intersection of Cordova Place and Marquez Place, within the City of Santa Fe in Santa Fe County, and approximately one mile southwest from the historic Santa Fe Plaza (Figure 1). The Site is surrounded primarily by commercial properties, with a multi-unit residential complex called "The Lofts" located to the northeast (Figure 2). The site itself operated as a tire shop from approximately 1963 to 2020. In addition to tire sales, the operation included general automobile repair and oil change services which catered to Santa Fe residents. The Site is approximately 0.43 acres in size, oriented with its long axis in an approximately north to south direction. Figure 1 shows the Site's location within the City of Santa Fe. Figure 2 is an aerial map of the Site including topography. The Site's legal description is Tract A-1A of Pompeo Subdivision, Ward Number two, located within the Santa Fe Grant, with a projected public land survey system (PLSS) location Section 26, Township 17 North, Range 9 East (projected), New Mexico Principal Meridian. The Sites latitude is 35° 40' 30.468" and longitude is -105° 57' 6.228". Appendix A is a boundary survey of the property.

The Site is approximately 6,961 feet above mean sea level ("amsl"); regional topography slopes to the west. The Santa Fe River is located approximately 1.0 mile to the north and 1.2 miles to the west of the Site and flows from generally northeast to southwest through the region. The primary aquifer beneath the Site is Santa Fe Group interbedded gravels, sands, and silt/clay units, with locally saturated alluvium in the Santa Fe River stream channel. It is also possible that the Ancha Formation may be

present near the Site. The regional groundwater flow direction is generally to the west-southwest, but locally may be to the east-southeast based on previous site investigations performed at the nearby Wirtco One-Hour Martinizing site (Raucci et al, 2022). Based on data obtained from nearby monitoring wells at the Wirtco One-Hour Martinizing site, the depth to groundwater is expected to be approximately 80 feet below ground surface ("bgs") at the Site (Raucci et al, 2022).

The Site consists of a single one-story building and paved parking area that has existed since the 1960s. The ESA details past and present environmental management practices at the Site.

2.2 Site History and Land Use

The Site has operated as a retail tire shop under several different names since its initial development in the early 1960s; General Tire of Santa Fe, Southwest General Tire, General Tire Southwest-Quinn Tire Incorporated, and Quinn Tire Incorporated. NMED records indicate that the Site has operated under Quinn Tire Incorporated since 1994. To GGI's knowledge, the Site has always operated as a tire store and no other operations with the potential to release COPCs to the environment have occupied the site. The property consists of a single-story building with three garage bays on the south side of the building and four bays on the east. Offices and a customer seating area are located on the north end of the building. A paved parking area is located east of the building with a larger paved parking lot/storage area located to the south. An adjacent, unpaved, fenced tire storage area is located on the west side of the building. There are no other structures within the Site boundaries. A dumpster used for solid waste is located on the southern parking area of the property.

The Site is bound on the south and west by properties that contain other commercial businesses, including New Mexico Educational Retirement offices to the south and a landscaping business to the west. On the north, the Site is bordered by Marquez Place and is directly across from Valdes Antiques, formerly Valdes Paint and Glass. The Site is bordered on the east by Cordova Place and is situated directly across from Santa Fe Party Rentals. Detailed descriptions of Site history and past and present land use are contained in the accompanying ESA.

2.3 Summary of Previous Assessments and Remediation

Prior to December 2022, no known site investigations or remediations occurred at the Site (Glorieta Geoscience, 2023). The ESA did indicate that the Site (EPA ID# NMD981597719) was considered a conditionally exempt Very Small Quantity Generator

(VSQG) for lead and tetrachloroethene (PCE) under the Resource Conservation and Recovery Act (RCRA). On February 6, 2002, Mr. Michael Le Scouarnec with the New Mexico Environment Department's (NMED) Hazardous Waste Bureau (HWB) conducted a Compliance Evaluation Inspection (CEI) at the site. The field inspection forms noted no potential violations were present. The NMED/HWB CEI report letter submitted to Mr. Kevin Quinn on February 7, 2002 indicated that "Based on review of the information obtained, NMED has determined that, at the time of the inspection, Quinn Tire Inc. was in compliance with the New Mexico Hazardous Waste Management Regulations (20.4.1 NMAC)", (NMED, 2002). A copy of the NMED/HWB CEI field forms and compliance letter are in Appendix B.

In December of 2022, GGI was contracted by the buyer, Mr. David Barker of Coruscate Management, LLC, to perform a Phase 1 Environmental Site Assessment. During the initial ESA site visit, three subgrade hydraulic lifts were observed at the Site. Figure 3, 4 and 5 are the three hydraulic lifts prior to excavation. The decision was made to remove and recycle the buried cylinders from beneath the hydraulic lifts and conduct an intrusive, subsurface site investigation. Figure 6 shows the cylinder once removed and prior to recycling. A used oil tank was also observed in the southwest corner of the building and was removed during the week of January 12, 2023 by the seller of the property.

2.4 Hydraulic Lift Removal and Sampling

As part of the subsurface investigation, three hydraulic lifts were removed by World Oil Environmental Services (WOES) of Albuquerque, New Mexico and further investigation was performed. Two of the lifts (North Lift and South Lift) were excavated on December 1, 2022 from clean sandy fill materials and appeared to be in working order. (Figure 7 and 8) The hydraulic fluid within the two cylinders were sampled and submitted to Precision Petroleum Labs, Inc. in Houston, Texas. Analytical results indicate that polychlorobiphenyls (PCB) concentrations were below the reporting limit of 0.50 parts per million (ppm) and both the cylinders and hydraulic fluid within them were recycled by WOES. All sample analysis reports are presented in Appendix C of the PWP.

Soil samples were collected for Total Petroleum Hydrocarbons (TPH) analysis below each lift. The TPH concentrations of Diesel Range Organics (DRO) and Motor Oil Range Organics (MRO) below the North Lift were 91 mg/kg and 250 mg/kg, respectively. DRO and MRO concentrations under the south lift were reported at 370 mg/kg and 450 mg/kg, respectively. Figure 9 shows locations for all samples collected during the Phase II investigation. Both sample concentrations were below the 3,000 mg/kg NMED soil screening levels for industrial/construction worker exposure.

During the excavation of a third, older style hydraulic lift "S-2 Lift", discolored and asphaltic soils were encountered directly beneath the lift and along airlines connecting the lift to the control mechanism. (Figure 10 and 11) The hydraulic fluid within the third lift cylinder was sampled and determined by Precision Petroleum Labs, Inc. to fall below the reporting limit of 0.50 ppm for PCBs (Appendix C). The lift and hydraulic fluid were recycled by WOES. Samples were collected for DRO and MRO from the discolored soils beneath the lift and at multiple locations below the airlines leading to the S-2 Lift. The analytical report indicated that the sample directly below S-2 Lift had a concentration of 3,200 mg/kg for DRO and 4,500 mg/kg for MRO. Concentrations of DRO and MRO in samples below the airlines, labeled S-2 Trench, S-2 Trench #2 and Trench Elbow, ranged from non-detect to 390 mg/kg for DRO and 1,500 mg/kg to 8,000 mg/kg for MRO. The results of TPH soil sample analysis are shown in TABLE 1.

After further excavation, it was determined that the cinder block sided trench with air lines running along the top portion, was a sealed vault. The vault had a cement bottom and cinder block sides, 14 inches wide by 10 feet long by 8 feet deep. The fill materials within the vault consisted of crushed rock and sand. The materials were notably discolored and asphaltic in nature. The material was removed from the vault and the concrete base was encountered by excavators. Excavators also indicated that approximately 3 inches of what appeared to be motor oil saturated fill material was sitting on top of the cement bottom of the vault. On December 15, 2022, GGI sampled fill materials at a depth of approximately 4 feet deep and at the oil saturated materials at the bottom few inches of the vault and submitted for analysis of volatile and semi-volatile constituents. The remaining materials within the vault were removed so that they could be inspected. (Figure 12) The vault sides and bottom were observed to be dry with no cracks or issues with wall integrity visible.

Three constituents were detected within the sample collected from the fill materials within the sealed vault. Small concentrations of Tetrachloroethene (PCE), 1,2,4 Trimethylbenzene, and 2-Methylnaphthalene were present within the fill materials within the sealed vault. Results are Presented in Table 2.

Additional excavation was conducted below the S-2 Lift with approximately two feet of additional materials removed and stockpiled on plastic. A soil sample was collected from a depth of 10 feet, two feet below the original S-2 Lift sample, and analyzed for volatiles and semi-volatiles constituents. The analytical report indicated that the deeper samples from below the S-2 Lift were clean with non-detect for all constituents. See attached Appendix C.

TABLE 1. Soil sample results for TPH sampling beneath lifts						
Date	Sample Name	Diesel range Organics Motor Oil range Organics		NMED soil Screening levels	Depth	
12/1/22	North Lift	91 mg/kg	250 mg/kg	3,000 mg/kg	8ft	
12/1/22	South Lift	370 mg/kg	450 mg/kg	3,000 mg/kg	8ft	
12/1/22	S-2 Lift	3,200 mg/kg	5,500 mg/kg	3,000 mg/kg	8ft	
12/1/22	S-2 Trench	150 mg/kg	1,100 mg/kg	3,000 mg/kg	3ft	
12/2/22	S-2 Trench #2	250 mg/kg	3,300 mg/kg	3,000 mg/kg	2ft	
12/2/22	Trench Elbow	390 mg/kg	8,000 mg/kg	3,000 mg/kg	2ft	
	* NMED Risk assessment guidance for Site Investigations and remediation - Volume 1, Table 6-2, Industrial and construction worker					
	exposure (NMED, 2021)					

2.5 Used Oil Tank removal and Sampling

Following removal of the used oil tank inside the building during the week of January 12, 2023, stained concrete was observed. (Figure 13) Concrete staining extended under the baseplate of the building wall, to the edge of the concrete slab outside and to a small section of soils near the southwest corner of the building. On January 13, 2023 excavation was conducted to determine the extent of the oil impact. A trench approximately two (2) foot wide by two (2) foot deep by ten (10) feet long was excavated along the edge of the concrete slab and underlying footing (Figure 14). Discoloration of the soils extended for approximately six (6) inches into the underlying materials and approximately six (6) inches to one (1) foot away from the concrete slab.

A trench 2 foot deep and 10 feet long was excavated along the concrete footing. Figure 15 shows the oil-stained soils prior to excavation and Figure 16 shows the soil

materials sampled at 2 feet. No odors were ever encountered within the excavated soils. Trench observations indicated that soil materials below a depth of approximately six (6) inches appeared to be unimpacted. Two (2) confirmatory samples were collected from the bottom of the trench at 2 foot and submitted for analysis to Hall Environmental Analysis Laboratory on January 17, 2023. As highlighted in Table 3, the analytical report indicated that TPH was below detection limits in both samples. (Appendix C)

TABLE 2. Soil sample results from December 14, 2022 volatile and semi-volatile sampling within the sealed vault

	Sample Name				
	Trench	Trench	Trench	Excavation	NMED Soil
Detected Constituents	(vault)	(vault)	(vault)	below Lift	Screening levels
Detected Constituents	@ 4	elbow	bottom@	S-2	
	feet	@ 4 feet	7.5 ft	@ 8ft	
To the design of the control of the	0.065	ND	ND	ND	* 1,650 mg/kg
Tetrachloroethene (PCE)	mg/kg				
					** 120 mg/kg
1.2.4 Twim athyrth anguna	ND	ND	0.051	ND	NA
1,2,4 Trimethylbenzene			mg/kg		
	ND	ND	0.11	ND	* 33,700 mg/kg
2-Methylnaphthalene			Mg/kg		
2-iviciny maphinarene					** 1,000 mg/kg

NA – Not Applicable

^{**} NMED Risk assessment guidance for Site Investigations and remediation - Volume 1, Table A-1, Construction Worker soil, noncancer (NMED, 2021)

TABLE 3. Soil sample results for TPH sampling near southwest corner of building					
Date	Sample Name	Diesel range Organics	Motor Oil range Organics	NMED soil Screening levels	Depth
1/17/23	SW corner 10	ND	ND	3,000 mg/kg	2 feet
	foot				
1/17/23	SW corner 4	ND	ND	3000 mg/kg	2 feet
	foot				

^{*} NMED Risk assessment guidance for Site Investigations and remediation - Volume 1, Table A-1, industrial/occupational soil, cancer (NMED, 2021)

3.0 Suspected/Known Contaminants of Potential Concern

The suspected contaminants of potential concern (COPCs), based on the prior use of the Site as a tire shop offering general automotive repair, evidence provided by the Phase I Environmental Site Assessment (ESA), and subsurface investigation sampling results, include Total Petroleum Hydrocarbons (TPH) specifically, are DRO and MRO. Small concentrations of Tetrachloroethene (PCE), 1,2,4 Trimethylbenzene, and 2-Methylnaphthalene were encountered in the fill materials within the sealed vault. Appendix C. These constituents are not considered COPCs, as they were only found within the sealed vault and not present in sample collected outside of the vault and concentrations are well below the NMED Risk Assessment Guidance for Site Investigations and Remediation - Volume 1 (NMED, 2021).

4.0 Proposed Performance Standard

GGI proposes to use Method 2(a) at 20.6.3.10.B.(2)(a) NMAC to achieve the prescribed performance standard at subsection B.

5.0 Summary of Proposed Sampling and Analysis

At this time no further site investigation activities, sampling or analysis are proposed.

Initial soil sampling demonstrated that soils underlying the North Lift and South Lift were below the TPH, specifically DRO and MRO, levels requiring clean up under the NMED Risk Assessment Guidance for Site Investigations and Remediation - Volume 1, Table 6-2, Industrial and Construction Worker Exposure.

Initial TPH sampling directly below S-2 Lift indicated the presence of TPH above clean up levels within the NMED Risk Assessment Guidance for Site Investigations and Remediation - Volume 1, Table 6-2, Industrial and Construction Worker Exposure. Sample results for the more detailed volatile and semi-volatile parameters collected after further excavation of materials underlying S-2 Lift indicated non detect for all constituents. All materials impacted by hydraulic fluids within the cylinder of S-2 Lift appear to have been removed and stockpiled onsite. (Figure 17) They are currently in the process of being disposed of in an appropriate manner approved by NMED as discussed in Section 5.0.

The small amounts of volatile constituents that were detected were present only in the fill materials located within the sealed vault. Those materials were excavated and

have been stockpiled for future disposal of in an appropriate manner approved by NMED as discussed in Section 5.0.

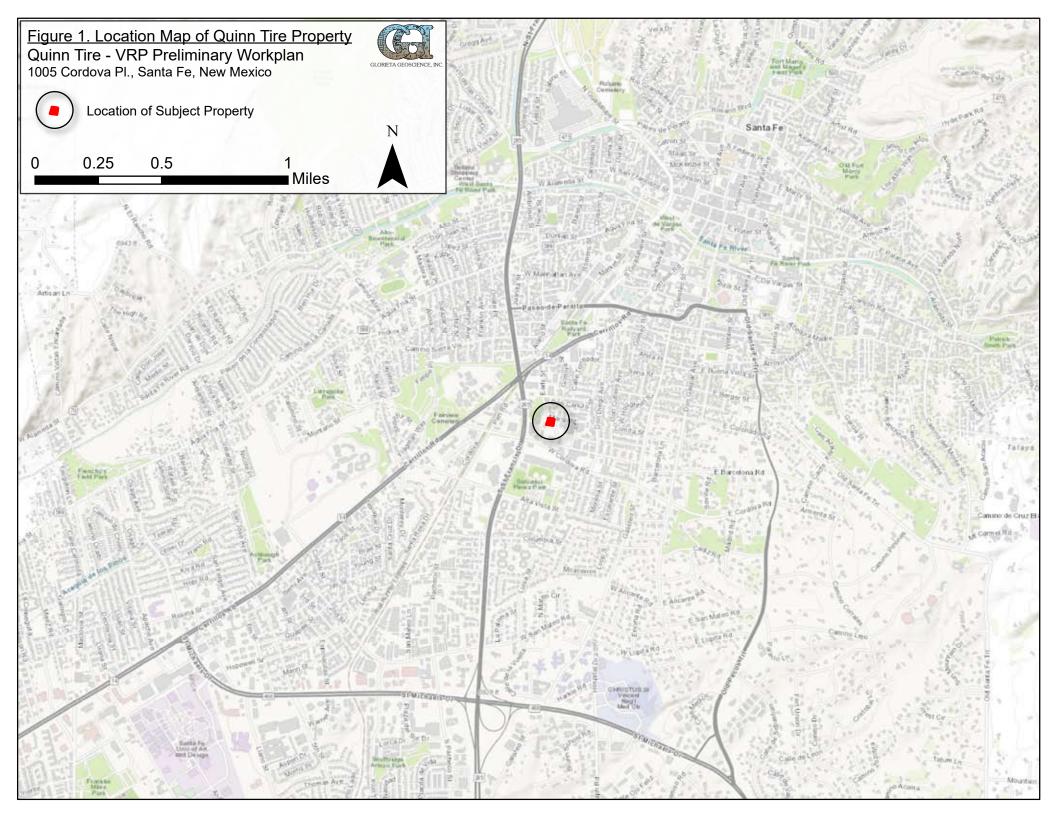
Analytical results for samples collected below stained soils along southwest corner of the building reported no presence of TPH. (See Appendix C)

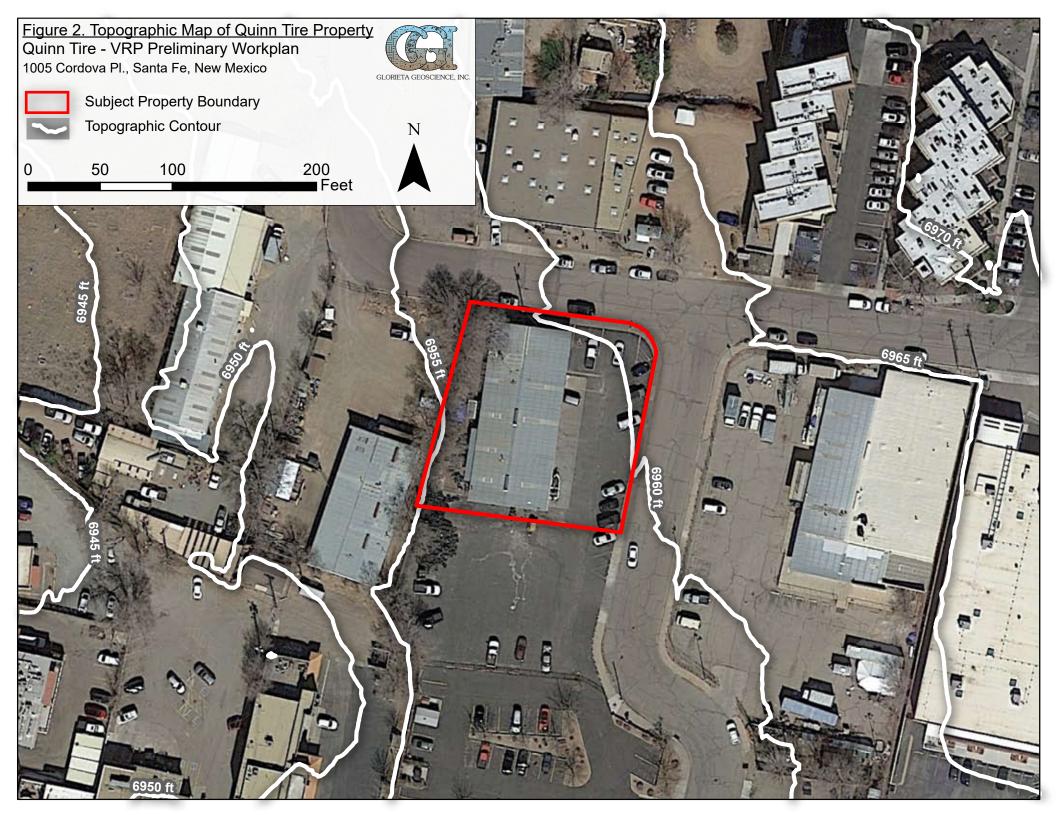
6.0 Summary of Proposed Remediation

As discussed in Section 4.0 no additional sampling or analysis is necessary at this Site. During the subsurface investigation, excavated materials which appeared to have been impacted were stockpiled onsite and protected from the elements by large plastic coverings. Remediation efforts consisted of the excavation of three underground hydraulic lifts, impacted fill materials surrounding the hydraulic lifts, removal of the materials from the sealed vault and removal of discolored soils along the southwest corner of the building. The materials from excavation of the hydraulic lift, within the vault and the southwest corner of the building were stockpiled and will be disposed of by a certified waste disposal company.

7.0 How Proposed Activities Will Meet the VRP Performance Standards

The field investigation and sampling activities completed and described herein provide the data necessary to determine the risk posed to human health and the environment is below risk levels and the new owner has achieved the performance standards in Section 3.0. Additional characterization is not required to address Site risks to human health and the environment. Additional remediation actions (disposal of stockpiles soils) will be conducted as described in Section 5.0.


8.0 References


Glorieta Geoscience, Inc., 2023. Phase 1 Environmental Site Assessment, Quinn Tire, 1005 Cordova Place, Santa Fe, NM.

New Mexico Environment Department Hazardous Waste Bureau, Compliance and Technical Assistance Section, 2002., *Compliance Evaluation Inspection Letter for Quinn Tire - NMD981597719*, Dated February 7, 2002. (Appendix B)

New Mexico Environment Department, 2021., Risk Assessment Guidance for Site Investigations and Remediation, Volume I, Soil Screening Guidance, for Human Health Risk Assessments. Revised November 2021.

Raucci, Jason, Feltman, P., and Peterson G., 2022, Summary of Field Activities and Analytical Results, VRP Follow-Up Soil Vapor Sampling and First Quarter Groundwater Monitoring, Wirtco One-Hour Martinizing, Daniel B. Stephens & Associates.

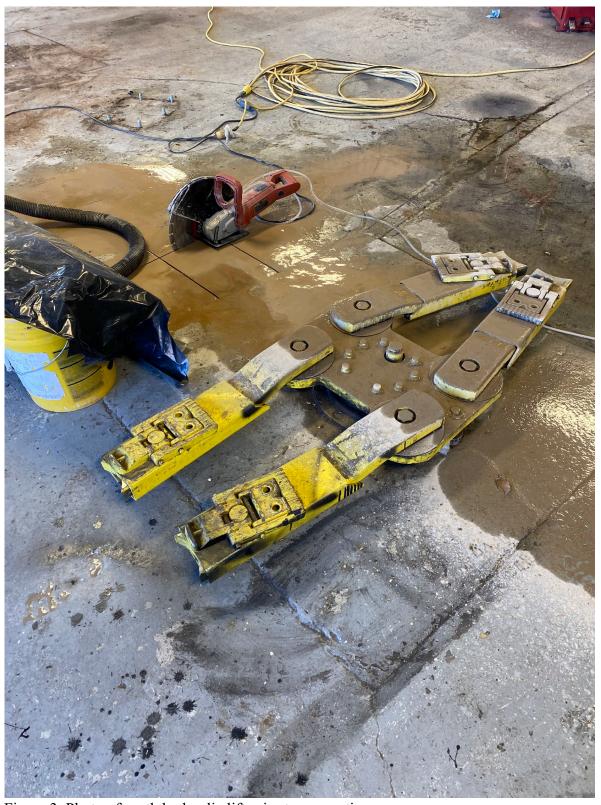


Figure 3. Photo of north hydraulic lift prior to excavation

Figure 4. Photo of south hydraulic lift prior to excavation

Figure 5. Photo of hydraulic lift S-2 prior to excavation. Lift cylinder is noted with X.

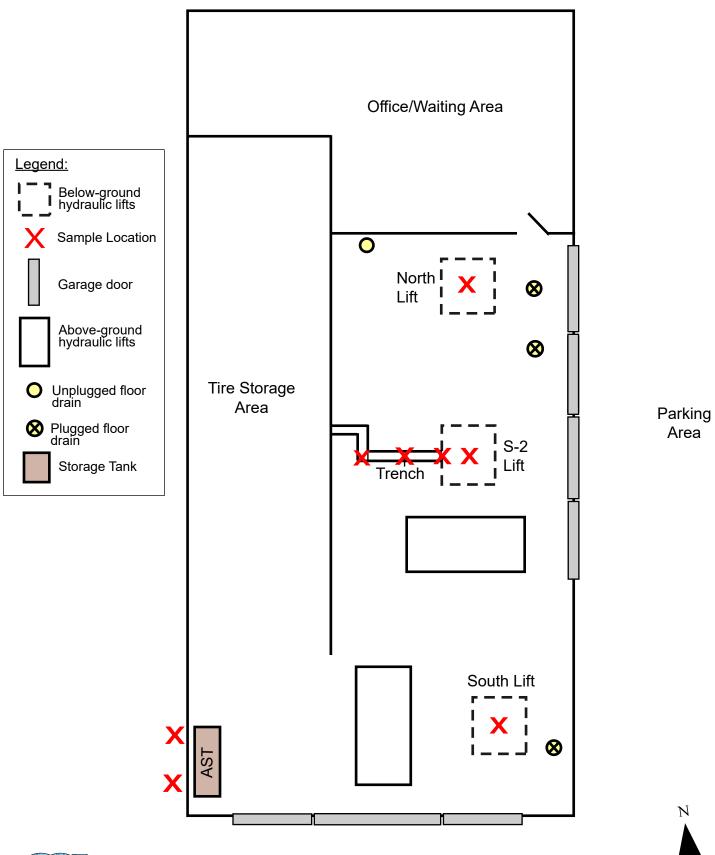


Figure 7. Photo of fill materials from excavation of below hydraulic Lift S-2

Figure 8. Photo of fill materials from excavation below hydraulic Lift S-2 (close up)

Figure 9. Sample Location Map at Quinn Tire
Property Quinn Tire - VRP Preliminary Workplan
1005 Cordova Pl., Santa Fe, New Mexico



Figure 10. Photo of excavation of hydraulic lift S-2 and vault

Figure 11. Photo of vault fill materials in upper 4 feet

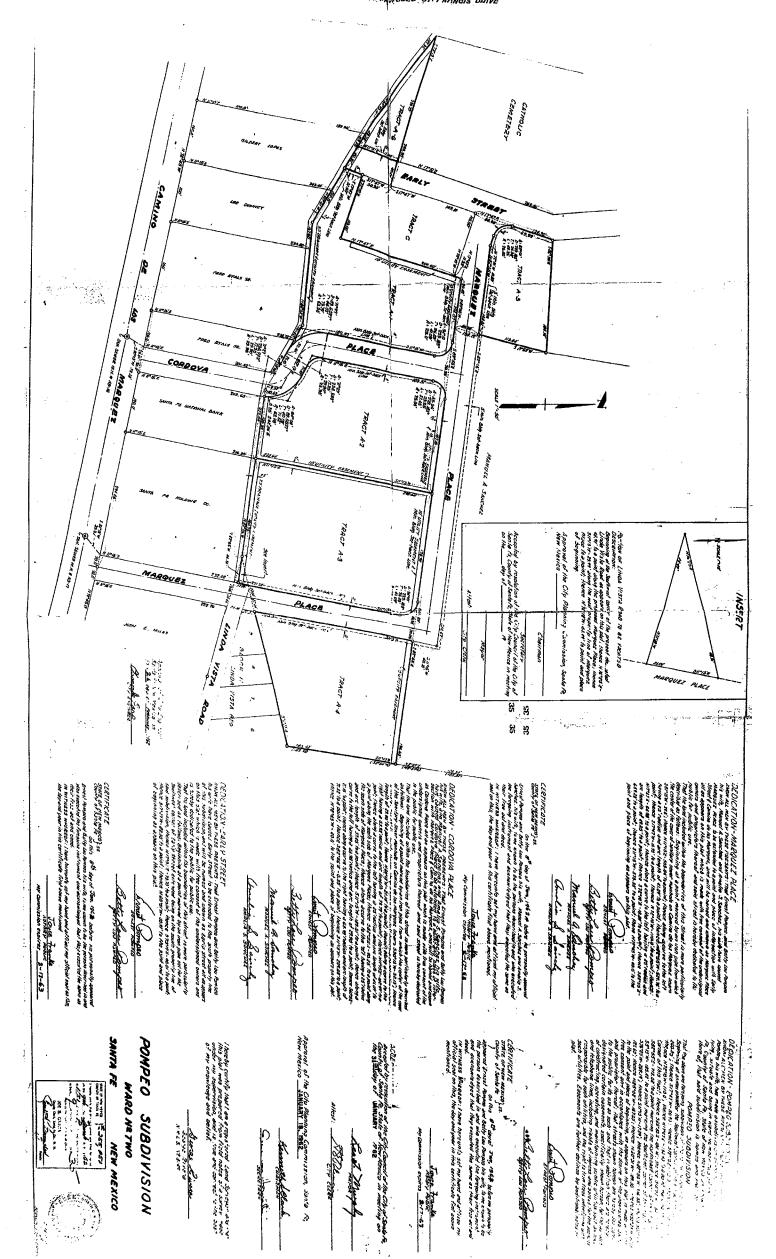
Figure 12. Photo of vault with fill materials removed

Figure 13. Photo of used oil tank located inside southwest corner of building.

Figure 14. Photo of trench outside the southwest corner of building



Figure 15. Photo of oil-stained soils outside the southwest corner of the building



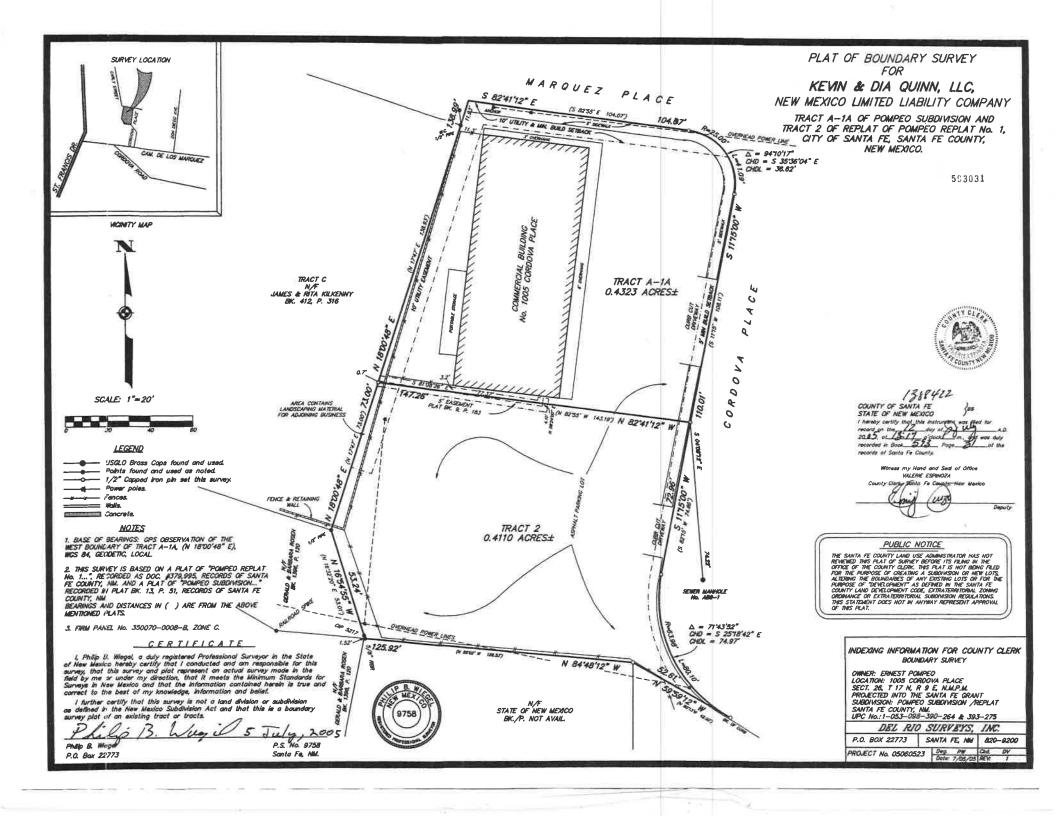

Figure 16. Photo of bottom of trench outside southwest corner of building.

Figure 17. Photo of stockpiled materials

Appendix A Property Boundary Survey Plat

Appendix B
New Mexico Environment Department,
Hazardous Waste Bureau, Compliance
Evaluation Inspection field forms and
compliance letter

State of New Mexico ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau 2044 A Galisteo, P.O. Box 26110 Santa Fe, New Mexico 87502-6110 Telephone (505) 827-1557 Fax (505) 827-1544

PETER MAGGIORE SECRETARY

PAUL R. RITZMA DEPUTY SECRETARY

Inspection Report

Facility: Quinn Tiv	of Iuc.		1005 CONDENS	
EPA ID#: NMD 981	597719	Mailing Add	ress:	07305
Ownership: Da US	6			
Authorized Agent:		racility Cont	tact: Keuin Q	0.20
962-1859				
Time of Entry 10:00	Date 9	.02	Access: Granted / Der	nied
Time of Entry	KOUN OUI	NN	Title Owner	/
Reason(s) for Denial of Ac	ccess (if applicable)			
	A STEEL			
the state of the s			1.11	
Facility Representative	Signature Signature		Inspector Si	gnature
racincy representative	orginatur o			0
Entry Conference:				
Entry Conference.				
Present Credentials to Fac				
Cite Statutory Authority to			and Take	-
Cite Statutory Authority to Photographs (NMSA § 74		Jotain Samples	and rake	
Specify Reasons for, and N		n		
Specify Objectives and Pro		1		
Schedule Exit Conference				
Participants:				
Name	Signature	Title	Phone #	428-2506
MKC LE Scover	ne Majer	Moz. us	& Inspector	
KEVIN QUINN	Herry	PAGE DENT	982-13	929
	0-			

This Compliance Evaluation Inspection (CEI)

was conducted based on:

Facility Name
Date

FY:
Grant Requirements
Follow up to Previous CEI
Citizen Complaint
Facility was Last Inspected on:
Checklists Completed: CESQG, SQG, <90 Day, Transporter, LDR, Tanks, and Containers.

History, Size, and Nature of Business:

The standard of the

Waste Streams Generated:

Waste Code	Description of Process	Location
2008	Lead Acid Batteries - Stored	INTORSTATE
DOIS DO39 DO40	Safety Kleen Naphtra voit	SK ALB
Used oil	Stoved 100 g=11/mo	SK ALB
Brake Fluid	Stored	SK ALB
R×55	500/MO 5100d	GANDER DLB
ANT Freeze	Recycled (Machin)	Fillers
o:1 F: Itas	Stard	SK ALB
Scrip metal		Page 2

		ID NMD 981597719 ty Name Quint Tire The.
	Date	7-6-02-
Results of Inspection: AFTE	Printic conference up owner. In	
	eview and an out Brief	= . Inspector conducted
	The same of the sa	a practice by suner.
Left Dremisses.		
The Following Potential Violati	ions Were Noted:	
Potential Violation	Specifics: (location, quantities,	
	documents, photos, etc.)	Regulatory Citation
		Page 3

Exit Conference:			EPA ID NM D 98/ 5775
Time of Exit:		#	Facility Name
Discussion/Explanation of P	otential Violations		
Explain Review Process by I	NMED/HWB Manage	ment	
NMED Anticipated Timetab	le for Notice of Violat	ion Letter	
Explain Enforcement Policy	and Procedures (incl.	pos. penalties)	
Explain Availability of On S	ite Technical Assistan	ce	
Participants:			
Name Mike LE Scoverner	Signature Howard	Title Acz. waste a	Phone # Trape. In 428 2506
KEVIN J QUINN	Min	PRESIDENT	982-1859
			colations of 20 NMAC 4.1 were oplicable laws and regulations.
accordance with §74-4-10 N requesting voluntary compliance immediately or w violations of up to \$10,000 pt	MSA 1978 (Repl. Parance within a specified time per day of noncomplian oppropriate relief, inclu-	mp. 2000), NMED may d time period; (2) isso period or assessing a ci- ce with each violation ding a temporary or p	e inspection. I understand that in y: (1) issue a notice of violation ue a compliance order requiring vil penalty for any past or current or both; or (3) commence a civil permanent injunction. Any such by NMED.
Facility Representative			Page 4

GARY E. JOHNSON GOVERNOR

State of New Mexico ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau
2905 Rodeo Park Drive East, Building 1
Santa Fe, New Mexico 87505-6303
Telephone (505) 428-2500
Fax (505) 428-2567

PETER MAGGIORE
SECRETARY

www.nmenv.state.nm.us

February 7, 2002

Mr. Kevin Quinn President Quinn Tire Inc. 1005 Cordova Place Santa Fe, NM 87505

Re: Compliance Evaluation Inspection

NMD981597719

Dear Mr. Quinn:

The New Mexico Environment Department (NMED) conducted a Compliance Evaluation Inspection (CEI) at Quinn Tire Inc. on February 6, 2002. Based on review of the information obtained, NMED has determined that, at the time of the inspection, Quinn Tire Inc. was in compliance with the New Mexico Hazardous Waste Management Regulations (20.4.1 NMAC).

If you have any questions, please contact me at (505) 428-2506, or at our address on the letterhead.

Sincerely,

Michael Le Scouarnec

Supervisor

Compliance & Technical Assistance Section

Hazardous Waste Bureau

Appendix C Sample Analysis Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 21, 2022

Boot Pierce Glorieta GeoScience P.O. Box 5727 Santa Fe, NM 87502

TEL: (505) 983-5446 FAX: (505) 983-6482

RE: Quinn Tire OrderNo.: 2212560

Dear Boot Pierce:

Hall Environmental Analysis Laboratory received 6 sample(s) on 12/8/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 2212560

Date Reported: 12/21/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: North Lift

Collection Date: 12/1/2022 8:00:00 AM **Project:** Quinn Tire 2212560-001 Lab ID: Matrix: SOIL Received Date: 12/8/2022 2:53:00 PM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analy	st: DGH
Diesel Range Organics (DRO)	91	15	mg/Kg	1	12/13/2022 12:33:27 F	PM 72041
Motor Oil Range Organics (MRO)	250	49	mg/Kg	1	12/13/2022 12:33:27 F	PM 72041
Surr: DNOP	88.8	21-129	%Rec	1	12/13/2022 12:33:27 F	PM 72041

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Lab Order 2212560

Date Reported: 12/21/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: South Lift

Collection Date: 12/1/2022 8:05:00 AM **Project:** Quinn Tire 2212560-002 Lab ID: Matrix: SOIL Received Date: 12/8/2022 2:53:00 PM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analys	st: DGH
Diesel Range Organics (DRO)	370	15	mg/Kg	1	12/13/2022 12:19:59 P	M 72041
Motor Oil Range Organics (MRO)	450	49	mg/Kg	1	12/13/2022 12:19:59 P	M 72041
Surr: DNOP	97.8	21-129	%Rec	1	12/13/2022 12:19:59 P	M 72041

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Lab Order **2212560**

Date Reported: 12/21/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: S-2 Lift

 Project:
 Quinn Tire
 Collection Date: 12/1/2022 2:00:00 PM

 Lab ID:
 2212560-003
 Matrix: SOIL
 Received Date: 12/8/2022 2:53:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS					Analys	t: JME
Diesel Range Organics (DRO)	3200	130		mg/Kg	10	12/13/2022 11:45:13 A	M 72041
Motor Oil Range Organics (MRO)	5500	420		mg/Kg	10	12/13/2022 11:45:13 A	M 72041
Surr: DNOP	0	21-129	S	%Rec	10	12/13/2022 11:45:13 A	M 72041

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ting Limit Page 3 of 8

Lab Order **2212560**

Date Reported: 12/21/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: S-2 Trench

 Project:
 Quinn Tire
 Collection Date: 12/1/2022 2:10:00 PM

 Lab ID:
 2212560-004
 Matrix: SOIL
 Received Date: 12/8/2022 2:53:00 PM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	150	57	mg/Kg	4	12/19/2022 6:20:28 PM	72041
Motor Oil Range Organics (MRO)	1100	190	mg/Kg	4	12/19/2022 6:20:28 PM	72041
Surr: DNOP	93.9	21-129	%Rec	4	12/19/2022 6:20:28 PM	72041

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ple pH Not In Range
orting Limit Page 4 of 8

Lab Order **2212560**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/21/2022

CLIENT: Glorieta GeoScience Client Sample ID: Trench #2

 Project:
 Quinn Tire
 Collection Date: 12/2/2022 2:00:00 PM

 Lab ID:
 2212560-005
 Matrix: SOIL
 Received Date: 12/8/2022 2:53:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	350	66	mg/Kg	5	12/19/2022 7:30:58 PM	72041
Motor Oil Range Organics (MRO)	3300	220	mg/Kg	5	12/19/2022 7:30:58 PM	72041
Surr: DNOP	100	21-129	%Rec	5	12/19/2022 7:30:58 PM	72041

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 2212560

Date Reported: 12/21/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: Trench Elbow

Collection Date: 12/2/2022 2:20:00 PM **Project:** Quinn Tire 2212560-006 Matrix: SOIL Lab ID: Received Date: 12/8/2022 2:53:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANG	SE ORGANICS					Analys	t: DGH
Diesel Range Organics (DRO)	390	130		mg/Kg	10	12/13/2022 5:56:43 PM	72041
Motor Oil Range Organics (MRO)	8000	450		mg/Kg	10	12/13/2022 5:56:43 PM	72041
Surr: DNOP	0	21-129	S	%Rec	10	12/13/2022 5:56:43 PM	l 72041

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 6 of 8

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

WO#: **2212560**

21-Dec-22

Client: Glorieta GeoScience

Project: Quinn Tire

Sample ID: LCS-72024

Client ID: LCSS	Batch ID: 72024					
Prep Date: 12/12/2022	Analysis Date: 12/13/2022	SeqNo: 3360354 U	Units: %Rec			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			
Surr: DNOP	6.8 5.000	136 21	129 S			
Sample ID: MB-72024	SampType: MBLK	TestCode: EPA Method 80	15M/D: Diesel Range Organics			
Client ID: PBS	Batch ID: 72024	RunNo: 93232				
Date: 40/40/0000	Amalusia Data: 40/40/0000	Carlla, 00000FF	laite. O/D			

TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: PBS	Bato	th ID: 7202 4	ı	F	RunNo: 93232					
Prep Date: 12/12/2	Pate: 12/12/2022 Analysis Date: 12/13/2022 SeqNo: 3360355				Units: %Rec					
Analyte	Result	PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	12		10.00		122	21	129			

Sample ID: MB-72041	SampT	уре: МВ	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batch	ID: 720	041	F	RunNo: 93	3234				
Prep Date: 12/13/2022	Analysis D	ate: 12	/13/2022	5	SeqNo: 33	360361	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.2		10.00		92.5	21	129			

Sample ID: LCS-72041	SampT	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics								
Client ID: LCSS	Batch	ID: 720	041	F	RunNo: 93	3234				
Prep Date: 12/13/2022	Analysis D	ate: 12	/13/2022	SeqNo: 3360362 Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	50	15	50.00	0	100	64.4	127			
Surr: DNOP	4.5		5.000		90.5	21	129			

Sample ID: 2212560-001AMS	SampT	ype: MS	5	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: North Lift	Batch	1D: 72 0	041	F	RunNo: 93	3234				
Prep Date: 12/13/2022	Analysis D	ate: 12	/13/2022	5	SeqNo: 33	360364	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	97	13	44.60	90.89	14.1	36.1	154			S
Surr: DNOP	3.7		4.460		82.4	21	129			

Sample ID:	2212560-001AMSD	SampT	ype: MS	SD.	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	North Lift	Batch	ID: 72 0	041	F	RunNo: 9	3234				
Prep Date:	12/13/2022	Analysis D	ate: 12	/13/2022	5	SeqNo: 3	360365	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	120	15	49.26	90.89	62.1	36.1	154	22.2	33.9	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 8

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

4.3

WO#: **2212560**

21-Dec-22

Client: Glorieta GeoScience

Project: Quinn Tire

Surr: DNOP

Sample ID: 2212560-001AMSD SampType: MSD TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: North Lift Batch ID: 72041 RunNo: 93234

Prep Date: 12/13/2022 Analysis Date: 12/13/2022 SeqNo: 3360365 Units: mg/Kg

4.926

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

86.6

21

129

0

0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 8 of 8

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Glorieta GeoScience Work Order Number: 2212560 RcptNo: 1 Received By: Joseph Alderette 12/8/2022 2:53:00 PM Completed By: **Desiree Dominguez** 12/8/2022 4:32:31 PM Reviewed By: 7112/9/22 Chain of Custody No 🗌 Not Present Yes 🗹 1. Is Chain of Custody complete? 2. How was the sample delivered? Courier Log In No 🗌 NA 🗌 Was an attempt made to cool the samples? Yes 🗸 No 🗌 NA 🗌 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 Yes 🗸 No 🗍 Sample(s) in proper container(s)? Yes 🗸 No 🗌 6. Sufficient sample volume for indicated test(s)? Yes 🗸 No \square 7. Are samples (except VOA and ONG) properly preserved? Yes \square No 🗹 NA 🗌 8. Was preservative added to bottles? NA 🗸 Yes 🗍 9. Received at least 1 vial with headspace <1/4" for AQ VOA? No | Yes 🗌 No 🗸 10. Were any sample containers received broken? # of preserved bottles checked 11. Does paperwork match bottle labels? Yes 🔽 No 🔲 for pH: (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗌 12. Are matrices correctly identified on Chain of Custody? V No 🗌 13. Is it clear what analyses were requested? Yes Checked by: XX(A 12.00 No 🗌 14. Were all holding times able to be met? Yes 🗸 (If no, notify customer for authorization.) Special Handling (if applicable) NA 🗹 15. Was client notified of all discrepancies with this order? Yes 🗌 No 🗌 Person Notified: Date: [By Whom: ☐ eMail ☐ Phone ☐ Fax ☐ In Person Regarding: Client Instructions: | 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact | Seal No Seal Date Signed By 1.2 Good

ä LL	4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	[†] OS S	2 PCB	808\22 (1.403 \S8 10 \end{equiv} equiv 	ticide hod: 8310 NO ON (A	981 Pes 981 Pes 984 Pes 984 by 870 (881) 9270 (881) 9270 (881)	3 3 4 1 1	×	X	×		X				Remarks:	Time: Relinquished by: Nia: Date Time Received by: Via: Date Time The Time This possibility Any sub-contracted data will be clearly notated on the analytical report.
						N \X∃T	1. *	-1						#	1	Rem	is not significant.
Turn-Around Time: ☐ Standard KRush ASAP Project Name:	メルゴン ナア oject #: フンロゴ	Project Manager:	of Here	ler: 500+ Flevee 3: 47es 🗆 No	, ,	Preservative HEAL No.		(- 2	None	None	John Johns				90 by: Via: Date Time (2.8.12 /4:53	ed by: Via: Date Time
Turn-A	Project #	Projec	1200	Sampler: On Ice:	# of C	Container	Ao & star	4025cm	402 FE	40,2	402 Jar	402 Jan X Z				Received by:	Received by:
of-Custody Record	SANTA FENNY 87505	Soot@660	QA/QC Package: \[\int \text{Standard} \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	☐ Az Compliance ☐ Other	□ EDD (Type)	i	12-1 BOD Soul 1 WH LFT	805 Sal South Cift	1400 Soil 5-2 Lift		12-2 1400 Soil treach #2	Soil				Date: Time: Relinguished by:	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 03, 2023

Boot Pierce Glorieta GeoScience P.O. Box 5727 Santa Fe, NM 87502

TEL: (505) 983-5446 FAX: (505) 983-6482

RE: Quinn Tire OrderNo.: 2212A00

Dear Boot Pierce:

Hall Environmental Analysis Laboratory received 4 sample(s) on 12/15/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: Trench @ 4 feet

 Project:
 Quinn Tire
 Collection Date: 12/14/2022 1:00:00 PM

 Lab ID:
 2212A00-001
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
Acenaphthene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Acenaphthylene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Aniline	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Anthracene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Azobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Benz(a)anthracene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Benzo(a)pyrene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Benzo(b)fluoranthene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Benzo(g,h,i)perylene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Benzo(k)fluoranthene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Benzoic acid	ND	19	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Benzyl alcohol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Bis(2-chloroethoxy)methane	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Bis(2-chloroethyl)ether	ND	5.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Bis(2-chloroisopropyl)ether	ND	5.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Bis(2-ethylhexyl)phthalate	ND	9.5	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
4-Bromophenyl phenyl ether	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Butyl benzyl phthalate	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Carbazole	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
4-Chloro-3-methylphenol	ND	9.5	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
4-Chloroaniline	ND	9.5	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2-Chloronaphthalene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2-Chlorophenol	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
4-Chlorophenyl phenyl ether	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Chrysene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Di-n-butyl phthalate	ND	19	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Di-n-octyl phthalate	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Dibenz(a,h)anthracene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Dibenzofuran	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
1,2-Dichlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
1,3-Dichlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
1,4-Dichlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
3,3´-Dichlorobenzidine	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Diethyl phthalate	ND	57	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Dimethyl phthalate	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2,4-Dichlorophenol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2,4-Dimethylphenol	ND	5.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
4,6-Dinitro-2-methylphenol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2,4-Dinitrophenol	ND	9.5	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience

Client Sample ID: Trench @ 4 feet

Project: Quinn Tire Collection Date: 12/14/2022 1:00:00 PM

Lab ID: 2212A00-001 **Matrix:** MEOH (SOIL) **Received Date:** 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	DAM
2,4-Dinitrotoluene	ND	9.5	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2,6-Dinitrotoluene	ND	9.5	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Fluoranthene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Fluorene	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Hexachlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Hexachlorobutadiene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Hexachlorocyclopentadiene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Hexachloroethane	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Indeno(1,2,3-cd)pyrene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Isophorone	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
1-Methylnaphthalene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2-Methylnaphthalene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2-Methylphenol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
3+4-Methylphenol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
N-Nitrosodi-n-propylamine	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
N-Nitrosodimethylamine	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
N-Nitrosodiphenylamine	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Naphthalene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2-Nitroaniline	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
3-Nitroaniline	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
4-Nitroaniline	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Nitrobenzene	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2-Nitrophenol	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
4-Nitrophenol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Pentachlorophenol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Phenanthrene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Phenol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Pyrene	ND	3.8	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Pyridine	ND	38	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
1,2,4-Trichlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2,4,5-Trichlorophenol	ND	4.7	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
2,4,6-Trichlorophenol	ND	7.6	D	mg/Kg	20	12/22/2022 1:06:56 PM	72207
Surr: 2-Fluorophenol	0	23.5-70.2	SD	%Rec	20	12/22/2022 1:06:56 PM	72207
Surr: Phenol-d5	0	28.3-80	SD	%Rec	20	12/22/2022 1:06:56 PM	72207
Surr: 2,4,6-Tribromophenol	0	33.8-106	SD	%Rec	20	12/22/2022 1:06:56 PM	72207
Surr: Nitrobenzene-d5	0	19.5-72.3	SD	%Rec	20	12/22/2022 1:06:56 PM	72207
Surr: 2-Fluorobiphenyl	0	21.1-76.5	SD	%Rec	20	12/22/2022 1:06:56 PM	72207
Surr: 4-Terphenyl-d14	0	70-109	SD	%Rec	20	12/22/2022 1:06:56 PM	72207

EPA METHOD 8260B: VOLATILES

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 23

Analyst: RAA

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/3/2023

CLIENT: Glorieta GeoScience Client Sample ID: Trench @ 4 feet

 Project:
 Quinn Tire
 Collection Date: 12/14/2022 1:00:00 PM

 Lab ID:
 2212A00-001
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
Benzene	ND	0.017	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Toluene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Ethylbenzene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Methyl tert-butyl ether (MTBE)	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,2,4-Trimethylbenzene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,3,5-Trimethylbenzene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,2-Dichloroethane (EDC)	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,2-Dibromoethane (EDB)	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Naphthalene	ND	0.069	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1-Methylnaphthalene	ND	0.14	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
2-Methylnaphthalene	ND	0.14	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Acetone	ND	0.52	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Bromobenzene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Bromodichloromethane	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Bromoform	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Bromomethane	ND	0.10	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
2-Butanone	ND	0.35	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Carbon disulfide	ND	0.35	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Carbon tetrachloride	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Chlorobenzene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Chloroethane	ND	0.069	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Chloroform	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Chloromethane	ND	0.10	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
2-Chlorotoluene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
4-Chlorotoluene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
cis-1,2-DCE	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
cis-1,3-Dichloropropene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,2-Dibromo-3-chloropropane	ND	0.069	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Dibromochloromethane	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Dibromomethane	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,2-Dichlorobenzene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,3-Dichlorobenzene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,4-Dichlorobenzene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
Dichlorodifluoromethane	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,1-Dichloroethane	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,1-Dichloroethene	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,2-Dichloropropane	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
1,3-Dichloropropane	ND	0.035	mg/Kg	1	12/20/2022 5:38:11 PM	R93453
2,2-Dichloropropane	ND	0.069	mg/Kg	1	12/20/2022 5:38:11 PM	R93453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 23

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/3/2023

CLIENT: Glorieta GeoScience Client Sample ID: Trench @ 4 feet

 Project:
 Quinn Tire
 Collection Date: 12/14/2022 1:00:00 PM

 Lab ID:
 2212A00-001
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Result **RL Oual Units DF** Date Analyzed **Batch** Analyses **EPA METHOD 8260B: VOLATILES** Analyst: RAA ND 12/20/2022 5:38:11 PM 1,1-Dichloropropene 0.069 mg/Kg 1 R93453 Hexachlorobutadiene ND 0.069 mg/Kg 1 12/20/2022 5:38:11 PM R93453 2-Hexanone ND 0.35 mg/Kg 1 12/20/2022 5:38:11 PM R93453 Isopropylbenzene 0.035 mg/Kg ND 1 12/20/2022 5:38:11 PM R93453 4-Isopropyltoluene ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 4-Methyl-2-pentanone ND 0.35 mg/Kg 1 12/20/2022 5:38:11 PM R93453 Methylene chloride ND 0.10 mg/Kg 1 12/20/2022 5:38:11 PM R93453 n-Butylbenzene ND 0.10 mg/Kg 1 12/20/2022 5:38:11 PM R93453 n-Propylbenzene ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 sec-Butylbenzene ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 Styrene ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 tert-Butylbenzene ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 1,1,1,2-Tetrachloroethane ND 0.035 mg/Kg 12/20/2022 5:38:11 PM R93453 1,1,2,2-Tetrachloroethane ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 Tetrachloroethene (PCE) 0.065 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 trans-1,2-DCE ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 trans-1,3-Dichloropropene ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 1,2,3-Trichlorobenzene ND 0.069 mg/Kg 1 12/20/2022 5:38:11 PM R93453 1,2,4-Trichlorobenzene ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 1,1,1-Trichloroethane ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 ND 1,1,2-Trichloroethane 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 Trichloroethene (TCE) ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 Trichlorofluoromethane ND 1 0.035 mg/Kg 12/20/2022 5:38:11 PM R93453 1,2,3-Trichloropropane ND 0.069 mq/Kq 1 12/20/2022 5:38:11 PM R93453 Vinyl chloride ND 0.035 mg/Kg 1 12/20/2022 5:38:11 PM R93453 Xylenes, Total ND 0.069 mg/Kg 1 12/20/2022 5:38:11 PM R93453 Surr: Dibromofluoromethane 1 87.6 70-130 %Rec 12/20/2022 5:38:11 PM R93453 Surr: 1,2-Dichloroethane-d4 88.1 70-130 %Rec 1 12/20/2022 5:38:11 PM R93453 Surr: Toluene-d8 97.2 70-130 %Rec 1 12/20/2022 5:38:11 PM R93453 Surr: 4-Bromofluorobenzene 104 70-130 %Rec 12/20/2022 5:38:11 PM R93453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience

Client Sample ID: Trench Elbow @ 4 ft

Project: Quinn Tire Collection Date: 12/14/2022 1:10:00 PM

Lab ID: 2212A00-002 **Matrix:** MEOH (SOIL) **Received Date:** 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
Acenaphthene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Acenaphthylene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Aniline	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Anthracene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Azobenzene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Benz(a)anthracene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Benzo(a)pyrene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Benzo(b)fluoranthene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Benzo(g,h,i)perylene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Benzo(k)fluoranthene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Benzoic acid	ND	19	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Benzyl alcohol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Bis(2-chloroethoxy)methane	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Bis(2-chloroethyl)ether	ND	5.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Bis(2-chloroisopropyl)ether	ND	5.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Bis(2-ethylhexyl)phthalate	ND	9.7	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
4-Bromophenyl phenyl ether	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Butyl benzyl phthalate	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Carbazole	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
4-Chloro-3-methylphenol	ND	9.7	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
4-Chloroaniline	ND	9.7	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2-Chloronaphthalene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2-Chlorophenol	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
4-Chlorophenyl phenyl ether	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Chrysene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Di-n-butyl phthalate	ND	19	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Di-n-octyl phthalate	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Dibenz(a,h)anthracene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Dibenzofuran	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
1,2-Dichlorobenzene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
1,3-Dichlorobenzene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
1,4-Dichlorobenzene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
3,3´-Dichlorobenzidine	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Diethyl phthalate	ND	58	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Dimethyl phthalate	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2,4-Dichlorophenol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2,4-Dimethylphenol	ND	5.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
4,6-Dinitro-2-methylphenol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2,4-Dinitrophenol	ND	9.7	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: Trench Elbow @ 4 ft

Project: Quinn Tire
 Collection Date: 12/14/2022 1:10:00 PM

 Lab ID: 2212A00-002
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
2,4-Dinitrotoluene	ND	9.7	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2,6-Dinitrotoluene	ND	9.7	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Fluoranthene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Fluorene	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Hexachlorobenzene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Hexachlorobutadiene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Hexachlorocyclopentadiene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Hexachloroethane	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Indeno(1,2,3-cd)pyrene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Isophorone	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
1-Methylnaphthalene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2-Methylnaphthalene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2-Methylphenol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
3+4-Methylphenol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
N-Nitrosodi-n-propylamine	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
N-Nitrosodimethylamine	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
N-Nitrosodiphenylamine	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Naphthalene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2-Nitroaniline	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
3-Nitroaniline	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
4-Nitroaniline	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Nitrobenzene	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2-Nitrophenol	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
4-Nitrophenol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Pentachlorophenol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Phenanthrene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Phenol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Pyrene	ND	3.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Pyridine	ND	39	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
1,2,4-Trichlorobenzene	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2,4,5-Trichlorophenol	ND	4.9	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
2,4,6-Trichlorophenol	ND	7.8	D	mg/Kg	20	12/22/2022 1:48:31 PM	72207
Surr: 2-Fluorophenol	0	23.5-70.2	SD	%Rec	20	12/22/2022 1:48:31 PM	72207
Surr: Phenol-d5	0	28.3-80	SD	%Rec	20	12/22/2022 1:48:31 PM	72207
Surr: 2,4,6-Tribromophenol	0	33.8-106	SD	%Rec	20	12/22/2022 1:48:31 PM	72207
Surr: Nitrobenzene-d5	0	19.5-72.3	SD	%Rec	20	12/22/2022 1:48:31 PM	72207
Surr: 2-Fluorobiphenyl	0	21.1-76.5	SD	%Rec	20	12/22/2022 1:48:31 PM	72207
Surr: 4-Terphenyl-d14	0	70-109	SD	%Rec	20	12/22/2022 1:48:31 PM	72207

EPA METHOD 8260B: VOLATILES Analyst: RAA

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 23

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience

Client Sample ID: Trench Elbow @ 4 ft

 Project:
 Quinn Tire
 Collection Date: 12/14/2022 1:10:00 PM

 Lab ID:
 2212A00-002
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
Benzene	ND	0.020	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Toluene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Ethylbenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Methyl tert-butyl ether (MTBE)	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2,4-Trimethylbenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,3,5-Trimethylbenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2-Dichloroethane (EDC)	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2-Dibromoethane (EDB)	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Naphthalene	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1-Methylnaphthalene	ND	0.16	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
2-Methylnaphthalene	ND	0.16	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Acetone	ND	0.61	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Bromobenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Bromodichloromethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Bromoform	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Bromomethane	ND	0.12	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
2-Butanone	ND	0.40	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Carbon disulfide	ND	0.40	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Carbon tetrachloride	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Chlorobenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Chloroethane	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Chloroform	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Chloromethane	ND	0.12	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
2-Chlorotoluene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
4-Chlorotoluene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
cis-1,2-DCE	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
cis-1,3-Dichloropropene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2-Dibromo-3-chloropropane	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Dibromochloromethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Dibromomethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2-Dichlorobenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,3-Dichlorobenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,4-Dichlorobenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Dichlorodifluoromethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,1-Dichloroethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,1-Dichloroethene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2-Dichloropropane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,3-Dichloropropane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
2,2-Dichloropropane	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 23

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: Trench Elbow @ 4 ft **Project:** Quinn Tire **Collection Date:** 12/14/2022 1:10:00 PM 2212A00-002 Lab ID: Matrix: MEOH (SOIL) **Received Date:** 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Hexachlorobutadiene	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
2-Hexanone	ND	0.40	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Isopropylbenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
4-Isopropyltoluene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
4-Methyl-2-pentanone	ND	0.40	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Methylene chloride	ND	0.12	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
n-Butylbenzene	ND	0.12	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
n-Propylbenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
sec-Butylbenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Styrene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
tert-Butylbenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,1,1,2-Tetrachloroethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,1,2,2-Tetrachloroethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Tetrachloroethene (PCE)	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
trans-1,2-DCE	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
trans-1,3-Dichloropropene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2,3-Trichlorobenzene	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2,4-Trichlorobenzene	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,1,1-Trichloroethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,1,2-Trichloroethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Trichloroethene (TCE)	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Trichlorofluoromethane	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
1,2,3-Trichloropropane	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Vinyl chloride	ND	0.040	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Xylenes, Total	ND	0.081	mg/Kg	1	12/20/2022 6:59:27 PM	R93453
Surr: Dibromofluoromethane	96.1	70-130	%Rec	1	12/20/2022 6:59:27 PM	R93453
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	12/20/2022 6:59:27 PM	R93453
Surr: Toluene-d8	106	70-130	%Rec	1	12/20/2022 6:59:27 PM	R93453
Surr: 4-Bromofluorobenzene	97.2	70-130	%Rec	1	12/20/2022 6:59:27 PM	R93453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience

Client Sample ID: Trench Bottom

 Project:
 Quinn Tire
 Collection Date: 12/15/2022 10:00:00 AM

 Lab ID:
 2212A00-003
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 8270C: SEMIVOLATILES Analyst: DAM								
Acenaphthene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Acenaphthylene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Aniline	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Anthracene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Azobenzene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Benz(a)anthracene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Benzo(a)pyrene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Benzo(b)fluoranthene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Benzo(g,h,i)perylene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Benzo(k)fluoranthene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Benzoic acid	ND	20	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Benzyl alcohol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Bis(2-chloroethoxy)methane	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Bis(2-chloroethyl)ether	ND	5.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Bis(2-chloroisopropyl)ether	ND	5.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Bis(2-ethylhexyl)phthalate	ND	9.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
4-Bromophenyl phenyl ether	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Butyl benzyl phthalate	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Carbazole	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
4-Chloro-3-methylphenol	ND	9.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
4-Chloroaniline	ND	9.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2-Chloronaphthalene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2-Chlorophenol	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
4-Chlorophenyl phenyl ether	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Chrysene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Di-n-butyl phthalate	ND	20	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Di-n-octyl phthalate	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Dibenz(a,h)anthracene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Dibenzofuran	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
1,2-Dichlorobenzene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
1,3-Dichlorobenzene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
1,4-Dichlorobenzene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
3,3´-Dichlorobenzidine	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Diethyl phthalate	ND	59	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Dimethyl phthalate	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2,4-Dichlorophenol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2,4-Dimethylphenol	ND	5.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
4,6-Dinitro-2-methylphenol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2,4-Dinitrophenol	ND	9.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience

Client Sample ID: Trench Bottom

 Project:
 Quinn Tire
 Collection Date: 12/15/2022 10:00:00 AM

 Lab ID:
 2212A00-003
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 8270C: SEMIVOLATILES Analyst: DAM								
2,4-Dinitrotoluene	ND	9.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2,6-Dinitrotoluene	ND	9.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Fluoranthene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Fluorene	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Hexachlorobenzene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Hexachlorobutadiene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Hexachlorocyclopentadiene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Hexachloroethane	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Indeno(1,2,3-cd)pyrene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Isophorone	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
1-Methylnaphthalene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2-Methylnaphthalene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2-Methylphenol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
3+4-Methylphenol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
N-Nitrosodi-n-propylamine	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
N-Nitrosodimethylamine	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
N-Nitrosodiphenylamine	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Naphthalene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2-Nitroaniline	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
3-Nitroaniline	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
4-Nitroaniline	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Nitrobenzene	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2-Nitrophenol	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
4-Nitrophenol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Pentachlorophenol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Phenanthrene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Phenol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Pyrene	ND	4.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Pyridine	ND	40	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
1,2,4-Trichlorobenzene	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2,4,5-Trichlorophenol	ND	5.0	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
2,4,6-Trichlorophenol	ND	7.9	D	mg/Kg	20	12/22/2022 2:30:10 PM	72207	
Surr: 2-Fluorophenol	0	23.5-70.2	SD	%Rec	20	12/22/2022 2:30:10 PM	72207	
Surr: Phenol-d5	0	28.3-80	SD	%Rec	20	12/22/2022 2:30:10 PM	72207	
Surr: 2,4,6-Tribromophenol	0	33.8-106	SD	%Rec	20	12/22/2022 2:30:10 PM	72207	
Surr: Nitrobenzene-d5	0	19.5-72.3	SD	%Rec	20	12/22/2022 2:30:10 PM	72207	
Surr: 2-Fluorobiphenyl	0	21.1-76.5	SD	%Rec	20	12/22/2022 2:30:10 PM	72207	
Surr: 4-Terphenyl-d14	0	70-109	SD	%Rec	20	12/22/2022 2:30:10 PM	72207	

EPA METHOD 8260B: VOLATILES Analyst: RAA

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 23

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/3/2023

CLIENT: Glorieta GeoScience Client Sample ID: Trench Bottom

 Project:
 Quinn Tire
 Collection Date: 12/15/2022 10:00:00 AM

 Lab ID:
 2212A00-003
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
Benzene	ND	0.013	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Toluene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Ethylbenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Methyl tert-butyl ether (MTBE)	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2,4-Trimethylbenzene	0.051	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,3,5-Trimethylbenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2-Dichloroethane (EDC)	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2-Dibromoethane (EDB)	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Naphthalene	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1-Methylnaphthalene	ND	0.10	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
2-Methylnaphthalene	0.11	0.10	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Acetone	ND	0.39	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Bromobenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Bromodichloromethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Bromoform	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Bromomethane	ND	0.078	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
2-Butanone	ND	0.26	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Carbon disulfide	ND	0.26	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Carbon tetrachloride	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Chlorobenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Chloroethane	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Chloroform	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Chloromethane	ND	0.078	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
2-Chlorotoluene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
4-Chlorotoluene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
cis-1,2-DCE	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
cis-1,3-Dichloropropene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2-Dibromo-3-chloropropane	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Dibromochloromethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Dibromomethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2-Dichlorobenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,3-Dichlorobenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,4-Dichlorobenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Dichlorodifluoromethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,1-Dichloroethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,1-Dichloroethene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2-Dichloropropane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,3-Dichloropropane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
2,2-Dichloropropane	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 23

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: Trench Bottom

 Project:
 Quinn Tire
 Collection Date: 12/15/2022 10:00:00 AM

 Lab ID:
 2212A00-003
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Hexachlorobutadiene	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
2-Hexanone	ND	0.26	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Isopropylbenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
4-Isopropyltoluene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
4-Methyl-2-pentanone	ND	0.26	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Methylene chloride	ND	0.078	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
n-Butylbenzene	ND	0.078	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
n-Propylbenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
sec-Butylbenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Styrene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
tert-Butylbenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,1,1,2-Tetrachloroethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,1,2,2-Tetrachloroethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Tetrachloroethene (PCE)	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
trans-1,2-DCE	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
trans-1,3-Dichloropropene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2,3-Trichlorobenzene	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2,4-Trichlorobenzene	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,1,1-Trichloroethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,1,2-Trichloroethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Trichloroethene (TCE)	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Trichlorofluoromethane	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
1,2,3-Trichloropropane	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Vinyl chloride	ND	0.026	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Xylenes, Total	ND	0.052	mg/Kg	1	12/21/2022 4:36:08 PM	R93453
Surr: Dibromofluoromethane	93.7	70-130	%Rec	1	12/21/2022 4:36:08 PM	R93453
Surr: 1,2-Dichloroethane-d4	112	70-130	%Rec	1	12/21/2022 4:36:08 PM	R93453
Surr: Toluene-d8	91.8	70-130	%Rec	1	12/21/2022 4:36:08 PM	R93453
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	1	12/21/2022 4:36:08 PM	R93453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: Below S-2

 Project:
 Quinn Tire
 Collection Date: 12/15/2022 11:00:00 AM

 Lab ID:
 2212A00-004
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
Acenaphthene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Acenaphthylene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Aniline	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Anthracene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Azobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Benz(a)anthracene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Benzo(a)pyrene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Benzo(b)fluoranthene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Benzo(g,h,i)perylene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Benzo(k)fluoranthene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Benzoic acid	ND	19	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Benzyl alcohol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Bis(2-chloroethoxy)methane	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Bis(2-chloroethyl)ether	ND	5.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Bis(2-chloroisopropyl)ether	ND	5.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Bis(2-ethylhexyl)phthalate	ND	9.4	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
4-Bromophenyl phenyl ether	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Butyl benzyl phthalate	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Carbazole	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
4-Chloro-3-methylphenol	ND	9.4	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
4-Chloroaniline	ND	9.4	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2-Chloronaphthalene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2-Chlorophenol	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
4-Chlorophenyl phenyl ether	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Chrysene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Di-n-butyl phthalate	ND	19	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Di-n-octyl phthalate	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Dibenz(a,h)anthracene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Dibenzofuran	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
1,2-Dichlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
1,3-Dichlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
1,4-Dichlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
3,3'-Dichlorobenzidine	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Diethyl phthalate	ND	57	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Dimethyl phthalate	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2,4-Dichlorophenol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2,4-Dimethylphenol	ND	5.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
4,6-Dinitro-2-methylphenol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2,4-Dinitrophenol	ND	9.4	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 23

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: Below S-2

 Project:
 Quinn Tire
 Collection Date: 12/15/2022 11:00:00 AM

 Lab ID:
 2212A00-004
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	DAM
2,4-Dinitrotoluene	ND	9.4	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2,6-Dinitrotoluene	ND	9.4	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Fluoranthene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Fluorene	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Hexachlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Hexachlorobutadiene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Hexachlorocyclopentadiene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Hexachloroethane	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Indeno(1,2,3-cd)pyrene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Isophorone	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
1-Methylnaphthalene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2-Methylnaphthalene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2-Methylphenol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
3+4-Methylphenol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
N-Nitrosodi-n-propylamine	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
N-Nitrosodimethylamine	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
N-Nitrosodiphenylamine	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Naphthalene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2-Nitroaniline	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
3-Nitroaniline	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
4-Nitroaniline	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Nitrobenzene	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2-Nitrophenol	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
4-Nitrophenol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Pentachlorophenol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Phenanthrene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Phenol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Pyrene	ND	3.8	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Pyridine	ND	38	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
1,2,4-Trichlorobenzene	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2,4,5-Trichlorophenol	ND	4.7	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
2,4,6-Trichlorophenol	ND	7.6	D	mg/Kg	20	12/22/2022 3:11:48 PM	72207
Surr: 2-Fluorophenol	0	23.5-70.2	SD	%Rec	20	12/22/2022 3:11:48 PM	72207
Surr: Phenol-d5	0	28.3-80	SD	%Rec	20	12/22/2022 3:11:48 PM	72207
Surr: 2,4,6-Tribromophenol	0	33.8-106	SD	%Rec	20	12/22/2022 3:11:48 PM	72207
Surr: Nitrobenzene-d5	0	19.5-72.3	SD	%Rec	20	12/22/2022 3:11:48 PM	72207
Surr: 2-Fluorobiphenyl	0	21.1-76.5	SD	%Rec	20	12/22/2022 3:11:48 PM	72207
Surr: 4-Terphenyl-d14	0	70-109	SD	%Rec	20	12/22/2022 3:11:48 PM	72207

EPA METHOD 8260B: VOLATILES Analyst: RAA

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 23

Date Reported: 1/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience

Client Sample ID: Below S-2

Project: Quinn Tire **Collection Date:** 12/15/2022 11:00:00 AM 2212A00-004 Lab ID: Matrix: MEOH (SOIL) **Received Date:** 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
Benzene	ND	0.016	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Toluene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Ethylbenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Methyl tert-butyl ether (MTBE)	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2,4-Trimethylbenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,3,5-Trimethylbenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2-Dichloroethane (EDC)	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2-Dibromoethane (EDB)	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Naphthalene	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1-Methylnaphthalene	ND	0.13	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
2-Methylnaphthalene	ND	0.13	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Acetone	ND	0.49	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Bromobenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Bromodichloromethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Bromoform	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Bromomethane	ND	0.098	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
2-Butanone	ND	0.33	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Carbon disulfide	ND	0.33	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Carbon tetrachloride	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Chlorobenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Chloroethane	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Chloroform	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Chloromethane	ND	0.098	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
2-Chlorotoluene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
4-Chlorotoluene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
cis-1,2-DCE	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
cis-1,3-Dichloropropene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2-Dibromo-3-chloropropane	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Dibromochloromethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Dibromomethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2-Dichlorobenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,3-Dichlorobenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,4-Dichlorobenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Dichlorodifluoromethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,1-Dichloroethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,1-Dichloroethene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2-Dichloropropane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,3-Dichloropropane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
2,2-Dichloropropane	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 15 of 23

Lab Order **2212A00**Date Reported: **1/3/2023**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: Below S-2

 Project:
 Quinn Tire
 Collection Date: 12/15/2022 11:00:00 AM

 Lab ID:
 2212A00-004
 Matrix: MEOH (SOIL)
 Received Date: 12/15/2022 3:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Hexachlorobutadiene	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
2-Hexanone	ND	0.33	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Isopropylbenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
4-Isopropyltoluene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
4-Methyl-2-pentanone	ND	0.33	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Methylene chloride	ND	0.098	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
n-Butylbenzene	ND	0.098	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
n-Propylbenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
sec-Butylbenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Styrene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
tert-Butylbenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,1,1,2-Tetrachloroethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,1,2,2-Tetrachloroethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Tetrachloroethene (PCE)	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
trans-1,2-DCE	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
trans-1,3-Dichloropropene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2,3-Trichlorobenzene	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2,4-Trichlorobenzene	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,1,1-Trichloroethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,1,2-Trichloroethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Trichloroethene (TCE)	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Trichlorofluoromethane	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
1,2,3-Trichloropropane	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Vinyl chloride	ND	0.033	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Xylenes, Total	ND	0.066	mg/Kg	1	12/20/2022 7:53:30 PM	R93453
Surr: Dibromofluoromethane	97.1	70-130	%Rec	1	12/20/2022 7:53:30 PM	R93453
Surr: 1,2-Dichloroethane-d4	117	70-130	%Rec	1	12/20/2022 7:53:30 PM	R93453
Surr: Toluene-d8	91.5	70-130	%Rec	1	12/20/2022 7:53:30 PM	R93453
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	12/20/2022 7:53:30 PM	R93453

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2212A00**

03-Jan-23

Client: Glorieta GeoScience

Project: Quinn Tire

Sample ID: 2212a00-001a ms	Samp ¹	Гуре: М S	3	Tes	TestCode: EPA Method 8260B: Volatiles					
Surr: 4-Bromofluorobenzene	0.47		0.5000		94.6	70	130			
Surr: Toluene-d8	0.45		0.5000		90.0	70	130			
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		91.0	70	130			
Surr: Dibromofluoromethane	0.45		0.5000		89.8	70	130			
Trichloroethene (TCE)	0.84	0.050	1.000	0	83.6	70	130			
1,1-Dichloroethene	0.87	0.050	1.000	0	86.6	70	130			
Chlorobenzene	0.97	0.050	1.000	0	97.0	70	130			
Toluene	0.90	0.050	1.000	0	90.2	70	130			
Benzene	0.95	0.025	1.000	0	95.1	70	130			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date:	Analysis [Date: 12	/20/2022	5	SeqNo: 3370635 Units: mg/Kg					
Client ID: LCSS	Batc	h ID: R9 :	3453	F	RunNo: 93453					
Sample ID: 100ng Ics	Samp	Гуре: LC	S	Tes	tCode: EF	PA Method	les			

Sample ID: 2212a00-001a ms	Samp ¹	Гуре: МЅ	;	TestCode: EPA Method 8260B: Volatiles						
Client ID: Trench @ 4 feet	Batc	h ID: R9 :	3453	F	RunNo: 93	3453				
Prep Date:	Analysis [Date: 12	/20/2022	9	SeqNo: 33	370650	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.68	0.017	0.6949	0	97.5	67.7	135			
Toluene	0.66	0.035	0.6949	0	95.4	70	130			
Chlorobenzene	0.66	0.035	0.6949	0	94.3	70	130			
1,1-Dichloroethene	0.65	0.035	0.6949	0	93.3	38.5	142			
Trichloroethene (TCE)	0.65	0.035	0.6949	0	93.2	64.7	129			
Surr: Dibromofluoromethane	0.36		0.3474		104	70	130			
Surr: 1,2-Dichloroethane-d4	0.37		0.3474		107	70	130			
Surr: Toluene-d8	0.32		0.3474		93.1	70	130			
Surr: 4-Bromofluorobenzene	0.35		0.3474		101	70	130			

Sample ID: 2212a00-001a msd	Samp	уре: МЅ	SD.	Tes	tCode: EF					
Client ID: Trench @ 4 feet	Batcl	n ID: R9 :	3453	F	RunNo: 93453					
Prep Date:	Analysis [Date: 12	/20/2022	5	SeqNo: 3370651 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.69	0.017	0.6949	0	99.1	67.7	135	1.65	20	
Toluene	0.65	0.035	0.6949	0	94.2	70	130	1.31	20	
Chlorobenzene	0.65	0.035	0.6949	0	93.6	70	130	0.800	20	
1,1-Dichloroethene	0.68	0.035	0.6949	0	98.2	38.5	142	5.13	20	
Trichloroethene (TCE)	0.69	0.035	0.6949	0	98.7	64.7	129	5.70	20	
Surr: Dibromofluoromethane	0.38		0.3474		110	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.34		0.3474		97.9	70	130	0	0	
Surr: Toluene-d8	0.34		0.3474		97.4	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.33		0.3474		95.6	70	130	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: 2212A00

03-Jan-23

Client: Glorieta GeoScience

Project: Quinn Tire

Sample ID: mb	Samp	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8260B: Volati	les		
Client ID: PBS	Batcl	h ID: R9 :	3453	ſ	RunNo: 93	3453				
Prep Date:	Analysis [Date: 12	/20/2022	:	SeqNo: 33	370659	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
	ND ND	0.050								
1,2-Dichloropropane 1,3-Dichloropropane	ND ND	0.050								
2,2-Dichloropropane	ND	0.10								

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2212A00**

03-Jan-23

Client: Glorieta GeoScience

Project: Quinn Tire

Sample ID: mb	Samp ⁻	Гуре: МЕ	BLK	Tes	stCode: El	PA Method	8260B: Volatiles					
Client ID: PBS	Batc	h ID: R9	3453	F	RunNo: 9	3453						
Prep Date:	Analysis [Date: 12	2/20/2022	:	SeqNo: 3	370659	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
1,1-Dichloropropene	ND	0.10										
Hexachlorobutadiene	ND	0.10										
2-Hexanone	ND	0.50										
Isopropylbenzene	ND	0.050										
4-Isopropyltoluene	ND	0.050										
4-Methyl-2-pentanone	ND	0.50										
Methylene chloride	ND	0.15										
n-Butylbenzene	ND	0.15										
n-Propylbenzene	ND	0.050										
sec-Butylbenzene	ND	0.050										
Styrene	ND	0.050										
tert-Butylbenzene	ND	0.050										
1,1,1,2-Tetrachloroethane	ND	0.050										
1,1,2,2-Tetrachloroethane	ND	0.050										
Tetrachloroethene (PCE)	ND	0.050										
trans-1,2-DCE	ND	0.050										
trans-1,3-Dichloropropene	ND	0.050										
1,2,3-Trichlorobenzene	ND	0.10										
1,2,4-Trichlorobenzene	ND	0.050										
1,1,1-Trichloroethane	ND	0.050										
1,1,2-Trichloroethane	ND	0.050										
Trichloroethene (TCE)	ND	0.050										
Trichlorofluoromethane	ND	0.050										
1,2,3-Trichloropropane	ND	0.10										
Vinyl chloride	ND	0.050										
Xylenes, Total	ND	0.10										
Surr: Dibromofluoromethane	0.48		0.5000		95.4	70	130					
Surr: 1,2-Dichloroethane-d4	0.52		0.5000		105	70	130					
Surr: Toluene-d8	0.48		0.5000		95.5	70	130					
Surr: 4-Bromofluorobenzene	0.49		0.5000		98.1	70	130					
Sample ID: Ics-72232	Samp ⁻	Гуре: LC	s	Tes	stCode: El	PA Method	8260B: Volati	les				
Client ID: LCSS	Batc	h ID: 72 :	232	F	RunNo: 9	3489						
Prep Date: 12/20/2022	Analysis [Date: 12	2/21/2022	;	SeqNo: 3	372003	Units: %Rec					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Surr: Dibromofluoromethane	0.49		0.5000		97.2	70	130					

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Surr: 1,2-Dichloroethane-d4

Surr: Toluene-d8

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

0.51

0.50

B Analyte detected in the associated Method Blank

102

99.3

70

70

130

130

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

0.5000

0.5000

Page 19 of 23

Hall Environmental Analysis Laboratory, Inc.

0.52

0.50

WO#: **2212A00**

03-Jan-23

Client: Glorieta GeoScience

Project: Quinn Tire

Surr: 4-Bromofluorobenzene

Surr: 4-Bromofluorobenzene

Sample ID: Ics-72232 SampType: LCS TestCode: EPA Method 8260B: Volatiles

Client ID: LCSS Batch ID: 72232 RunNo: 93489

Prep Date: 12/20/2022 Analysis Date: 12/21/2022 SeqNo: 3372003 Units: %Rec

0.5000

0.5000

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

104

100

70

70

130

130

Sample ID: mb-72232 SampType: MBLK TestCode: EPA Method 8260B: Volatiles Client ID: PBS Batch ID: 72232 RunNo: 93489 Prep Date: 12/20/2022 Analysis Date: 12/21/2022 SeqNo: 3372004 Units: %Rec SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Surr: Dibromofluoromethane 0.44 0.5000 88.7 70 130 Surr: 1,2-Dichloroethane-d4 0.48 0.5000 95.8 70 130 Surr: Toluene-d8 0.47 0.5000 94.2 70 130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 20 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2212A00**

03-Jan-23

Client: Glorieta GeoScience

Project: Quinn Tire

Sample ID: mb-72207	SampTy	/pe: MBLK	,	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBS	Batch	ID: 72207		F	RunNo: 93	3512				
Prep Date: 12/20/2022	Analysis Da	ate: 12/22	/2022	S	SeqNo: 33	373296	Units: mg/K	g		
Analyte	Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.25								
Acenaphthylene	ND	0.25								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.25								
Benz(a)anthracene	ND	0.25								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.25								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	1.0								
Benzyl alcohol	ND	0.40								
Bis(2-chloroethoxy)methane	ND	0.25								
Bis(2-chloroethyl)ether	ND	0.30								
Bis(2-chloroisopropyl)ether	ND	0.30								
Bis(2-ethylhexyl)phthalate	ND	0.50								
4-Bromophenyl phenyl ether	ND	0.25								
Butyl benzyl phthalate	ND	0.25								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.25								
4-Chlorophenyl phenyl ether	ND	0.25								
Chrysene	ND	0.20								
Di-n-butyl phthalate	ND	1.0								
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND	0.25								
1,2-Dichlorobenzene	ND	0.25								
1,3-Dichlorobenzene	ND	0.25								
1,4-Dichlorobenzene	ND	0.25								
3,3´-Dichlorobenzidine	ND	0.25								
Diethyl phthalate	ND	3.0								
Dimethyl phthalate	ND	0.40								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	ND	0.40								
2,4-Dinitrophenol	ND	0.50								

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2212A00**

03-Jan-23

Client: Glorieta GeoScience

Project: Quinn Tire

Sample ID: mb-72207	SampT	Гуре: МВ	LK	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBS	Batcl	h ID: 722	207	F	RunNo: 93	3512				
Prep Date: 12/20/2022	Analysis D	Date: 12	/22/2022	5	SeqNo: 33	373296	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	0.50								
2,6-Dinitrotoluene	ND	0.50								
Fluoranthene	ND	0.20								
Fluorene	ND	0.40								
Hexachlorobenzene	ND	0.25								
Hexachlorobutadiene	ND	0.25								
Hexachlorocyclopentadiene	ND	0.20								
Hexachloroethane	ND	0.25								
Indeno(1,2,3-cd)pyrene	ND	0.20								
Isophorone	ND	0.40								
1-Methylnaphthalene	ND	0.25								
2-Methylnaphthalene	ND	0.25								
2-Methylphenol	ND	0.40								
3+4-Methylphenol	ND	0.40								
N-Nitrosodi-n-propylamine	ND	0.40								
N-Nitrosodimethylamine	ND	0.40								
N-Nitrosodiphenylamine	ND	0.20								
Naphthalene	ND	0.25								
2-Nitroaniline	ND	0.40								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.25								
4-Nitrophenol	ND	0.40								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.25								
Phenol	ND	0.40								
Pyrene	ND	0.20								
Pyridine	ND	2.0								
1,2,4-Trichlorobenzene	ND	0.25								
2,4,5-Trichlorophenol	ND	0.25								
2,4,6-Trichlorophenol	ND	0.40								
Surr: 2-Fluorophenol	3.0		3.330		89.9	23.5	70.2			S
Surr: Phenol-d5	3.4		3.330		103	28.3	80			S
Surr: 2,4,6-Tribromophenol	3.1		3.330		93.6	33.8	106			
Surr: Nitrobenzene-d5	1.4		1.670		84.3	19.5	72.3			S
Surr: 2-Fluorobiphenyl	1.4		1.670		86.4	21.1	76.5			S
Surr: 4-Terphenyl-d14	1.7		1.670		103	70	109			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 22 of 23

Hall Environmental Analysis Laboratory, Inc.

WO#: **2212A00**

03-Jan-23

Client: Glorieta GeoScience

Project: Quinn Tire

Sample ID: Ics-72207	SampT	Гуре: LC	s	Tes	tCode: EF	PA Method	8270C: Semi	volatiles		
Client ID: LCSS	Batch	h ID: 722	207	F	RunNo: 93	3512				
Prep Date: 12/20/2022	Analysis D	Date: 12	/22/2022	5	SeqNo: 33	373297	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.4	0.25	1.670	0	81.0	15.2	118			
4-Chloro-3-methylphenol	2.9	0.50	3.330	0	87.4	35.2	105			
2-Chlorophenol	2.8	0.25	3.330	0	83.3	16.4	101			
1,4-Dichlorobenzene	1.1	0.25	1.670	0	65.4	15	86.5			
2,4-Dinitrotoluene	1.2	0.50	1.670	0	71.5	28.8	92.8			
N-Nitrosodi-n-propylamine	1.4	0.40	1.670	0	84.2	26.2	103			
4-Nitrophenol	3.2	0.40	3.330	0	95.1	49.6	129			
Pentachlorophenol	2.7	0.40	3.330	0	80.6	42.7	101			
Phenol	2.8	0.40	3.330	0	83.4	15	115			
Pyrene	1.6	0.20	1.670	0	93.5	55.4	126			
1,2,4-Trichlorobenzene	1.2	0.25	1.670	0	72.7	15	99.4			
Surr: 2-Fluorophenol	2.6		3.330		77.6	23.5	70.2			S
Surr: Phenol-d5	2.9		3.330		88.6	28.3	80			S
Surr: 2,4,6-Tribromophenol	3.3		3.330		99.9	33.8	106			
Surr: Nitrobenzene-d5	1.5		1.670		87.1	19.5	72.3			S
Surr: 2-Fluorobiphenyl	1.5		1.670		88.0	21.1	76.5			S
Surr: 4-Terphenyl-d14	1.7		1.670		105	70	109			

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Client Name: Glorieta GeoScience Work Order Number: 2212A00 RcptNo: 1 Received By: Joseph Alderette 12/15/2022 3:05:00 PM Completed By: Isaiah Ortiz 12/15/2022 3:24:00 PM Reviewed By: Chain of Custody No 🗌 Not Present 1. Is Chain of Custody complete? Yes 🗹 2. How was the sample delivered? Courier Log In 3. Was an attempt made to cool the samples? No 🗌 NA 🗀 Yes 🔽 No \square NA 🗌 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗌 Sample(s) in proper container(s)? Yes 🔽 Yes 🗹 No \square 6. Sufficient sample volume for indicated test(s)? No 🗀 Yes 🗸 7. Are samples (except VOA and ONG) properly preserved? Yes 🗌 No 🗹 NA 🗌 8. Was preservative added to bottles? No 🔲 NA 🗹 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes 🗌 Yes \square No 🗸 10. Were any sample containers received broken? # of preserved bottles checked No 🗌 for pH: 11. Does paperwork match bottle labels? Yes 🗹 (Note discrepancies on chain of custody) (<2 of >12 unless noted) No 🗌 Adjusted? Yes 🔽 12. Are matrices correctly identified on Chain of Custody? No 🗌 Yes V 13. Is it clear what analyses were requested? Checked by: KPh 12.15.22 14. Were all holding times able to be met? Yes 🗹 No 🗌 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes 🗌 NA 🗹 No 🗌 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By

3.2

Good

Not Present

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	(N DRO / MRO) 18082 PCB's 104.1)	BTEX / MTBE / MTBE / MTBE / 8081 Pesticides 8081 Pesticides PAHs by 8310 of RCRA 8 Metals CI, F, Br, NO ₃ , 8260 (VOA) 8270 (Semi-VOA) 10tal Coliform (I	X	\ \ \ \ \	X X	*	X X	*	Remarks:	
Turn-Around Time: Rush ASAP Project Name: Ave. A Live Project #:	Project Manager: Boot Hore Sampler: Rest Hore	Ders: / Temp(including cF): 3.2 - 0.2 - 2.7 (°C) er Preservative	Valx2 Methous (OD)	Now	402 July XZ Merband OUL		foster Non- Viulxz Method (004	402 DOR	Received by: Via: Date Time F	Received by: Via: Date Time
	<i>Elenetaleocum</i> □ Level 4 (Full Validation)	ype)	1300 501	1300 Soil trenche & feet	12-14 1310 Soul trench 21 bow @4-11	1000 Soil French Bottom	1215 1000 Sul trench Bother 1215 1100 Sul Below 5-2	215 1100 Sen Relow 5-2	Date: Time: Relinquished by:	Date: Time: Relinquished by:

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 25, 2023

Boot Pierce Glorieta GeoScience P.O. Box 5727 Santa Fe, NM 87502

TEL: (505) 983-5446 FAX: (505) 983-6482

RE: Quinn Tire OrderNo.: 2301615

Dear Boot Pierce:

Hall Environmental Analysis Laboratory received 2 sample(s) on 1/17/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 2301615

Date Reported: 1/25/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: SW-Corner-10 ft

 Project:
 Quinn Tire
 Collection Date: 1/13/2023 11:49:00 AM

 Lab ID:
 2301615-001
 Matrix: SOIL
 Received Date: 1/17/2023 12:30:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analys	: DGH
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	1/20/2023 5:21:23 PM	72720
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	1/20/2023 5:21:23 PM	72720
Surr: DNOP	110	69-147	%Rec	1	1/20/2023 5:21:23 PM	72720
EPA METHOD 8015D: GASOLINE RANGE					Analys	:: JJP
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	1/20/2023 2:11:49 PM	72714
Surr: BFB	105	37.7-212	%Rec	1	1/20/2023 2:11:49 PM	72714

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 4

Analytical Report

Lab Order 2301615

Date Reported: 1/25/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Glorieta GeoScience Client Sample ID: SW-Corner-4 ft

Collection Date: 1/13/2023 12:15:00 PM **Project:** Quinn Tire 2301615-002 Lab ID: Matrix: SOIL Received Date: 1/17/2023 12:30:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE ORG	SANICS				Analys	: DGH
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	1/20/2023 5:32:07 PM	72720
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	1/20/2023 5:32:07 PM	72720
Surr: DNOP	105	69-147	%Rec	1	1/20/2023 5:32:07 PM	72720
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: JJP
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	1/20/2023 2:35:12 PM	72714
Surr: BFB	105	37.7-212	%Rec	1	1/20/2023 2:35:12 PM	72714

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Result

PQL

WO#: 2301615

25-Jan-23

Client: Glorieta GeoScience

Project: Ouinn Tire

Analyte

Sample ID: LCS-72720 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 72720 RunNo: 94118 Prep Date: 1/19/2023 Analysis Date: 1/20/2023 SeqNo: 3398455 Units: mg/Kg Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result Diesel Range Organics (DRO) 40 10 50.00 0 80.7 61.9 130 Surr: DNOP 5.4 5.000 108 69 147

Sample ID: MB-72720 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 72720 RunNo: 94118 Prep Date: Analysis Date: 1/20/2023 SeqNo: 3398457 1/19/2023 Units: mg/Kg

SPK value SPK Ref Val %REC

LowLimit

HighLimit

%RPD

RPDLimit

Qual

Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50

Surr: DNOP 11 10.00 106 69 147

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2301615**

25-Jan-23

Client:	Glorieta GeoScience
Client:	Glorieta GeoScienc

Project: Quinn Tire

Project:										
Sample ID: Ics-72	72714 Samp	Type: LCS	3	Tes	tCode: EP	A Method	8015D: Gasol	ine Range		
Client ID: LCSS	S Batc	h ID: 727 ′	14	F	RunNo: 94	1108				
Prep Date: 1/19	9/2023 Analysis I	Date: 1/2	0/2023	8	SeqNo: 33	397799	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organ	,	5.0	25.00	0	87.4	72.3	137			
Surr: BFB	2000		1000		195	37.7	212			
Sample ID: Ics-72	72715 Samp	Type: LCS	3	Tes	tCode: EP	A Method	8015D: Gasol	ine Range		
Client ID: LCSS	S Batc	h ID: 727 ′	15	F	RunNo: 9 4	1108				
Prep Date: 1/19	9/2023 Analysis I	Date: 1/2	0/2023	9	SeqNo: 33	97800	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	2000		1000		200	37.7	212			
Sample ID: Ics-72	72717 Samp	Type: LCS	<u></u>	Tes	tCode: EP	A Method	8015D: Gasol	ine Range		
Client ID: LCSS	S Batc	h ID: 727 ′	17	F	RunNo: 9 4	1108				
Olichicid. LC33										
	9/2023 Analysis I	Date: 1/2	1/2023	5	SeqNo: 33	897801	Units: %Rec			
Prep Date: 1/19	9/2023 Analysis I Result	Date: 1/2 ⁻ PQL		SPK Ref Val	SeqNo: 33 %REC	397801 LowLimit	Units: %Rec	%RPD	RPDLimit	Qual
	,				•				RPDLimit	Qual
Prep Date: 1/19, Analyte	Result 1900		SPK value 1000	SPK Ref Val	%REC 191	LowLimit 37.7	HighLimit	%RPD		Qual
Prep Date: 1/19 Analyte Surr: BFB	Result 1900 72714 Samp	PQL	SPK value 1000 LK	SPK Ref Val	%REC 191	LowLimit 37.7 PA Method	HighLimit 212	%RPD		Qual
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS	Result 1900 72714 Samp Batc	PQL Type: MBI	SPK value 1000 LK 14	SPK Ref Val Tes	%REC 191 tCode: EP	LowLimit 37.7 PA Method	HighLimit 212	%RPD ine Range		Qual
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS	Result 1900 72714 Samp Batc	PQL Type: MBI th ID: 727 Date: 1/2	SPK value 1000 LK 14 0/2023	SPK Ref Val Tes	%REC 191 tCode: EF RunNo: 94 SeqNo: 33	LowLimit 37.7 PA Method	HighLimit 212 8015D: Gasol	%RPD ine Range		Qual
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19	Result 1900 72714 Samp Batc 9/2023 Analysis I Result	PQL Type: MBI th ID: 727 Date: 1/2	SPK value 1000 LK 14 0/2023	SPK Ref Val Tes	%REC 191 tCode: EF RunNo: 94 SeqNo: 33	27.7 PA Method 1108	HighLimit 212 8015D: Gasol Units: mg/K	%RPD ine Range		
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte	Result 1900 72714 Samp Batc 9/2023 Analysis I Result	PQL Type: MBI th ID: 727' Date: 1/20	SPK value 1000 LK 14 0/2023	SPK Ref Val Tes	%REC 191 tCode: EF RunNo: 94 SeqNo: 33	27.7 PA Method 1108	HighLimit 212 8015D: Gasol Units: mg/K	%RPD ine Range		
Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ	Result 1900	PQL Type: MBI th ID: 727' Date: 1/20	SPK value 1000 LK 14 0/2023 SPK value	SPK Ref Val Tes F S SPK Ref Val	%REC 191 tCode: EP RunNo: 94 SeqNo: 33 %REC	2A Method 1108 197802 LowLimit 37.7	HighLimit 212 8015D: Gasol Units: mg/K HighLimit	%RPD ine Range g %RPD	RPDLimit	
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ Surr: BFB	Result 1900	PQL Type: MBI th ID: 727' Date: 1/20 PQL 5.0	SPK value 1000 LK 14 0/2023 SPK value 1000	SPK Ref Val Tes SPK Ref Val Tes	%REC 191 tCode: EP RunNo: 94 SeqNo: 33 %REC	2A Method 108 1097802 LowLimit 37.7	HighLimit 212 8015D: Gasol Units: mg/K HighLimit 212	%RPD ine Range g %RPD	RPDLimit	
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ Surr: BFB Sample ID: mb-72 Client ID: PBS	Result 1900	PQL Type: MBI th ID: 727' Date: 1/20 PQL 5.0 Type: MBI	SPK value 1000 LK 14 0/2023 SPK value 1000 LK 15	SPK Ref Val Tes SPK Ref Val Tes	%REC 191 tCode: EPRunNo: 94 SeqNo: 33 %REC 104	LowLimit 37.7 PA Method 1108 897802 LowLimit 37.7 PA Method 1108	HighLimit 212 8015D: Gasol Units: mg/K HighLimit 212	%RPD ine Range g %RPD ine Range	RPDLimit	
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ Surr: BFB Sample ID: mb-72 Client ID: PBS	Result 1900	PQL Type: MBI th ID: 727' Date: 1/20 PQL 5.0 Type: MBI th ID: 727'	SPK value 1000 LK 14 0/2023 SPK value 1000 LK 15	SPK Ref Val Tes SPK Ref Val Tes	%REC 191 tCode: EP RunNo: 94 SeqNo: 33 %REC 104 tCode: EP	LowLimit 37.7 PA Method 1108 897802 LowLimit 37.7 PA Method 1108	HighLimit 212 8015D: Gasol Units: mg/K HighLimit 212 8015D: Gasol	%RPD ine Range g %RPD ine Range	RPDLimit	
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19	Result 1900 1900 1900 1900 1900 1900 1900 1900 1900 190	PQL Type: MBI h ID: 727 Date: 1/20 FQL 5.0 Type: MBI h ID: 727 Date: 1/20	SPK value 1000 LK 14 10/2023 SPK value 1000 LK 15 10/2023	SPK Ref Val Tes S SPK Ref Val Tes S SPK Ref Val	%REC 191 tCode: EF RunNo: 94 SeqNo: 33 %REC 104 tCode: EF RunNo: 94 SeqNo: 33	2A Method 108 297802 LowLimit 37.7 2A Method 108 297803	HighLimit 212 8015D: Gasol Units: mg/K HighLimit 212 8015D: Gasol Units: %Rec	%RPD ine Range %RPD ine Range	RPDLimit	Qual
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte	Result 1900 1900 1900 1900 1900 1900 1900 1900 1900 190	PQL Type: MBI h ID: 727 Date: 1/20 FQL 5.0 Type: MBI h ID: 727 Date: 1/20	SPK value 1000 LK 14 0/2023 SPK value 1000 LK 15 0/2023 SPK value 1000	SPK Ref Val Tes SPK Ref Val Tes F SSPK Ref Val	%REC 191 tCode: EP RunNo: 94 SeqNo: 33 %REC 104 tCode: EP RunNo: 94 SeqNo: 33 %REC 102	LowLimit 37.7 PA Method 1108 897802 LowLimit 37.7 PA Method 1108 897803 LowLimit 37.7	HighLimit 212 8015D: Gasol Units: mg/K HighLimit 212 8015D: Gasol Units: %Rec	%RPD ine Range %RPD ine Range	RPDLimit	Qual
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Surr: BFB	Result 1900	PQL Type: MBI th ID: 727' Date: 1/20 FQL 5.0 Type: MBI th ID: 727' Date: 1/20 PQL	SPK value	SPK Ref Val Tes SPK Ref Val Tes SPK Ref Val Tes	%REC 191 tCode: EP RunNo: 94 SeqNo: 33 %REC 104 tCode: EP RunNo: 94 SeqNo: 33 %REC 102	LowLimit 37.7 PA Method 1108 197802 LowLimit 37.7 PA Method 1108 197803 LowLimit 37.7 PA Method 17.7	HighLimit 212 8015D: Gasol Units: mg/K HighLimit 212 8015D: Gasol Units: %Rec HighLimit 212	%RPD ine Range %RPD ine Range	RPDLimit	Qual
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Client ID: mb-72 Client ID: PBS	Result 1900	PQL Type: MBI Type: MBI Type: MBI Type: MBI PQL Type: MBI PQL Type: MBI	SPK value 1000 LK 14 0/2023 SPK value 1000 LK 15 0/2023 SPK value 1000 LK 17	SPK Ref Val Tes SPK Ref Val Tes SPK Ref Val Tes F	%REC 191 tCode: EF RunNo: 94 SeqNo: 33 %REC 104 tCode: EF RunNo: 94 SeqNo: 33 %REC 102	LowLimit 37.7 PA Method 1108 B97802 LowLimit 37.7 PA Method 1108 B97803 LowLimit 37.7 PA Method 1108	HighLimit 212 8015D: Gasol Units: mg/K HighLimit 212 8015D: Gasol Units: %Rec HighLimit 212	%RPD ine Range %RPD ine Range	RPDLimit	Qual
Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Gasoline Range Organ Surr: BFB Sample ID: mb-72 Client ID: PBS Prep Date: 1/19 Analyte Surr: BFB Sample ID: mb-72 Client ID: PBS Client ID: PBS	Result 1900	PQL Type: MBI h ID: 727' Date: 1/20 FQL 5.0 Type: MBI h ID: 727' Date: 1/20 PQL Type: MBI h ID: 727'	SPK value 1000 LK 14 10/2023 SPK value 1000 LK 15 0/2023 SPK value 1000 LK 17 11/2023	SPK Ref Val Tes SPK Ref Val Tes SPK Ref Val Tes F	%REC 191 tCode: EF RunNo: 94 SeqNo: 33 %REC 104 tCode: EF RunNo: 94 SeqNo: 33 %REC 102 tCode: EF RunNo: 94	LowLimit 37.7 PA Method 1108 B97802 LowLimit 37.7 PA Method 1108 B97803 LowLimit 37.7 PA Method 1108	HighLimit 212 8015D: Gasol Units: mg/K HighLimit 212 8015D: Gasol Units: %Rec HighLimit 212 8015D: Gasol	%RPD ine Range %RPD ine Range	RPDLimit	Qual

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Client Name: Glorieta GeoScience Work Order Number: 2301615 RcptNo: 1 Received By: Joseph Alderette 1/17/2023 12:30:00 PM I_OX Completed By: Isaiah Ortiz 1/17/2023 1:44:26 PM Eu 1/17/13 Reviewed By: Chain of Custody No 🗌 Not Present Yes 🔽 1. Is Chain of Custody complete? 2. How was the sample delivered? Courier Log In No 🗌 NA 🗌 3. Was an attempt made to cool the samples? Yes 🗸 No 🗌 NA 🗍 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗌 Yes 🗹 Sample(s) in proper container(s)? Yes 🔽 No 🗌 6. Sufficient sample volume for indicated test(s)? V No 7. Are samples (except VOA and ONG) properly preserved? Yes No 🗹 NA 🗌 Yes 8. Was preservative added to bottles? NA 🗹 No 🗌 Yes 🗌 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes No 🗹 10. Were any sample containers received broken? # of preserved bottles checked Yes 🗹 No 🗌 for pH: 11. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) No 🗌 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 Yes 🗹 No 🗌 13. Is it clear what analyses were requested? Checked by: KPU 1.17. 23 No 🗌 14. Were all holding times able to be met? Yes 🗹 (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 No 🗆 NA 🗹 15. Was client notified of all discrepancies with this order? Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information

Cooler No Temp °C

Condition

Good

Seal Intact

Not Present

Seal No

Seal Date

Signed By

I ATMINISTRATION IN THE I	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	nalysis I	^р О:	SWS B,8) OS	280 (1. (7.28	8/s 500 10 8	(GFR) bod (1 310 310 310 310 310 310 310 310	MT Bellice Hodge Week Tr, 1 CAO	TEX / PH:801/081 Pe:9081 Pe:90	8 B								Remarks:		
Turn-Around Time:	Standard	Project Name:		Project #:	22017	Project Manager:	Boot Pierce		Sampler: Boot Pierce	On ice: 🗹 Yes 🗆 No	# of Coolers: 1	Cooler Temp(including CF): 0.7 + 0.2 = 0.9 c vos.	Container Preservative	-	4 oz jar X1 None (00)	4 oz jar X1 None 002						Received by: Via: Date Time		Received by: Via: Date Time
Chain-of-Custody Record	Glorieta Geoscience, Inc		1723 Second Street	Santa Fe, New Mexico 87505	3.5664	email or Fax#: boot@glorietageo.com		☐ Level 4 (Full Validation)	□ Az Compliance	□ Other			Material Composition of the Comp	_	soil SW-Corner-10 ft	Soil SW-Corner-4 ft						Relinquished by:		Relinquished by:
Chain-	Client: GI		Mailing Address:	Santa	Phone #: 505.983.5664	email or Fax#: b	QA/QC Package:	Standard	Accreditation:	□ NELAC	□ EDD (Type)		C		1-13-23 11:49	1-13-23 12:15						Date: Time:	П	Date: Time:

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

PRECISION PETROLEUM LABS, INC.

CERTIFICATE OF ANALYSIS

LABORATORY ADDRESS

5915 Star Lane, Houston, TX 77057 Ph. 713-680-9425 Fax: 713-680-9564

Website: precisionlabs.org

Client Name: World Oil Environmental Services

Street Address: 4806 WilliamsSt SE

City, State, Zip: Albuquerque, NM 87105

INVOICE No.	96375	DATE RECEIVED	11-21-2022
LAB REFERENCE No.	2022-11-346	DATE/TIME COLLECTED	11-18-2022@11:00a.m.
AUTHORIZED BY	Bill Roberts	MATRIX TYPE	Liquid
PRODUCT ID	Sample #1 Old Quinn	Fire 1005 Cordova Pl Santa Fe, NM 87505	

TEST	REPORTING	TEST
METHOD	LIMIT	RESULT
D-287		30.4
S.W. 1010	-10°F	> 200
S.W. 9075	200	BRL
S.W.8082	0.50	BRL
	METHOD D-287 S.W. 1010 S.W. 9075	METHOD D-287 S.W. 1010 S.W. 9075 LIMIT 200

Daniel Zabihi OA Manager Date: 11-21-2022

PRIMARY ACCREDITATION TCEQ, #T104704203-21-15 ARIZONA LICENSE # AZ0630

QUALIFIERS & ABBREVIATIONS: BRL - Below Reporting Limit; SCL - Test performed by an approved subcontract laboratory; B - Analyte was detected in the associated method blank; Matrix spike/matrix spike duplicate (M), Laboratory control sample (L), Calibration criteria (C), and Surrogate (S) recoveries were outside acceptance limits. Test deviation applied to Method 8260 (VOCS). Sample date analyzed for each test is available upon request. *Not on laboratory's field of accreditation.

COMMENTS: This certificate is Confidential Business Information and will only be provided to designated customer point-of-contact(s). Other production of this report requires prior authorization from the customer. There were no quality assurance anomalies associated with these tests.

PRECISION PETROLEUM LABS, INC.'S RESPONSIBILITY FOR THE ABOVE ANALYSIS, OPINIONS OR INTERPRETATIONS IS LIMITED TO THE INVOICE AMOUNT. RESULTS ARE REPORTED ON AN "AS IS" BASIS, UNLESS OTHERWISE NOTED. THE TEST RESULTS RELATE ONLY TO THE SUBMITTED SAMPLE IDENTIFIED ON THIS REPORT. TEST RESULTS MEET ALL REQUIREMENTS OF NELAC FOR TESTS LISTED ON THE LABORATORY'S CURRENT FIELDS OF ACCREDITATION (EPA 1010, 6010, 8082, 8260, and 9075).

PRECISION PETROLEUM LABS, INC.

CERTIFICATE OF ANALYSIS

LABORATORY ADDRESS

5915 Star Lane, Houston, TX 77057 Ph. 713-680-9425 Fax: 713-680-9564

Website: precisionlabs.org

Client Name: World Oil Environmental Services

Street Address: 4806 WilliamsSt SE

City, State, Zip: Albuquerque, NM 87105

INVOICE No.	96375	DATE RECEIVED	11-21-2022
LAB REFERENCE No.	2022-11-347	DATE/TIME COLLECTED	11-18-2022@11:00a.m.
AUTHORIZED BY	Bill Roberts	MATRIX TYPE	Liquid
PRODUCT ID	Sample #2 Old Quinn	Tire 1005 Cordova Pl Santa Fe, NM 87505	

	TEST	REPORTING	TEST
PARAMETER	METHOD	<u>LIMIT</u>	RESULT
Gravity API @ 60 °F	D-287		30.1
Flash point, °F,	S.W. 1010	-10°F	> 200
Total Halogen, PPM	S.W. 9075	200	BRL
PCB's, PPM	S.W.8082	0.50	BRL

Daniel Zabihi QA Manager

PRIMARY ACCREDITATION TCEQ, #T104704203-21-15 ARIZONA LICENSE # AZ0630

QUALIFIERS & ABBREVIATIONS: BRL - Below Reporting Limit; SCL - Test performed by an approved subcontract laboratory; B - Analyte was detected in the associated method blank; Matrix spike/matrix spike duplicate (M), Laboratory control sample (L), Calibration criteria (C), and Surrogate (S) recoveries were outside acceptance limits. Test deviation applied to Method 8260 (VOCS). Sample date analyzed for each test is available upon request. *Not on laboratory's field of accreditation.

Date: 11-21-22

COMMENTS: This certificate is Confidential Business Information and will only be provided to designated customer point-of-contact(s). Other production of this report requires prior authorization from the customer. There were no quality assurance anomalies associated with these tests.

PRECISION PETROLEUM LABS, INC.'S RESPONSIBILITY FOR THE ABOVE ANALYSIS, OPINIONS OR INTERPRETATIONS IS LIMITED TO THE INVOICE AMOUNT. RESULTS ARE REPORTED ON AN "AS IS" BASIS, UNLESS OTHERWISE NOTED. THE TEST RESULTS RELATE ONLY TO THE SUBMITTED SAMPLE IDENTIFIED ON THIS REPORT. TEST RESULTS MEET ALL REQUIREMENTS OF NELAC FOR TESTS LISTED ON THE LABORATORY'S CURRENT FIELDS OF ACCREDITATION (EPA 1010, 6010, 8082, 8260, and 9075).

PRECISION PETRO LABS, INC.

5915 STAR LANE PH 713-680-9425 FAX: 713-680-9564

5915 STAR LANE HOUSTON, TX 77057
0-9425 FAX: 713-680-9564 WEBSITE: PRECISIONLABS.ORG

				1																								
Z.K																			to .	- 1								
1011	1	0	10		1								\dagger						4			X						
S	, ,	γ)															V	\mathbb{N}	11	H	L			Λ			ž	
					-								H	1					r		N							
2.6	S IT	TIME	Ħ	DATE				5	H	ACCEPTED			3 H = 5	N N		S	Ē	E	N	同	TRANSFER RELINQUISHED	Z		SUR	RANSFER NUMBER	TRA		
					_																						TIONS:	SPECIAL INSTRUCTIONS:
		\dashv		\dashv	\sqcup	Ц						\vdash	H	Н	H	_					\vdash	\vdash	-			_		
		-	2	-	-								-	_		_					-							(100 pt 100 pt 1
		4		\dashv	\dashv	4							\dashv	\dashv	\dashv		_				\exists		_					
		4		-	+	4							\dashv	\dashv	\dashv	_	_											
		_		-	_									-								_					3	
		\dashv		\dashv	-										_	_	_				_	_						
		-		\dashv	-	_							\dashv	-	-							Н						
																_												
					_	Ш				3						_	_					Т	H					
		\dashv	\exists	\dashv	4	\sqcup		Ц					П	\vdash	Н	\vdash	Н		П		Н	H	H			**		
				\dashv	\dashv	_		\Box						-	\vdash	\vdash						\vdash	Н					
		4		\dashv	\dashv	_										_	_					-	-			_		
		- 4			-	_			-							_	_	×	X			$\overline{\times}$	X	100ar	11/18/2022 1100amX	11	7.6	Sample #2
			П	Н	Н	Ш	Ш	Ц						-	H	\vdash	_	×	_				X	100ar	11/18/2022 1100am X	11		Sample #1
	RUSH (FRE	тох Е	FULL	BTE:	Total	Pestic	Sem	Vola	ICP N Total chro	8260	Sedi	Pour		AST	BTU	Wate	PCB	Tota	Ash	Sulf	Flas		TWE	DATE T		SAMPLE DESCRIPTION	SAMPLE
			PA-90							(lead		men		osity		BY GO	-						ity A		5	.COX	broberts@World Oil corp. com	broberts (
			20 (n D	oleu		_		l, ar	_	t by			185	//FID		Par	oge	S.			PI			6		1 10210
	_		OR I		-86	m h	_			sen	_	E			Si	JK I		A:11	ns				 @ 6		1200	^	11101万十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八	
	_		EO)		6 O	ıyd	_			ic,		ctra			lic	N-HC		-4.	EF	2000			60°				CLIENT NAME	
			(EP/		RD	roca						ctic			one	JUSE	- Constant		PA-9				F				Fe, NM 87505	3
			4-90		-11	rbe	_			601	_	n			}	WE (- I	07			CC					ova Pl.	1005 Cord
	-)23		60	ons				0B	_					HOD		(F	5			C			1601		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0
						1			Sis	ABORATORY ANALYSIS	ON	S	O	5	1	1	1				1	1				ATION	PROJECT NAME AND LOCATION	PR
													rest)	C	6		U			C		(
																	7		i.		Π							

OTHER METALS(PLEASE CIRCLE): AG, AL, BA, BE, B, CA, CO, FE, PB, MG, MN, HG, MO, NI, P, K, SE, SI, NA, TL, SN, TI, Y, ZN, NO, 21, 2022

2.1 2022

(ECISION)

The state of the s

PRECISION PETROLEUM LABS, INC.

CERTIFICATE OF ANALYSIS

LABORATORY ADDRESS

5915 Star Lane, Houston, TX 77057 Ph. 713-680-9425 Fax: 713-680-9564

Website: precisionlabs.org

Client Name: World Oil Environmental Services

Street Address: 4806 Williams St SE

City, State, Zip: Albuquerque, NM 87105

INVOICE No.	96503	DATE RECEIVED	12-05-2022						
LAB REFERENCE No.	2022-12-059	DATE/TIME COLLECTED	12-01-2022@5:00pm						
AUTHORIZED BY	Bill Roberts	MATRIX TYPE	Liquid						
PRODUCT ID	Sample #3 From Old	Sample #3 From Old Quinn Tire 1005 Cordova Pl Santa Fe, NM 87505							

	TEST	REPORTING	TEST
<u>PARAMETER</u>	METHOD	<u>LIMIT</u>	RESULT
Gravity API @ 60 °F	D-287	The second secon	30.0
Flash point, °F,	S.W. 1010	-10°F	> 200
Total Halogen, PPM	S.W. 9075	200	BRL
PCB's, PPM	S.W.8082	0.50	BRL

Daniel Zabihi QA Manager Date: 12-06-2022

PRIMARY ACCREDITATION TCEQ, #T104704203-21-15 ARIZONA LICENSE # AZ0630

QUALIFIERS & ABBREVIATIONS: BRL - Below Reporting Limit; SCL - Test performed by an approved subcontract laboratory; B - Analyte was detected in the associated method blank; Matrix spike/matrix spike duplicate (M), Laboratory control sample (L), Calibration criteria (C), and Surrogate (S) recoveries were outside acceptance limits. Test deviation applied to Method 8260 (VOCS). Sample date analyzed for each test is available upon request. *Not on laboratory's field of accreditation.

COMMENTS: This certificate is Confidential Business Information and will only be provided to designated customer point-of-contact(s). Other production of this report requires prior authorization from the customer. There were no quality assurance anomalies associated with these tests.

PRECISION PETROLEUM LABS, INC.'S RESPONSIBILITY FOR THE ABOVE ANALYSIS, OPINIONS OR INTERPRETATIONS IS LIMITED TO THE INVOICE AMOUNT. RESULTS ARE REPORTED ON AN "AS IS" BASIS, UNLESS OTHERWISE NOTED. THE TEST RESULTS RELATE ONLY TO THE SUBMITTED SAMPLE IDENTIFIED ON THIS REPORT. TEST RESULTS MEET ALL REQUIREMENTS OF NELAC FOR TESTS LISTED ON THE LABORATORY'S CURRENT FIELDS OF ACCREDITATION (EPA 1010, 6010, 8082, 8260, and 9075).

PRECISION PETRO DLEUM LABS, INC.

PH 713-680-9425 FAX: 713-680-9564 WEBSITE: PRECISIONLABS.ORG

	2	SPECIAL INSTRUCTIONS:						ar T			Sample # 8	1	SAMPLE DESCRIPTION	brober to @ Harldo licarp. con	World Of Emmanuel Services	CLIENT NAME	Te, UM	Old Dann Time	PROJECT NAME AND LOCATION	
		TRANSFER									16-1-65 3	-	DATE	3	8				Z	
	1	m m									0.00	3	TIME						1	Case Come Scine
N							1	1	-			×	Grav	rity A	PI@	60 MC	°F C or (COC	-	Diese.
			-		+	+		-	-	H	_	Sulf		1.					1	
	H			\dagger	\dagger		+				Ash					000	4			
TRANSFER RELINQUISHED			+									101011111113					075	_		
		П						1	L	\sqcup	×	PCE	3's	Diat	illo	tion o	rKE	\dashv	١	
	5					\sqcup	\downarrow	_	\perp	-	\dashv	_					tion o			
		2				\sqcup	+	+	+	+	\dashv		BTU		ON ID O					
		Ė		_	$\vdash\vdash$	H	+	+	+	╁	++				5185	Sili	cone			
		W K		+	++	H	+	+	+	+	+	_		cosity						30
					+	H	+	\dagger	+	十	$\dagger \dagger$			ır poi					0	
				H	+	H	\dashv	\top	+		\top						ractio		- 5	1
T T			H	\vdash	$\dagger \dagger$	П										_	oc's (re		1) 9	ANOTARDONA ANOTARDONA
DEC 05 2022 PRECISION PETROLEUM	ACCEPTED											Tota	Metal al (lea omiur	d, ars	eni	(4)SW ic, um)	6010	В	· AZALYOIG	
S M	5			\dashv	++	H	\dashv	+	+	\dagger	+						r TCL			(n)
, OTE	2022			+	++	\vdash	\dashv	+	\top	\dagger							otal c			
NA.	. ~.			\vdash	11												s Total			
38000572002		and and and										L			roleu	m h	ydroc	arbo	ns	
										\downarrow	1	L	BT		ion P	0.0	OR	7-116	30	
				\bot	1	Ш		4	4	-	\vdash					-6751				
		DATE		\sqcup		\perp		\dashv	+	+	+	+					EOX E			
		111	4	++	++	+	-	H	+	+	+	+					GLYC			
	64	====	-	++	++	+	-	H	\dashv	+	+	t					OIL TE			
9	N.	TIME	H	++	+	+			\exists	1	1	1	RUS	SH (FEE	EQUAL	S TE	STING C	CHARG	ES)	3-11

METALS(PLEASE CIRCLE): AG, AL, BA, BE, B, CA, CO, FE, PB, MG, MN, HG, MO, NI, P, K, SE, SI, NA, TL, SN, TI, V, ZN

000